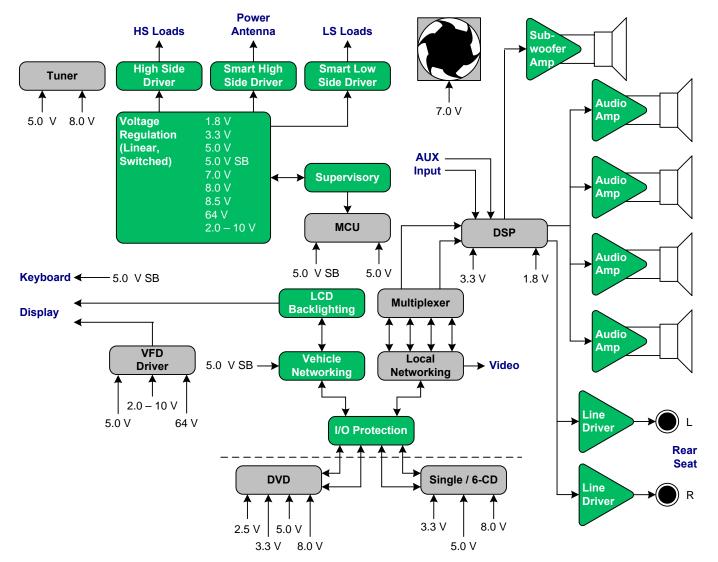
Enabling Energy Efficient Solutions

www.onsemi.com

ON Semiconductor®


Automotive Infotainment Power

Agenda

Infotainment Overview

- Regulation Options
- ON Semiconductor Solutions
- Example Applications
- System Power Architecture Design Examples

Automotive Infotainment System

ON Semiconductor*

Key Infotainment Features

- Many output voltages
- Low power stand-by, "always on" supplies
 Low Iq LDOs (NCV861X)
- Higher power supplies during full operation
 - Switched-Mode Power Supplies (SMPS)
- Drive towards less power dissipation, higher efficiency
 - Necessitates more SMPS, upstream vs. downstream converters
- Drive towards more integration
 - System-basis devices (NCV885X)
- EMC of high importance

Infotainment Power Requirements

- Low current
 - Microcontrollers: 5.0 V, 3.3 V; 10's to 100's of milliamps of current
 - Sensors / transducers: tracking output; 10's of milliamps of current
- Low voltage, higher current
 DSPs: 3.3 V, 1.8 V, 1.2 V; amps of current
- Medium voltage, medium-higher current
 - DVD, CD, Tuner: 8.0 V; 100's of milliamps to amps of current
 - Fans, blowers, motors: tracking output; amps of current
- Pre-regulation boosting, high current
 - "Start/stop": 18.0 V; many amps of current
- High voltage
 - VFD: 64 V

Upstream vs. Downstream Converters

- 1. High power SMPS
- 2. Low power stand-by LDOs
- 3. Wide range, high input voltage
 - Battery
 - Load dump: Vin >= 45 V
 - Cold crank: Vin as low as 3-4 V
- 4. Expensive automotive-grade
 - NCV devices on PS5, I2T/I3T
- 5. Low-frequency SMPS
 - In design: NCV8901, 2 MHz

- 1. Inexpensive SMPS
- 2. Higher current LDOs, too
- 3. Narrow range, low input voltage
 - Upstream converter
 - Typically: tight, regulated input

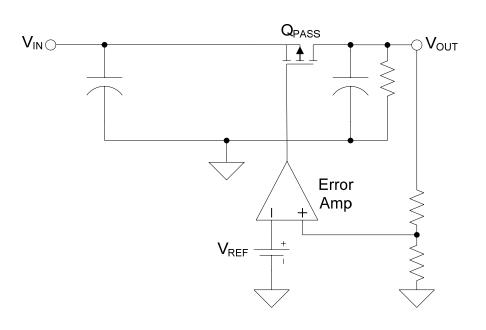
- 4. Inexpensive "consumer"-grade
 NCP conversions
- 5. High-frequency SMPS available
 - 2+ MHz, multiple outputs

