

HR7P90系列产品及 开发平台介绍

日期: 2015.08.20

用芯色知, 青些铅附

- ●8位MCU系列介绍
- HR7P90系列产品介绍及功能简介

- HR7P90系列芯片特殊功能及应用提醒
- 产品开发平台介绍

8位MCU系列

HR6P系列

程序存储: ≤ 8K word

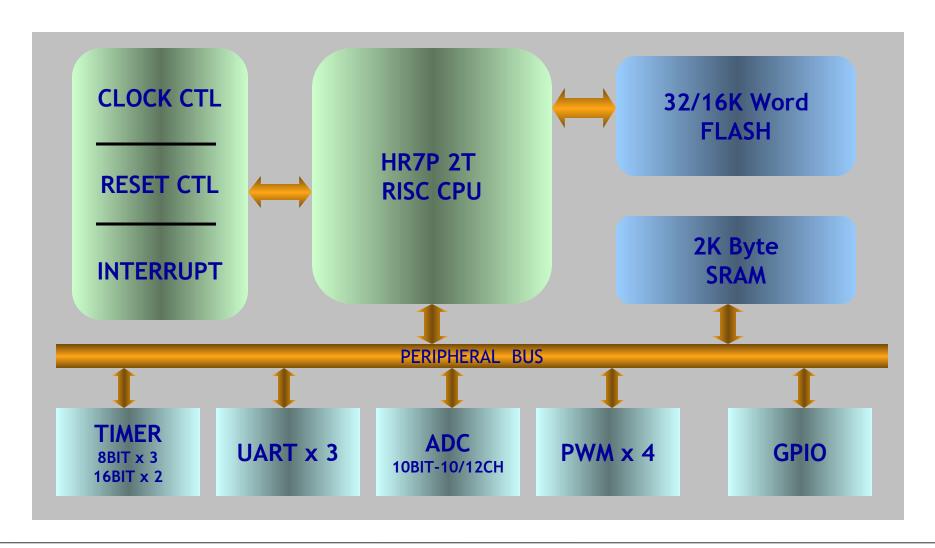
数据存储: ≤ 1K byte

HR7P系列

2T架构

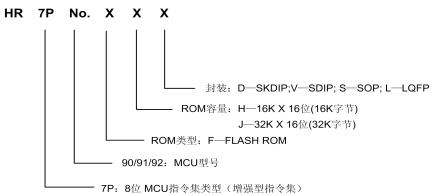
程序存储: > 8K Word

数据存储: > 1K Byte


4T架构

程序存储:≤8K Word

数据存储:≤ 1K Byte


HR7P90系列芯片架构图

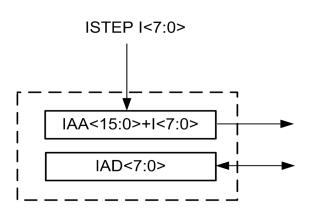
HR7P90系列芯片命名规则

型号	程序存储器	数据存储器	封装
HR7P90FHD	FLASH:16K×16位	SRAM:2K×8位	SKDIP28
HR7P90FJD	FLASH:32K×16位	SRAM:2K×8位	SKDIP28
HR7P90FHS	FLASH:16K×16位	SRAM:2K×8位	SOP28
HR7P90FJS	FLASH:32K×16位	SRAM:2K×8位	SOP28
HR7P91FHV	FLASH:16K×16位	SRAM:2K×8位	SDIP32
HR7P91FJV	FLASH:32K×16位	SRAM:2K×8位	SDIP32
HR7P91FHS	FLASH:16K×16位	SRAM:2K×8位	SOP32
HR7P91FJS	FLASH:32K×16位	SRAM:2K×8位	SOP32
HR7P91FHL	FLASH:16K×16位	SRAM:2K×8位	LQFP32
HR7P91FJL	FLASH:32K×16位	SRAM:2K×8位	LQFP32
HR7P92FHL	FLASH:16K×16位	SRAM:2K×8位	LQFP44
HR7P92FJL	FLASH:32K×16 <u>位</u>	SRAM:2K×8位	LQFP44

