Enabling Energy Efficient Solutions

www.onsemi.com

ON Semiconductor[®]

Switcher Efficiency & Snubber Design

Agenda

- SMPS Basics
- Control Methods
- Losses
- Example: Buck
- Example: Boost
- BJTs vs. MOSFETs
- Snubber Design

SMPS Basics

The goal of a converter is to deliver power

The conversion mechanism generates heat...

Heat means that the energy transfer is not perfect

 η =Pout/Pin is called the <u>efficiency</u>

$$Ploss = Pin - Pout = \frac{Pout}{\eta} - Pout = Pout \cdot \left(\frac{1}{\eta} - 1\right)$$

A 50% efficiency means Ploss = Pout e.g. Pout = 100 W \rightarrow Ploss = 100 W Pin = 150 W, Pout = 100 W $\rightarrow \eta$ = 66%

Two different options exist to build a converter:

DN

DN

Controlling the power flow

Control Methods

Regulation, keeping an output signal constant by...

• adjusting the *duty-cycle* via the PWM block
 • regulating the inductor *peak* current

- regulating the inductor *average* current
- adjusting the *switching* frequency
- off time adjustment
- •

- Current-mode control... Two most popular - Voltage-mode control... methods!

The voltage-mode method

ON

The duty-cycle factory...

A ramp is compared to a DC level, the error voltage

DN

The current-mode method

ON

The peak follows the error voltage

ON

Losses

$P_{out} = P_{in} - P_{SW} - P_{Con} - P_{IC}$

- P_{SW} : Switching Losses
- P_{Con}: Conduction Losses
- P_{IC}: Power consumed by the chip

IC Losses $P_{IC} = V_{in} I_q$

Vin: IC input voltage

Iq: Quiescent current (read from the data sheet)

Switching Losses

- Losses which occur when the power switch is turned on or off.
- During this transition the voltage and current on the FET are both high.
- Different for Buck and Boost configurations.

Switching Losses (Buck)
$$P_{SW} = \frac{1}{2} V_{in} I_{out} (t_{on} + t_{off}) F_{SW}$$

V_{in}: Input Voltage

I_{out}: Average inductor current

t_{on}: Turn on time of high side switch

- t_{off}: Turn off time of high side switch
- F_{SW}: Switching frequency

Switching Losses (Boost)
$$P_{SW} = \frac{1}{2} V_{out} \frac{I_{out}}{1 - D} (t_{on} + t_{off}) F_{SW}$$

V_{out}: Output Voltage

D: Duty Cycle

I_{out}: Average inductor current

t_{on}: Turn on time of high side switch

t_{off}: Turn off time of high side switch

 F_{SW} : Switching frequency

Reducing Switching Losses

- Increase gate drive strength
 - Increases cost (die area)
 - Increases EM emissions
- Decrease frequency
 - Requires a larger value inductor
- Use a smaller FET
 - Increases conduction losses

Conduction Losses

- Losses which occur when current flows through a resistive path (I²*R), such as a FET, or a diode (V*I).
- Major contributors include:
 - Power Switch R_{ds,on}
 - Freewheeling Diode
 - Inductor DCR
- Different for synchronous and non-synchronous mode designs.

Conduction Losses (Non-Synchronous)

$$P_{Con} = I_{L}^{2} R_{ds,on} D + I_{L} V_{diode} (1 - D) + I_{L}^{2} R_{DCR}$$

I_L: RMS current through the inductor

 $R_{ds,on}$: On resistance of the power switch

D: Duty cycle

V_{diode}: Forward voltage of the diode

R_{DCR}: Winding resistance of the inductor

Conduction Losses (Synchronous)

$$P_{Con} = I_L^2 R_{ds,on1} D + I_L^2 R_{ds,on2} (1-D) + I_L^2 R_{DCR}$$

I_L: RMS current through the inductor

 $R_{ds,on1}$: On resistance of the high side switch

D: Duty cycle

R_{ds.on2}: On resistance of the low side switch

R_{DCR}: Winding resistance of the inductor

Example: Buck

Example: NCV8851 Evaluation Board

- Synchronous buck converter
- V_{in} = 13.2 V
- V_{out} = 5 V
- $I_{out,max} = 4 A$
- F_{SW} = 170 kHz
- Inductor: Wurth Electronics 7447709150 15 uH
- Power switch (both): ON Semiconductor NTD5407N

Example: NCV8851 Evaluation Board

- D = Vin / Vout = 5 V / 13.2 V = 0.379
- $t_{on} = 5 \text{ ns}$ (empirical)
- $t_{off} = 7 \text{ ns}$ (empirical)
- $R_{ds,on1} = R_{ds,on2} = 50 \text{ m}\Omega$ (including self heating temperature effects)
- $R_{DCR} = 26 \text{ m}\Omega$
- I_q = 15 mA
- $I_L = Sqrt(I_{out}^2 + (0.609 \text{ A})^2 / 3)$