Agenda

- Infotainment Overview
- Regulation Options
- ON Semiconductor Solutions
- Example Applications
- System Power Architecture Design Examples

Regulation

- Purpose: maintain constant output
 - Keep constant over input and load operating points (dc)
 - Minimize variation during transient perturbations (ac)
- Most applications: voltage is regulated
 - Other applications: current is regulated, such as LED driving
- Output is fixed or tracking
 - Fixed: output fed back, compared to internal, fixed reference
 - Tracking: output fed back, compared to external/variable reference
 - Remote output buffering, control via digital/analog converter (DAC)

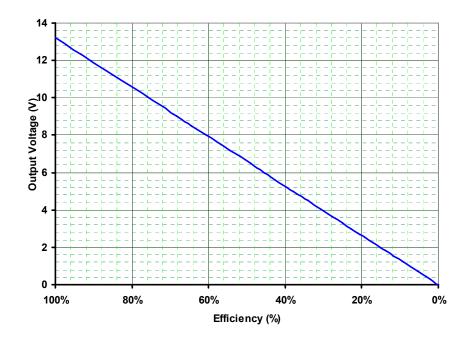


$\underbrace{\text{Linear Regulation}}_{V_{IN} \bigcirc \underbrace{V_{IN} \frown V_{IN} \bigcirc \underbrace{V_{IN} \frown V_{IN} \frown V_{IN} \bigcirc \underbrace{V_{IN} \frown V_{IN} \frown$

- **Concept:** Burn off excess voltage to regulate output voltage to value lower than input voltage
- Resistive divider, dropping $V_{IN} V_{OUT}$ over R_{PASS}
- R_{PASS} must be adjusted for changes in V_{IN} and load (R_L)
- **Regulation:** Automatically adjust R_{PASS} based on feedback

LDO Realization

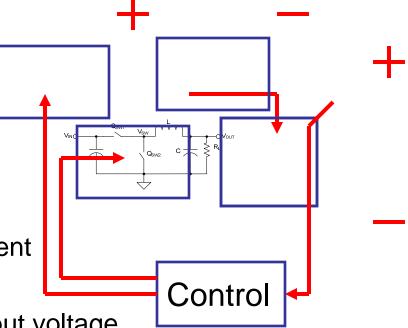
(Voltage-mode)


- Output voltage is fed back, compared to reference
 - Internally fixed or externally adjustable output
 - Tracking regulator: reference voltage is also adjustable
- Error amplifier adjusts pass transistor control signal
 - Pass transistor operates in linear/triode region
- Power dissipation: (V_{IN}-V_{OUT})*I_{OUT}

Stangles induction

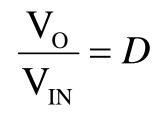
What's the Problem with LDOs?

- Efficiency is very low with high conversion ratios
- As current increases, power dissipation becomes very large
- Large heat sinking is required for many applications
- From 13.2 V to 5 V, even just 500 mA is 4.1 W!
- If you're going to be dissipating over 2 watts, consider using a switcher!



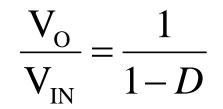
Switching: Who Needs It?

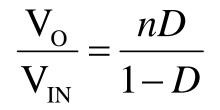
- High current demands
- Hot environments
- High voltage conversion ratio
- Voltage step-up or negative voltage generation
- Isolation
- Pre-regulation for down-stream LDOs (and other SMPS)
- NCV8851 can go from 40 V to 5 V at 4 A with just 2.2 W of dissipation, spread out amongst the power stage and IC!