HR7P90系列产品特点

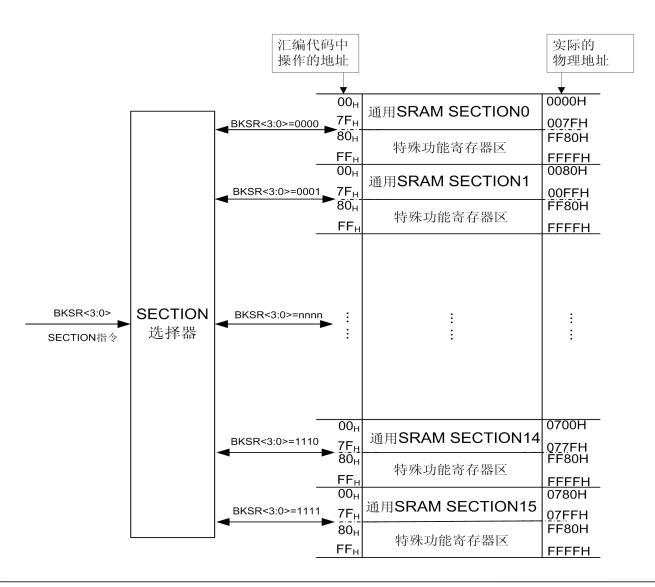
- ♦针对白色家电应用MCU
- ♦内核采用HR7P系列2T架构
- ◆ 内置独立于指令集的硬件乘法器
- ◆支持自主知识产权的C编译工具
- ◆支持C程序在线编程、仿真及调试
- ◆产品性能达到工业级标准
- ◆业界领先的芯片级高抗干扰能力

HR7P90/91/92资源对比

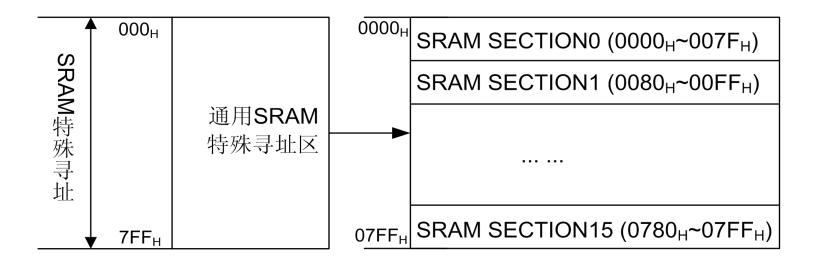

										定明	付器	定时智	器功能扩展		14#1VI			
芯片系列	型号	1/0	封装	程序存储器 (ROM)	数据存储器 (RAM)	ADC	中断	内部振荡器	工作电压 范围	8 位	16 位	比较器 功能扩展	捕捉器 功能扩展	PWM 功能扩展	模拟 比较器	通信接口	低电压复位 (BOR)	特殊功能
HR7P90H	HR7P90FHD		SKDIP28		SRAM:2K×8位	10位10通道 20		16MHz, 20 最低可分频 至125KHz	低可分频 3.0 > 5.5 >	3		2	2	4	-	UART(2)	支持 ,可配置	可配置大电流口(8)
ПК/ГЭОП	HR7P90FHS	25	SOP28	FLASH:16K×16位							2							
11070001	HR7P90FJD		SKDIP28				20											
HR7P90J	HR7P90FJS		SOP28	FLASH:32K×16位														
	HR7P91FHS		SOP32		SRAM:2K×8位 11	10位12通道 22												
HR7P91H	HR7P91FHV		SDIP32	FLASH:16K×16位														
	HR7P91FHL		LQFP32				16MHz ,	0.01/ 5.51/										
	HR7P91FJS	-	SOP32	SOP32			22	22 最低可分频 至125KHz	3.0V ~ 5.5V	3	2	2	2 4	4	-	UART(3)	文持, 可配直	可配置大电流口(8)
HR7P91J	HR7P91FJV		SDIP32	FLASH:32K×16位														
	HR7P91FJL		LQFP32															
HR7P92H	HR7P92FHL		LQFP44	FLASH:16K×16位	00 444 0V 0V	10/210/214		16MHz ,								LIA DT(2)	+++ ======	
HR7P92J	HR7P92FJL	39	LQFP44 FLASH:32K×16位	DRAM: ZK×811	2K×8位 10位12通道	22	最低可分频 至125KHz	3.0V ~ 5.5V	3	3 2	2	2	4	-	UART(3)	文付,可能直	可配置大电流口(16)	

HR7P90系列芯片数据存储器

地址区间	名称
0000 _H – 007F _H	通用SRAM SECTION0
0080 _H – 00FF _H	通用SRAM SECTION1
0100 _H – 017F _H	通用SRAM SECTION2
0180 _H – 01FF _H	通用SRAM SECTION3
0200 _H – 027F _H	通用SRAM SECTION4
0280 _H – 02FF _H	通用SRAM SECTION5
0300 _H – 037F _H	通用SRAM SECTION6
0380 _H – 03FF _H	通用SRAM SECTION7
0400 _H – 047F _H	通用SRAM SECTION8
0480 _H – 04FF _H	通用SRAM SECTION9
0500 _H – 057F _H	通用SRAM SECTION10
0580 _H – 05FF _H	通用SRAM SECTION11
0600 _H – 067F _H	通用SRAM SECTION12
0680 _H – 06FF _H	通用SRAM SECTION13
0700 _H – 077F _H	通用SRAM SECTION14
0780 _H – 07FF _H	通用SRAM SECTION15
0800 _H – FF7F _H	-
FF80 _H – FFFF _H	特殊功能寄存器区


