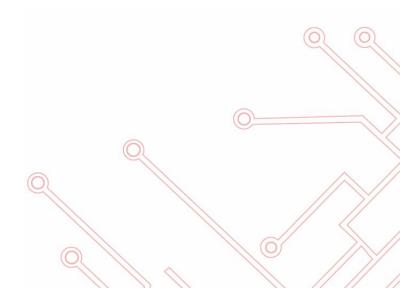


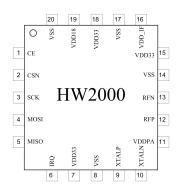
HW2000 2.4G无线 产品介绍

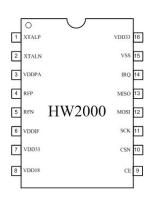
日期: 2015.08.20

用芯色知, 青些铅附



Hastsoft. 目录


产品介绍



产品简介

- HW2000是一款低功耗低成本2.4GHz ISM频段射频收发器芯片,该产品提供QFN20、SOP16、裸芯片三种封装形式。
- HW2000支持GFSK调制方式、提供 250Kbps与1Mbps两种不同的数据速 率,最大发射功率可达8dBm。
- HW2000满足低成本、低功耗、高传输速率应用的典型需求,仅需少量外围元器件即可实现高速无线传输。

4mmx4mm QFN20

4mmx10mm SOP16

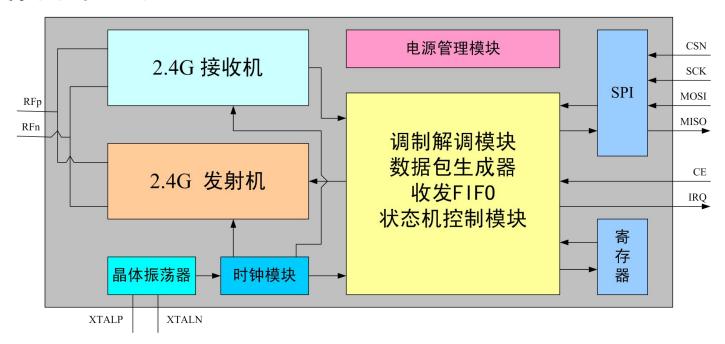
主要特征

- 使用国际通用的2.4GHz ISM工作频段
- 支持GFSK调制方式
- 支持250Kbps/1Mbps两种数据速率
- 发送数据包格式可选,数据包长度可调
- 支持自动应答功能(ACK),支持ACK带 PAYLOAD功能
- 支持自动重传功能(ART)
- 支持自动频率控制(AFC)
- 支持自动增益控制(AGC)
- 支持数字RSSI测量
- 支持曼切斯特编码、8bit/10bit线性等编码
- 两级收发FIFO,每级64bytes;
- 两级ACKFIFO,每级32bytes
- 支持4 PIPE多逻辑通道传输
- 支持4线SPI接口,最高时钟频率8MHz

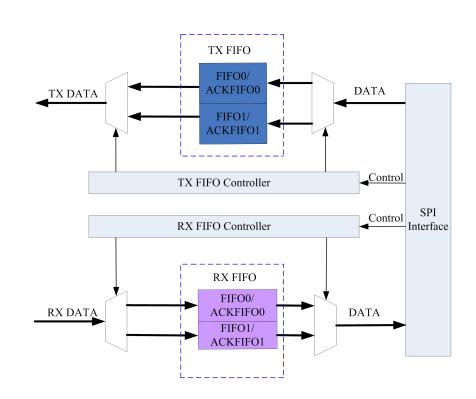
- 支持2.0V~3.6V电源
- 接收机灵敏度:
- -89dBm@1Mbps
- -95dBm@250Kbps
- 支持发射机输出功率手动(自动)控制: -25dBm ~ +8dBm
- 发射机输出功率在0dBm时,芯片功耗小 干22mA
- 接收机工作时,芯片功耗小于22mA
- POWER DOWN模式下电流小于2uA:
- SLEEP模式电流小于30uA:
- IDLE模式电流小于2.0mA
- 支持12/16/20MHz(+/-60ppm)石英晶体振荡器