Switcher "Hand-waving" Explanation

- **Concept:** Conservation of power from input to output to regulate output voltage (or current) to value lower, higher or equal to input voltage
- Switches some source fully-on/fully-off
- Source applies voltage to current storage element
- Current storage element supplies current into voltage storage element
- Voltage storage element provides output voltage
- **Regulation:** Feedback from output voltage controls switch(es)

Switcher Topologies Primer


- Buck
 - Steps voltage down
 - High-side gate driver
 - NCV8842/43, NCV8851, NCV8901


- Buck-Boost
 - Steps voltage up or down
 - Inverts sign (negative output)
 - Low-side gate driver

$$\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{V}_{\mathrm{IN}}} = -\frac{D}{1-D}$$

- Boost
 - Steps voltage up
 - Low-side gate driver
 - NCV8871/72

- Buck-Boost Derived Topologies
 - Non-inverting, isolation
 - Flyback (turns ratio), SEPIC
 - Low-side gate driver

Synchronous vs. Non-synchronous

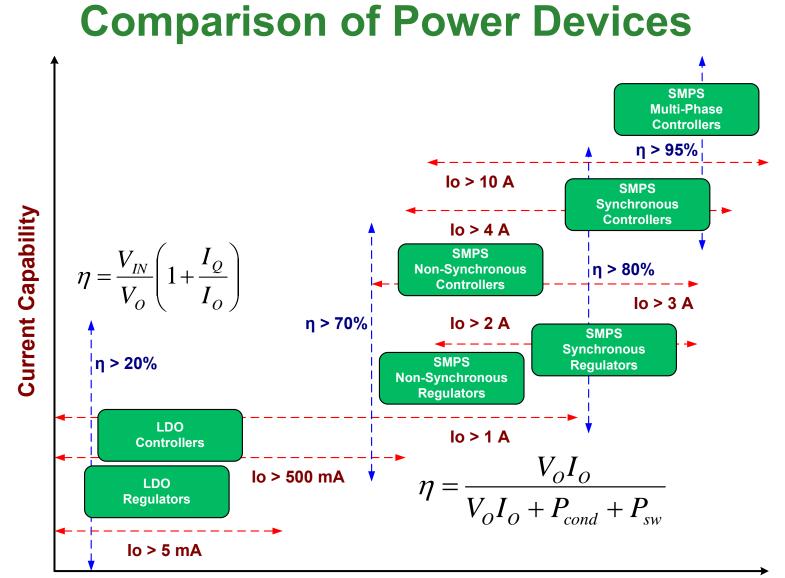
- Primary, active, switch, Q_{SWI} :
 - Typically: MOSFETs
 - Low-side: NMOS
 - High-side: PMOS, NMOS
 - NMOS requires charge pump
 - BJTs also popular
 - IGBTs, SCRs, relays, tubes
 - Fundamentally same
 - Difference is in driving

- "Rectifier", $Q_{SW2:}$
 - Non-synchronous:
 - Passive rectification
 - Schottky diode
 - Lower efficiency at high load
 - Subject to DCM
 - Less complicated, single driver
 - Synchronous:
 - Active rectification
 - As primary switch
 - Higher efficiency at higher loads
 - No DCM
 - More complicated, dual, drivers
 - Avoid cross-conduction with non-overlap time

Secolar Ind

Switchers vs. LDOs for Automotive

- 1. Typically, poor efficiency at very light loads, otherwise very high efficiency
- 2. Minimal heat in package, less heat in pass devices
- 3. 10's of amps is fine
- 4. Regulate at double battery, load dump, without much dissipation
- 5. Have to be careful with layout, components, compensators
- 6. Expensive magnetics, components
- 7. EMI a significant problem
- 8. Theory of operation is much more complicated, customers may not be use to switchers yet


- 1. Low efficiency over most conditions, but better than switchers at very light loads
- 2. Lots of heat, potentially watts in pass device
- 3. $\frac{1}{2}$ of an amp is pushing it
- 4. Even running off typical battery causes lots of dissipation
- 5. Drop-in product, typically "just works", regardless of layout, most components
- 6. Cheap!
- 7. EMI comparatively a non-issue
- 8. Theory of operation comparatively straight-forward, customers very acclimated to LDOs