HR7P90系列芯片数据存储器(间接寻址)

0000 _H	SRAM SECTION0 (0000 _H ~007F _H)						
	SRAM SECTION1 (0080 _H ~00FF _H)						
07FF _H	SRAM S	SECTION1	5 (0780 _H ~07FF _H)				
	保留区						
FF80 _H	IAD	间接寻址,	数据寄存器				
FF81 _H	IAAL	间接寻址,	索引寄存器<7:0>				
		•••					
FFFF _H	-	保留					



HR7P90系列芯片数据存储器(直接寻址)

HR7P90系列芯片数据存储器(特殊寻址)

应用例程:访问通用SRAM,对物理地址(0x0693)写入0x55,再读出。

MOVI 0x55 ; 0x55->A

MOVAR 0x693 ; A-> [0x693]

MOVRA 0x693 ; [0x693] -> A

HR7P90系列产品应用注意提醒(ZDL)

注意事项:

1:对于多电源供电系统上电顺序

先上MCU上电,在系统其它部件上电

2: 搭建稳定可靠的复位电路,以保证复位管脚可靠稳定,可借鉴数据手册提供的电路搭建。

3:晶振

海尔MCU芯片具有内部和外部时钟源。内部时钟源会随着温度、电压变化而偏移,可能会影响时钟源精度,如果用户对时钟要求比较严格,建议采用外部晶振作为系统时钟源,在搭建自己的震荡电路时,注意相关元件参数匹配。

4:芯片未用管脚

对于不同的MCU,可能芯片工作的电压门限不一样,海尔MCU芯片给出自己的门限电压,为了使系统工作更稳定,参考电平请以海尔MCU芯片给出的电压门限为标准,如果电压范围不能确定,芯片工作将出现故障。对于未使用的管脚,建议用户设为输出状态(关掉相关逻辑电路),并通过电阻接至电源或地,以保证管脚电平可控。对未使用的管脚处理因应用系统而异。

HR7P90系列产品应用注意提醒(ZDL)

5:计数值初始化

在用到计数器的时候,记得将其初始化,因为初始值随机,可能导致计数偏差

6:现场保存

进入中断,对汇56编写的程序要记得现场保存,本芯片提供一条现场保存指令

7: ADC

用到AD时,要注意时钟的选择,在推荐的62.5K~1M以内,相应的端口配置为模拟输入

8: PWM

由于PWM有个精度缓冲器的初始值为0x00,所以要注意计数器的初始化的位置,放在PWM使能模式前面则第一个PWM全为1,放在PWM使能模式后面就全为0

9:按键中断

在使能按键中断之前,先清标志,想要清标志就先读一下按键端口的状态

HR7P90系列产品应用注意事项

◆有中断时中断标志清零问题

注*: 开中断前需先清相应的中断标志,从而避免中断的误触发。除只读的中断标志外,中断标志必须通过软件清零。为避免中断的发生与中断清零操作冲突时清零不成功,建议清零操作后进行清零是否成功的软件判断,若不成功则再次清零,直到清零成功为止。或连续执行两次清零操作。

应用例程:中断标志清零程序

.

BCC INTF1,T8NIF ; 清中断标志

JBC INTF1,T8NIF ; 判断清零是否成功

GOTO \$-2 ; 不成功则再次清零

.

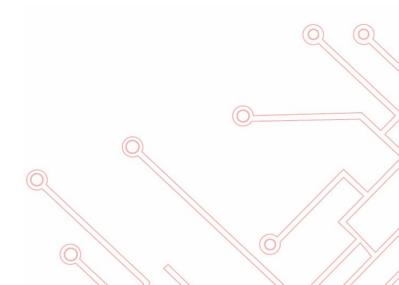
HR7P90系列产品应用注意事项

◆ 17位PWM无法输出0%占空比问题

```
PWM计算公式如下:
PWM周期 = [(周期值)+1]×2×Tosc×(预分频器分频比)
PWM频率 = 1 / [PWMx周期]
  当T16GxR17 = 0时
PWM脉宽 = (精度值+1) × 2 X Tosc×(预分频器分频比)
PWM占空比 = (精度值+1) / [(周期值) +1]
  当T16GxR17 = 1时
PWM脉宽 = [(精度值+1) × 2 + 1] X Tosc×(预分频比分频比)
PWM占空比 = [(精度值+1) ×2 + 1]/ { [(周期值)+1]×2}
```