Example: NCV8851 Evaluation Board

- P_{IC} = 13.2 V * 15 mA = 0.198 W
- P_{sw} = (1/2) * 13.2 V * I_{out} * (5 ns + 7 ns) * 170 kHz
 = 0.01346 * I_{out} W
- $P_{CON} = (I_{out}^2 + 0.12378 \text{ A}^2) * (50 \text{ m}\Omega) * (0.379) + (I_{out}^2 + 0.12378 \text{ A}^2) * (50 \text{ m}\Omega) * (0.621) + (I_{out}^2 + 0.12378 \text{ A}^2) * 26 \text{ m}\Omega = (0.076 * I_{out}^2 + 0.009407) \text{ W}$

Example: NCV8851 Results

8851 Efficiency

ON

Example: Boost

Example: NCV8871 Sample Application

- Non-synchronous boost converter
- V_{in} = 13.2 V
- V_{out} = 18 V
- I_{out,max} = 9 A
- $F_{SW} = 170 \text{ kHz}$
- Inductor: Vishay IHLP6767GZER330M11 33 uH
- Power Switch: ON Semiconductor NTD5803 x 2
- Diode: ON Semiconductor MBRB1645T4G

Example: NCV8871 Sample Application

- $D = 1 (V_{in} / V_{out}) = 0.267$
- t_{on} = 30 ns
- t_{off} = 20 ns
- $R_{ds,on} = (12 \text{ m}\Omega) / 2 = 6 \text{ m}\Omega$ (including temperature effects)
- $R_{DCR} = 37 \text{ m}\Omega$
- I_q = 10 mA
- IL = Sqrt ((lout / (1 − D)) ^ 2 + (0.3137)^2 / 3)

Example: NCV8871 Sample Application

- **P**_{IC} = 13.2 V * 10 mA = **0.132 W**
- P_{sw} = (1/2) * 18 V * I_{out} / (1-0.267)
 * (20 ns + 30 ns) * 170 kHz =
 0.10436 * I_{out} W
- $P_{CON} = (I_{out}^2 + 0.0328 \text{ A}^2) * (12 \text{ m}\Omega) * (0.267) + \text{Sqrt}(I_{out}^2 + 0.0328 \text{ A}^2) * (0.5 \text{V}) * (0.733) + (I_{out}^2 + 0.0328 \text{ A}^2) * 37 \text{ m}\Omega = (0.0402 * I_{out}^2 + \text{Sqrt}(I_{out}^2 + 0.0328) * 0.3665 + 0.00131869 \text{ W}$

Example: NCV8871 Results

Efficency

DN

BJTs vs. MOSFETs

Switches and converters...

- □ The bipolar transistor is often used:
- 1. In high voltage high current applications
- 2. In low-cost converters

$$\square \rightarrow Pcond = Vce_{sat} \cdot Ic_{avg}$$

When saturated...

The bipolar transistor

Switches and converters...

- □ The bipolar transistor switching losses:
- 1. Depend on temperature (storage time, current tail)
- 2. Watch-out for hot spots!
- 3. Often needs proportional drive (shallow saturation)

The bipolar transistor

Switches and converters...

- □ The MOSFET transistor is the most popular:
- 1. Ease of drive (capacitive input)
- 2. Avalanche rugged
- 3. BVdss of 600 V for SMPS, 500 V for PFCs...

The MOSFET transistor

To enhance a MOSFET, bring it charge

How many coulombs to turn on the MOSFET: Q = i x t...

ÔN

Snubber Design

When is it needed?

- Parasitic inductances and capacitances from the power devices form a RLC filter that resonates
- Excessive ringing can cause damage to the devices

ÛN

Snubber Design

- Measure the frequency of the ringing (f_c) at maximum input voltage
 - Use a low capacitance probe
- Find out either the L or C of the circuit
 - L is dominated by the top power switch
 - C is dominated by the body diode of the bottom power switch or the capacitance of the freewheeling diode
- Calculate the characteristic impedance of the circuit
 - If L is known: $Z = 2\pi f_c L$
 - If C is known: $Z = 1 / (2 \Pi f_c C)$

Snubber Design

- Choose R_{SNUB} = Z
- Choose $C_{SNUB} = 1 / (2 \pi f R)$
- Power dissipation in R_{SNUB} is $CV^2 f_s$
- Put R_{SNUB} and C_{SNUB} in series across the device causing ringing.
- Test in circuit. R_{SNUB} can be fine turned further to reduce ringing if it is found to be insufficient

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at <u>www.onsemi.com</u>
- View reference designs, design notes, and other material supporting automotive applications at <u>www.onsemi.com/automotive</u>