Controllers vs. Regulators

- 1. External pass element(s) (FET, BJT)
- 2. Less compact, more expensive
- 3. Power dissipation limited by pass element package
- 4. More heatsinking options
- 5. Higher, flexible current capability
- 6. Wide-range of external pass elements
 - Not necessarily optimal
 - Application selection / tuning process

- Internal pass element(s) (FET, BJT)
- 2. More compact, less expensive
- 3. Power dissipation limited by regulator package
- 4. Less heatsinking options
- 5. Lower, fixed current capability
- 6. Optimized for internal pass element

Efficiency

Agenda

- Infotainment Overview
- Regulation Options
- ON Semiconductor Solutions
- Example Applications
- System Power Architecture Design Examples

LDO Device Solutions

				ЮТуг	VI May	VDO	lq Typ
Product	Description	Output	VO (V)	(A)	(V)	Гур (\\`	(mA)
NCV1117	1 A, Adjustable, Low Dropout Voltage Regulator	Single	Adjustable	1	20	1.07	
NCV2931	100 mA, Adjustable, LDO with 60 V Load Dump Protection	Single	Adjustable	0.1	40	0.16	
NCV317	1.5 A, Adjustable Output 1.2 to 37 V, Voltage Regulator with ±4% Tolerance	Single	Adjustable	1.5	40	2.25	
NCV4264	3.3 / 5.0 V, 100 mA Low Quiescent Current Low Dropout Voltage Regulator	Single	3.3, 5.0	0.1	45	0.27	0.033
NCV4275	450 mA, 3.3 / 5.0 V, LDO w/Reset and Delay	Single	3.3, 5.0	0.45	45	0.25	0.15
NCV4279	150 mA, 5 V, LDO w/ Reset, Delay, Adjustable Reset and Early Warning	Single	5.0	0.15	45	0.25	0.19
NCV5504	Dual Output LDO	Dual	1.25 / 3.3	0.25	18	0.25	
NCV551	150 mA, CMOS Low Iq Low-Dropout Voltage Regulator	Single	1.4 - 5.0	0.15	12	0.17	0.004
NCV553	80 mA, 5.0 V CMOS Low Dropout Regulator with NOCAP™	Single	5.0	0.08	12	0.7	0.0028
NCV5663	Fast Response Adj 3A LDO Regulator with Enable, Qualified for Automotive	Single	Adjustable	3	9	1	
NCV662	100 mA, 1.5 V, CMOS Low Iq Low Dropout Voltage Regulator w/Enable	Single	1.5	0.1	6	0.68	0.0025
NCV7805	1 A, 5 V, ±2% Tolerance, Voltage Regulator	Single	5.0	1	35	2	
NCV8141	500 mA, 5 V, Linear Regulator with ENABLE, /RESET, and Watchdog	Single	5.0	0.5	60	1.25	
NCV8184	Micropower 70 mA Low Dropout Tracking Regulator/Line Driver	Single	Tracking	0.07	26	0.35	0.05
NCV8509	Sequenced Linear Dual Voltage Regulator	Dual	1.8 / 3.3, 2.5 / 5.0	0.1	50	0.6	0.125
NCV8518A	250 mA, 5 V LDO with Watchdog, Wake Up, Reset , Delay and Enable	Single	5.0	0.25	45	0.425	0.1
NCV8570	200 mA, Ultra-Low Noise, High PSSR, BiCMOS RF LDO Regulator	Single	1.8 - 3.3	0.2	5.5	0.7	0.07
NCV8664	3.3 / 5.0 V, 150 mA Very Low Quiescent Current LDO	Single	3.3, 5.0	0.15	45	0.315	0.021

