
# Programmable Spread Spectrum Clock Generator for EMI Reduction

#### **Features**

- Wide operating output (SSCLK) frequency range
   3–200 MHz
- Programmable spread spectrum with nominal 31.5-kHz modulation frequency.
- Center spread: ±0.25% to ±2.5%
- Down spread: -0.5% to -5.0%
- · Input frequency range:
  - External crystal: 8- 30-MHz fundamental crystals
  - External reference: 8- 166-MHz Clock
- · Integrated phase-locked loop (PLL)
- Programmable crystal load capacitor tuning array
- · Low cycle-to-cycle Jitter
- · 3.3V operation with 2.5V output clock drive option
- · Spread spectrum On/Off function
- Power-down or Output Enable function
- · Output frequency select option
- · Field-programmable
- Package: 16 pin TSSOP

#### **Benefits**

- Suitable for most PC peripherals, networking, and consumer applications.
- Provides wide range of spread percentages for maximum EMI reduction, to meet regulatory agency Electro Magnetic Compliance (EMC) requirements. Reduces development and manufacturing costs and time-to-market.
- Eliminates the need for expensive and difficult to use higher order crystals.
- Internal PLL generates up to 200-MHz outputs, and can generate custom frequencies from an external crystal or a driven source.
- Enables fine-tuning of output clock frequency by adjusting C<sub>Load</sub> of the crystal. Eliminates the need for external C<sub>Load</sub> capacitors.
- Application compatibility in standard and low-power systems.
- Provides ability to enable or disable spread spectrum with an external pin.
- Enables low-power state or output clocks to High-Z state.
- Enables quick generation of sample prototype quantities.





#### **General Description**

The CY25200 is a Spread Spectrum Clock Generator (SSCG) IC used for the purpose of reducing Electro Magnetic Interference (EMI) found in today's high-speed digital electronic systems.

The device uses a Cypress proprietary Phase-Locked Loop (PLL) and Spread Spectrum Clock (SSC) technology to synthesize and modulate the frequency of the input clock. By frequency modulating the clock, the measured EMI at the fundamental and harmonic frequencies are greatly reduced. This reduction in radiated energy can significantly reduce the cost of complying with regulatory agency requirements (EMC) and improve time to market without degrading system performance

The CY25200 uses a factory/field-programmable configuration memory array to synthesize output frequency, spread

%, crystal load capacitor, clock control pins, PD# and OE options.

The spread % is factory/field programmed to either center spread or down spread with various spread percentages. The range for center spread is from  $\pm 0.25\%$  to  $\pm 2.50\%$ . The range for down spread is from -0.5% to -5.0%. Contact the factory for smaller or larger spread % amounts if required.

The input to the CY25200 can be either a crystal or a clock signal. The input frequency range for crystals is 8–30 MHz, and for clock signals is 8–166 MHz.

The CY25200 has six clock outputs, SSCLK1 to SSCLK6. The frequency modulated SSCLK outputs can be programmed from 3–200 MHz.

The CY25200 products are available in a 16-pin TSSOP package with a commercial operating temperature range of 0 to 70°C.

#### CY25200 Pin Summary

| Name               | Pin Number | Description                                                                                             |
|--------------------|------------|---------------------------------------------------------------------------------------------------------|
| XIN                | 1          | Crystal Input or Reference Clock Input.                                                                 |
| XOUT               | 16         | Crystal Output. Leave this pin floating if external clock is used.                                      |
| VDD                | 2          | 3.3V Power supply for digital logic and SSCLK5/6 clock drives.                                          |
| AVDD               | 3          | 3.3V analog–PLL power supply                                                                            |
| VSS                | 13         | Ground                                                                                                  |
| AVSS               | 5          | Analog ground                                                                                           |
| VDDL               | 11         | 2.5V or 3.3V power supply for SSCLK1/2/3/4 clock drives                                                 |
| VSSL               | 6          | VDDL power supply ground                                                                                |
| SSCLK1             | 7          | Programmable Spread Spectrum Clock Output at VDDL Level (2.5V or 3.3V)                                  |
| SSCLK2             | 8          | Programmable Spread Spectrum Clock Output at VDDL Level (2.5V or 3.3V)                                  |
| SSCLK3             | 9          | Programmable Spread Spectrum Clock Output at VDDL Level (2.5V or 3.3V)                                  |
| SSCLK4             | 12         | Programmable Spread Spectrum Clock Output at VDDL Level (2.5V or 3.3V)                                  |
| SSCLK5/REFOUT/CP2  | 14         | Programmable Spread Spectrum Clock or Buffered Reference Output at VDD Level (3.3V) or Control pin, CP2 |
| SSCLK6/REFOUT/CP3  | 15         | Programmable Spread Spectrum Clock or Buffered Reference Output at VDD Level (3.3V) or Control pin, CP3 |
| CP0 <sup>[1]</sup> | 4          | Control Pin 0                                                                                           |
| CP1 <sup>[1]</sup> | 10         | Control Pin 1                                                                                           |