市场应用

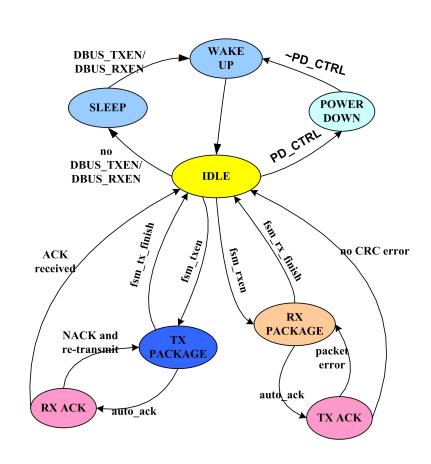
应用领域



芯片内部结构

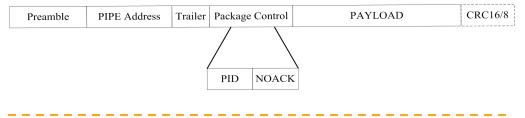

- 模拟部分主要由电源管理模块、晶体振荡器、时钟 生成电路、2.4G接收机和2.4G发射机构成
- 数字部分主要由调制解调模块、数据包生成器、收发FIFO、状态机控制电路、SPI接口和特殊功能寄存器等构成

收发双FIFO结构


- HW2000支持两级DATA FIFO(每级64bytes)与两级 ACK FIFO(每级32bytes)
- 两级FIFO模式可灵活设置为 乒乓操作或者单FIFO操作两 种模式
- ACK FIFO使能可以在物理层 实现传输数据的自动Fly-Back功能

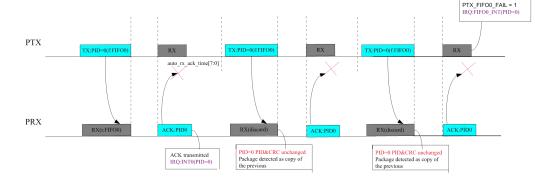
状态机设计

- HW2000拥有满足低功耗 应用完善的状态控制逻辑
- 芯片收发完毕将自动进入 IDLE状态以节省功耗
- 通过关闭收发使能可进入 深度睡眠状态
- POWER DOWM模式下功耗 将低于2uA



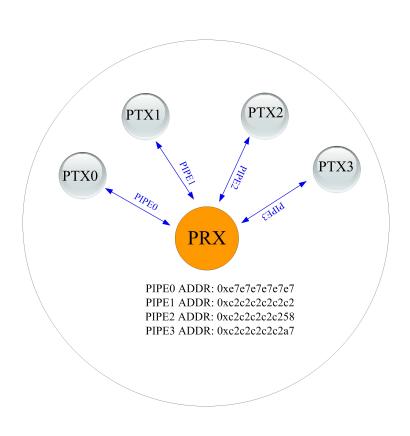
灵活的帧结构设置

- Preamble支持2,4,6...16bytes
- PIPE Address 支持16/32/48bits, 4路数据通道
- Trailer 支持4~18bits,硬件自动生成
- PID 帧累加计数,硬件自动生成
- NOACK
 ACK使能,对当前发送数据ACK禁止
- PAYLOAD 最大64bytes长度
- CRC16/8可选CRC校验功能与多项式
- ACK使能下,自动回复帧结构可设置为 PAYLOAD(最大32bytes)功能使能与禁 能两种模式


● 数据收发帧结构

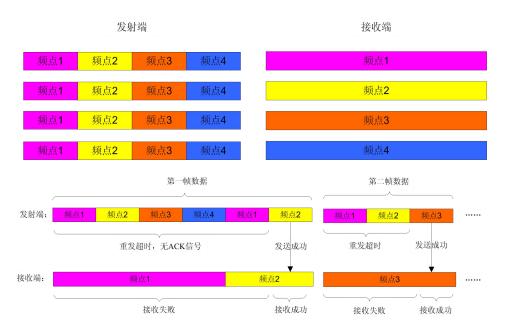
● 可选的自动ACK帧结构

Preamble PIPE Address Trailer PAYLOAD CRC16/8


● 可选的自动重传功能设置

多逻辑PIPE功能

- PRX可支持与4个不同PIPE地 址PTX通讯的方式
- 物理层自动过滤非相关地址
- 可灵活实现广播地址、组播地 址与单播地址功能
- 面向应用提供长达48bits的4 组ID设置功能,便于用户区分 不同产品