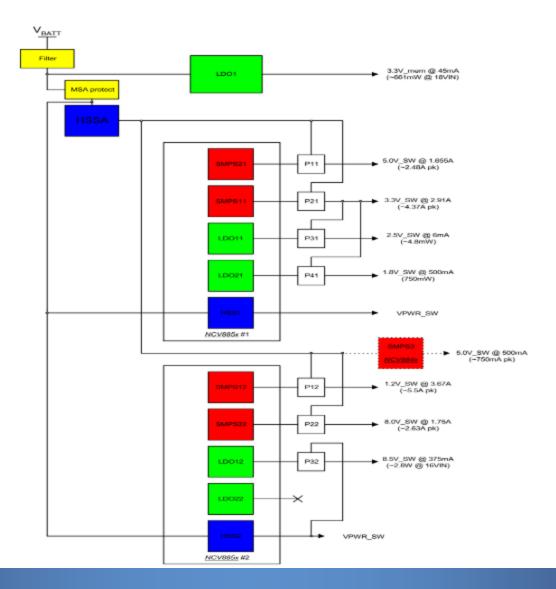
System Power Solutions

• NCV885X

- SMPS Buck Controller
- 2 A SMPS Buck Converter
- 2 LDO Controllers
- 2 A High-Side Switch
- 170 kHz, 340 kHz options
- Options with ROSC or SYNC
 - Up to 600 kHz
- QFN32 6x6

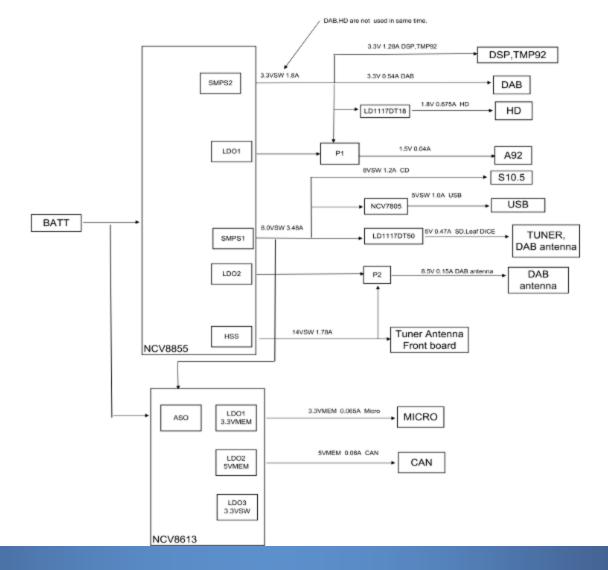
• NCV861X

- 3 LDO Outputs
 - Various voltage / current options
 - NCV8612
- Automatic Switch-Over (ASO)
 - Decrease power dissipation
- Ultra Low Iq < 50 μ A
- DFN20 6x5


• NCV8881

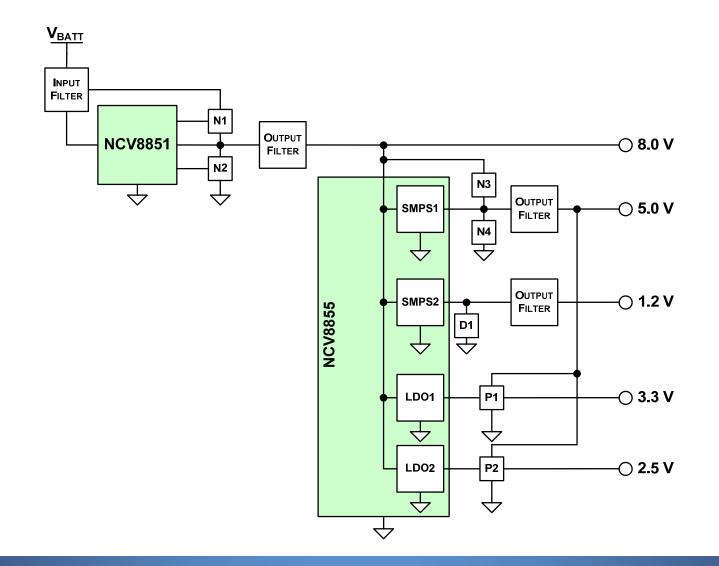
- 1.5 A SMPS Buck Converter
- 8.5 V / 40 mA, 5.0 V / 100 mA LDOs
- ROSC and SYNC
 - Up to 600 kHz
- Watchdog
- SOIC-16EP