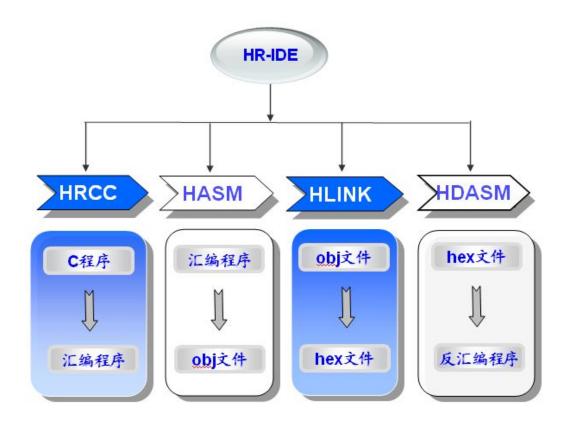

HR7P90系列产品应用注意事项

◆ TX等发送时, BSS端口寄存器其他位会误操作问题


当对Px寄存器执行读-修改-写操作时,先读取该组I/O的端口电平,修改后再写回Px寄存器。位操作属于读-修改-写操作,因此对端口的位操作有可能影响同组I/O的Px寄存器。

tastsoft.

MCU产品开发平台介绍 -iDesinger/HR10M/HR50S



C语言开发项目的优势

HRCC工具链简介

HRCC是一套根据《ISO/IEC 9899:1990》标准开发的交叉ANSI C编译器工具链,提供了丰富的数据类型,全面支持结构化程序设计。与海尔ICD、ICE结合,可以实现项目的仿真调试。

集成开发环境

- ◆iDesigner是上海海尔自主研发的新一代集成开发环境软件。
- ◆iDesigner集成了动态语言分析器、HRCC编译工具、 HRDebugEngine调试器等工具,致力于为用户提供一套强大、 稳定、易用、高效的嵌入式开发平台。

新型集成开发工具HR10M

◆针对五线制(Mrst、VDD、GND、SDA、SCK)编程、调试的芯片而开发的一款集成开发工具。

可编程、可调式。编程仅限于研发或小批量生产使用。 若要大批量生产,请使用Haier的HR50S全驱动编程器或第三方编程器

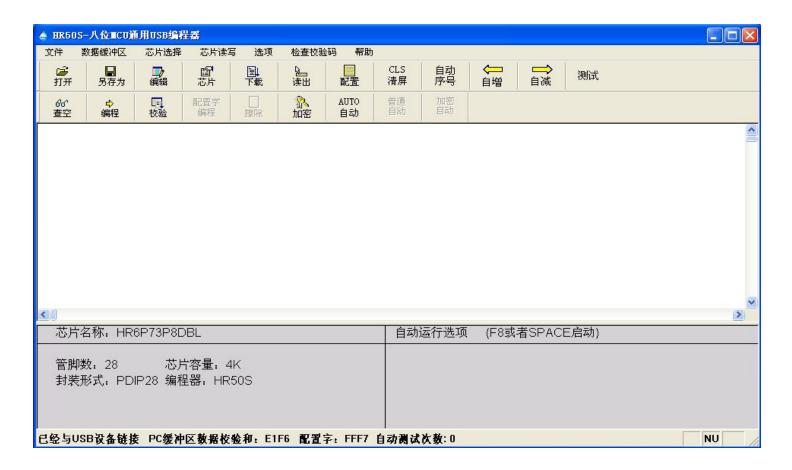
◆特点:

- ➤USB供电
- ➤调试电压可选: 5v、3.3v、3v
- ▶集调试和编程于一体;调试(OTP,flash)编程(OTP,flash)
- ▶支持联机序列号编程
- ▶支持脱机编程

仅用于MCU开发使用,量产编程请使用HR50S或第三方编程。

全驱动编程器HR50S

特点:


- 支持48脚全驱动。
- 支持自动管脚检测功能。
- 支持脱机编程功能(ROMSIZE<=16K)。
- 支持编程计数功能。
- 支持序列号编程功能。
- FLASH芯片支持在线编程功能。
- 具有LCD显示/LED显示/蜂鸣器提醒功能。
- 支持支持usb2.0通讯方式。

全驱动编程器HR50S

◆编程器界面:

全驱动编程器HR50S

◆适合各种编程接口:

对于48pin以内的直插芯片不需要转接座转接。

贴片芯片使用标准SOP - DIP转接座。

在线编程使用ISP转接线。

股票代码: 300183

客服热线: 400-690-5516 Email: sales@essemi.com