多逻辑PIPE原理

跳频功能实现

■ HW2000工作频点可以通过频点寄存器配置: 工作频点=起始频点(RF_FREQ_BASE)+步长(step)x频道号码(PLL_CH_NO),步长为1MHz。

■ 通过灵活配置频道号码,可以实现多种跳频模式

慢跳频模式:通过多频点重发相同数据,在接收端周期性扫频接收

0 1 2 3	4 5 6 7 8 9	10 11 12 13	14 15 16 <mark>0</mark> 1 2		
			0 0 0 0 0 0 1 2		
时隙	频率 (MHz)	时隙	频率(MHz)		
1	2405	9	2435		
2	2405	10	2435		
3	2475	11	2455		
4	2475	12	2455		
5	2425	13	2415		
6	2425	14	2415		
7	2465	15	2445		
8	2465	16	2445		

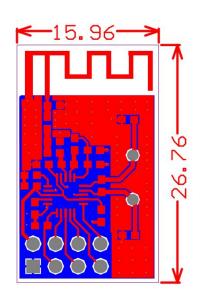
MASTER

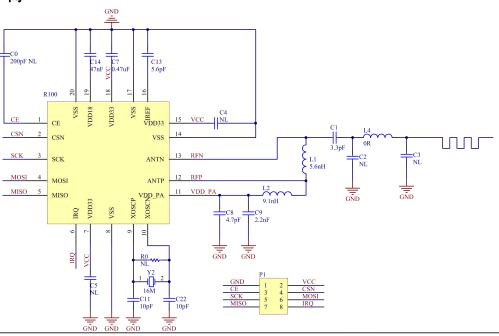
SLAVE3

SLAVE4

SLAVE2

SLAVE1

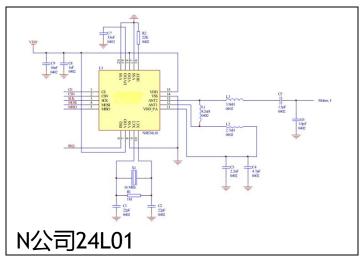

● 快跳频模式:

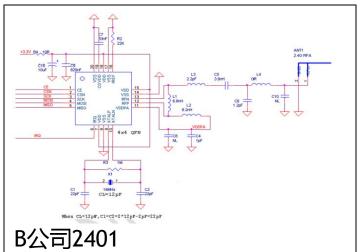

基于信标的跳频跳时通过搜索信标完成主从同步之后,开始以时隙周期跳频收发

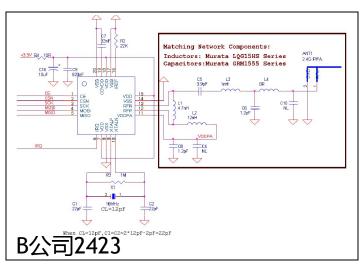
硬件设计

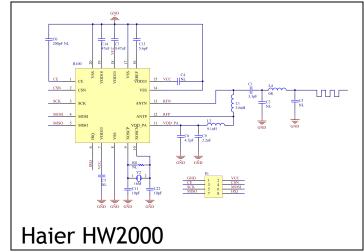
- 低成本双面板布局
- 射频微带走线尽量短,参考地平面保证完整性
- 电感采用L型布局
- 射频电路包地并通过过孔与参考地平面连接
- VCC电源尽量走上层避免分割参考地平面
- 数字部分走线尽量远离射频前端