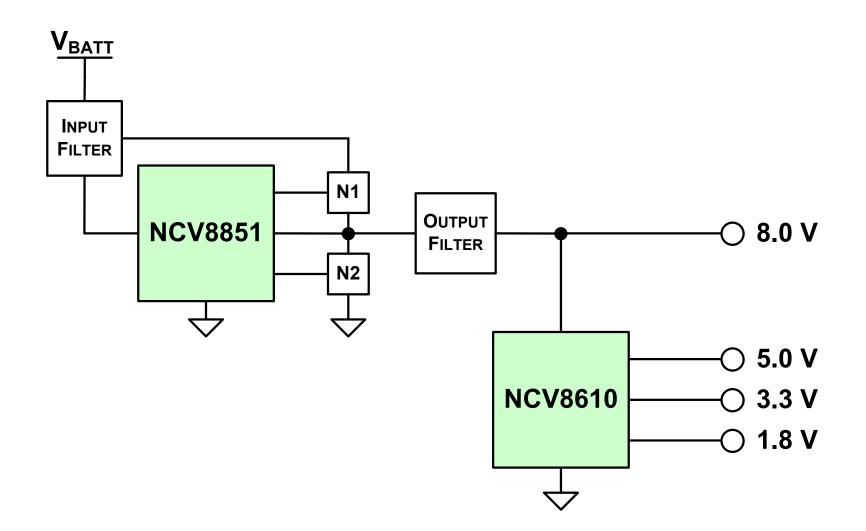
Agenda


- Infotainment Overview
- Regulation Options
- ON Semiconductor Solutions
- Example Applications
- System Power Architecture Design Examples

Many-Output NCV885X Application

ON Semiconductor*


NCV885X / NCV861X Application



ΟN

5-Output NCV8851/NCV8855

4-Output NCV8851/NCV8610

Agenda

- Infotainment Overview
- Regulation Options
- ON Semiconductor Solutions
- Example Applications
- System Power Architecture Design Examples

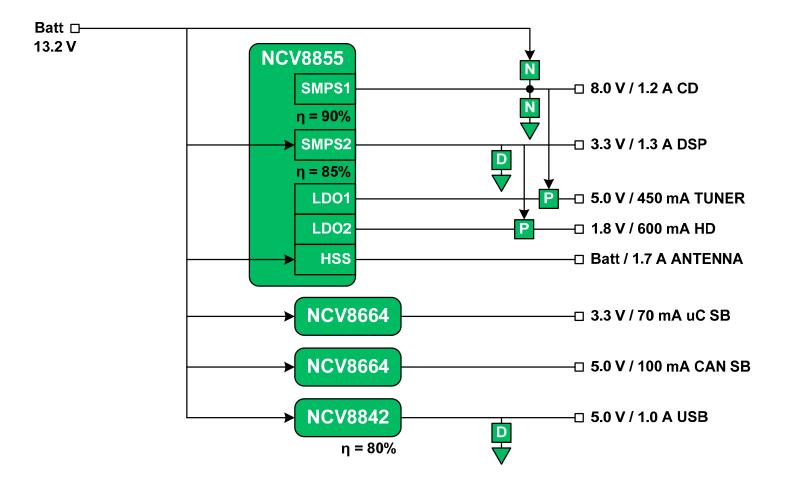
System Power Architecture Considerations

- 1. Customer voltage / current requirements
 - Standby / Quiescent current
- 2. Cost!
- 3. Efficiency / power dissipation
- 4. Integration / size
- 5. EMC requirements

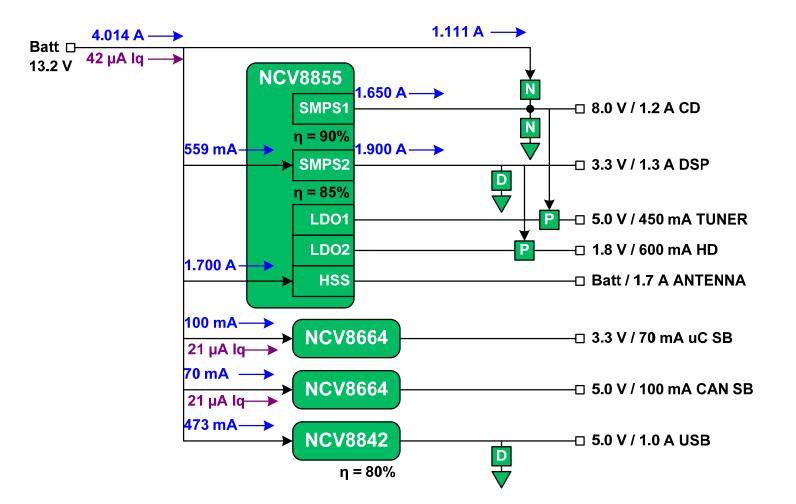
Example: System Power Requirements

• Vbatt / 1.7 A Antenna

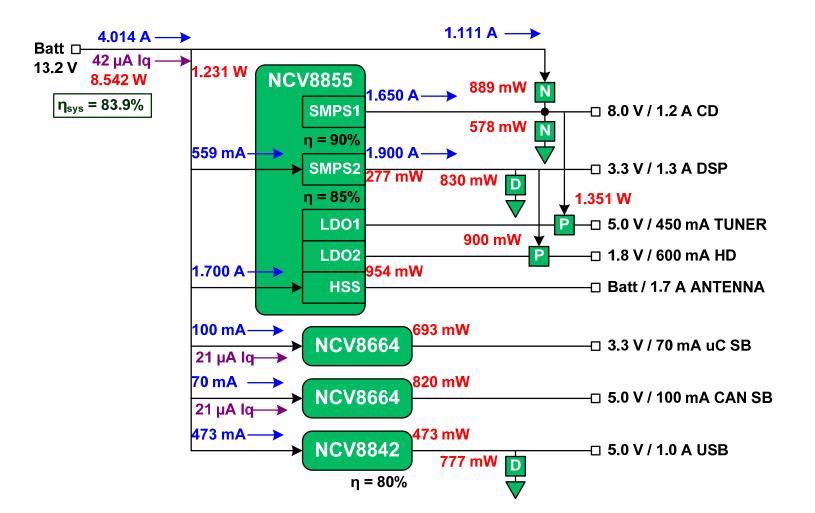
• Protected connection to battery

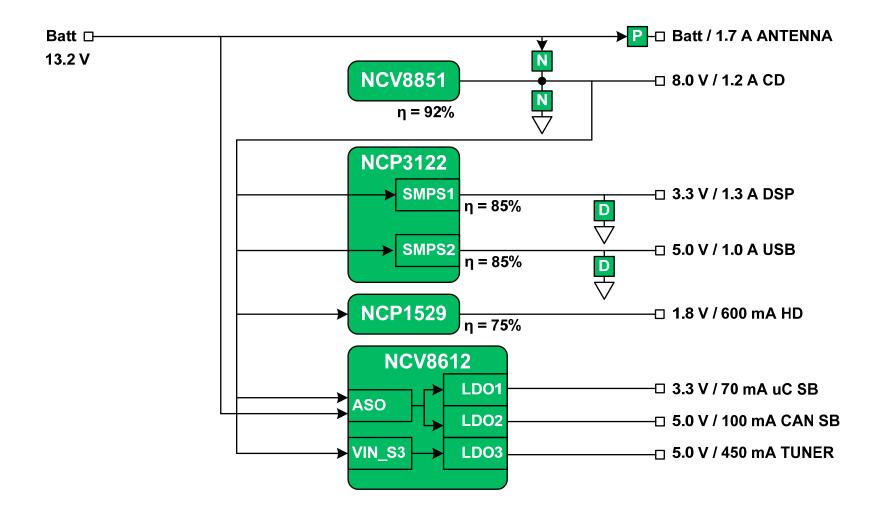

- 8.0 V / 1.2 A CD
- 5.0 V / 1 A USB
- 5.0 V / 500 mA Tuner
- 5.0 V / 100 mA CAN SB
- 3.3 V / 1.3 A DSP
- 3.3 V / 70 mA $\mu C~SB$
- 1.8 V / 600 mA HD