BOM


- 最少仅需 **11** 颗 外围物料
- 仅需考虑 3 颗核 心外围物料性能


Part	Designator	Footprint	Description	
NL	C0	L0603	X7R,+/-10%	
3.3pF	C1	L0603	高频陶瓷电容	
NL	C2	L0603	NL	
NL	C3	L0603	NL	
NL	C4	L0603	NL	
NL	C5	L0603	NL	
0.47uF	C7	L0603	X7R,+/-10%	
4.7pF	C8	L0603	X7R,+/-10%	
2.2nF	C9	L0603	X7R,+/-10%	
10pF	C11	L0603	+/-2%,需与晶体负载电容匹配	
5.6pF	C13	L0603	X7R,+/-10%	
47nF	C14	L0603	X7R,+/-10%	
10pF	C22	L0603	+/-2%,需与晶体负载电容匹配	
NL	R0	L0603	NL	
5.6nH	L1	L0603	高频电感	
9.1nH	L2	L0603	高频电感	
0R	L4	L0603	+/-5%	
12MHz	Y2	-	+/-60ppm	
HW2000	HW2000	QFN20	-	



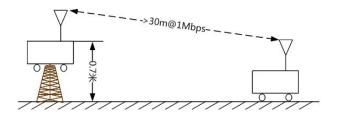

硬件兼容性

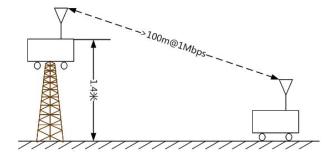
无需更换电路板,仅需调整外围器件参数即可正常工作

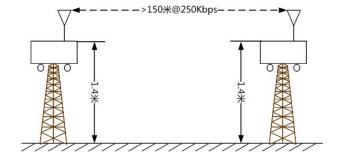
典型技术指标对比

芯片	最大输出 功率	接收机灵敏度 (250Kbps)	接收机灵敏度 (1Mbps)	休眠功耗 (uA)	接收功耗 (mA)	最大发射 功耗(mA)
HW2000	8dBm	-95dBm	-89dBm	<2	<22mA	<30mA
N公司24L01	0dBm	-94dBm	-85dBm	<2	12	11
B公司2401	5dBm		-86dBm	<3	19	18
B公司2423	3dBm	-97dBm	-90dBm	<3	22	23
L公司8900	<6dBm		-87dBm	<2	17	18

- HW2000具有输出功率高、接收灵敏度好、休眠功耗低的典型特点
- 在满足用户近距离使用的同时,可以通过较高的功率和接收灵敏度提供更好的链路预算,实现较为可靠的远距离传输


HW2000功耗详细技术指标


Symbol	Parameter(condition)	Min.	Тур.	Max.	Units
	IDLE modes				
I _{VDD_PD}	Supply current in POWER DOWN mode	1	2	10	uA
I _{VDD_Sleep}	Supply current in SLEEP mode		30		uA
I _{VDD_Idle}	Supply current in IDLE mode		2		mA
	Transmit				
I _{VDD_TX8}	Supply current @ 6dBm output power		30		mA
I _{VDD_TX4}	Supply current @ 4dBm output power		24		mA
I _{VDD_TX0}	Supply current @ 0dBm output power		19		mA
I _{VDD_TX6N}	Supply current @ -6dBm output power		15		mA
I _{VDD_TX12N}	Supply current @ -12dBm output power		14		mA
I _{VDD_TX20N}	Supply current @ -20dBm output power		13		mA
	Receiver				
I _{VDD}	Supply current @/250K bps High Sensitivity		22		mA
I _{VDD}	Supply current @/250K bps Low Sensitivity		19		mA


多种动态功耗调整模式供选择

HW2000实际距离测试

- 测试条件 DEMO系统 鞭状天线 丢包率<5%
- 测试场地 地下停车库 无其他无线信号干扰
- 距离测试影响因素
 WIFI、蓝牙等ISM同频干扰
 天线形态
 距离地面高度
 带宽
 匹配

股票代码: 300183

客服热线: 400-690-5516 Email: sales@essemi.com