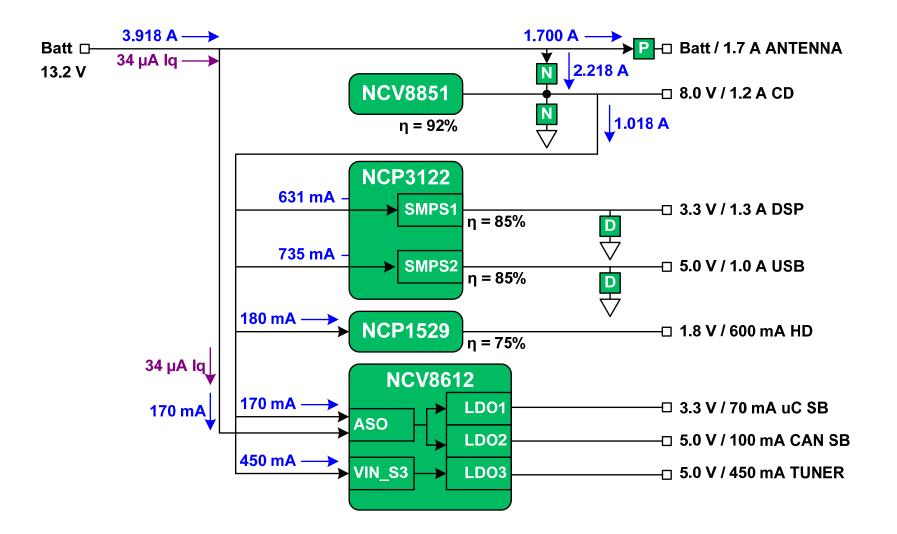
• Standby HS-CAN IVN (CAN SB)

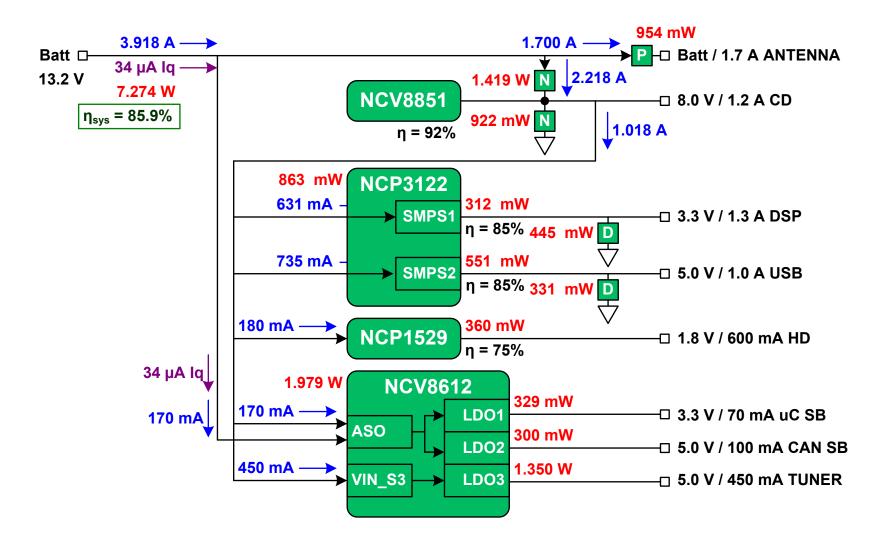

Standby microcontroller (µC SB)

• 50 µA max quiescent current (Iq)









ON Semiconductor*

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at <u>www.onsemi.com</u>
- View reference designs, design notes, and other material supporting automotive applications at <u>www.onsemi.com/automotive</u>