**Table 1. Fixed Function Pins** 

| Pin Function                | Output (      | Clock Funct   | tions and Fr  | equency       | Input<br>Frequency | $\mathbf{C}_{\mathbf{XIN}}$ and $\mathbf{C}_{\mathbf{XOUT}}$ | Spread<br>Percent | Frequency<br>Modulation |
|-----------------------------|---------------|---------------|---------------|---------------|--------------------|--------------------------------------------------------------|-------------------|-------------------------|
| Pin Name                    | SSCLK1        | SSCLK2        | SSCLK3        | SSCLK4        | XIN and<br>XOUT    | XIN and<br>XOUT                                              | SSCLK[1:6]        | SSCLK[1:6]              |
| Pin#                        | 7             | 8             | 9             | 12            | 1 and 16           | 1 and 16                                                     | 7,8,9,12,14,15    | 7,8,9,12,14,15          |
| Units                       | MHz           | MHz           | MHz           | MHz           | MHz                | pF                                                           | %                 | kHz                     |
| Program Value<br>CLKSEL = 0 | ENTER<br>DATA | ENTER<br>DATA | ENTER<br>DATA | ENTER<br>DATA |                    |                                                              |                   | 24.5                    |
| Program Value<br>CLKSEL = 1 | ENTER<br>DATA | ENTER<br>DATA | ENTER<br>DATA | ENTER<br>DATA | ENTER<br>DATA      | ENTER<br>DATA                                                | ENTER<br>DATA     | 31.5                    |

#### Note:

<sup>1.</sup> Pins can be programmed to be any of the following control signals: OE: Output Enable, OE = 1 all the SSCLK outputs are enabled, PD#: Powerdown, PD# = 0, all the SSCLK outputs are three-stated and the part enters a low-power state, SSON: Spread Spectrum Control (SSON = 0, No Spread and SSON = 1, Spread Signal), CLKSEL: SSCLK Output Frequency Select. Please see page 3 for control pins programming option.



**Table 2. Multi-function Pins** 

| Pin<br>Function             | Output Clock /REFOU | Output Clock /REFOUT /OE/SSON/CLKSEL  OE/PD#/SSON/CLKSE |            |            |
|-----------------------------|---------------------|---------------------------------------------------------|------------|------------|
| Pin Name                    | SSCLK5/REFOUT/CP2   | SSCLK6/REFOUT/CP3                                       | CP0        | CP1        |
| Pin#                        | 14                  | 15                                                      | 4          | 10         |
| Units                       | MHz                 | MHz                                                     | N/A        | N/A        |
| Program Value<br>CLKSEL = 0 | ENTER DATA          | ENTER DATA                                              |            |            |
| Program Value<br>CLKSEL = 1 | ENTER DATA          | ENTER DATA                                              | ENTER DATA | ENTER DATA |

#### **Programming Description**

#### Field-Programmable CY25200

The CY25200 is programmed at the package level, i.e., in a programmer socket. The CY25200 is flash-technology based, so the parts can be reprogrammed up to 100 times. This allows for fast and easy design changes and product updates, and eliminates any issues with old and out-of-date inventory.

Samples and small prototype quantities can be programmed on the CY3672 programmer with the CY3695 socket adapter.

#### CyberClocks™ Online Software

CyberClocks™ Online Software is a web-based software application that allows the user to custom-configure the CY25200. All the parameters in given as "Enter Data" can be programmed into the CY25200. CyberClocks Online outputs an industry-standard JEDEC file used for programming the CY25200. CyberClocksOnline is available at www.cyberclocksonline.com website through user registration. To register, fillout the registration form and make sure to check the "non-standard devices" box. For more information on the registration process refer to the CY3672 data sheet.

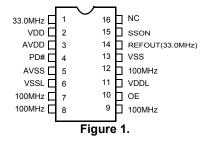
For information regarding Spread Spectrum software programming solutions, please contact your local Cypress Sales or Field Application Engineer (FAE), representative for details.

#### Factory-Programmable CY25200

Factory programming is available for volume manufacturing by Cypress. All requests must be submitted to the local Cypress Field Application Engineer (FAE) or sales representative who will supply a sample request form that must be completed. Once the request has been processed, you will receive a new part number, samples, and data sheet with the programmed values. This part number will be used for additional sample requests and production orders.

Additional information on the CY25200 can be obtained from the Cypress web site at www.cypress.com.

#### **Product Functions**


#### Control Pins (CP0, CP1, CP2 and CP3)

There are four control signals available through programming of pins 4, 10, 14 and 15.

CP0 (pin 4) and CP1 (pin10) are specifically designed to function as control pins. However pins 14 (SSCLK5/REFOUT/CP2) and 15 (SSCLK6/REFOUT/CP3) are multi-functional and can be programmed to be a control signal or an output clock (SSCLK or REFOUT). All of the control pins, CP0, CP1, CP2 and CP3 are programmable and can be programmed to have only one of the following functions:

- Output Enable (OE), if OE = 1, all the SSCLK or REFOUT outputs are enabled
- SSON, Spread spectrum control, 1 = spread on and 0 = spread off
- CLKSEL, SSCLK output frequency select
- PD#, Active Low, PD# = 0, all the outputs are three-stated and the part enters a low-power state
- The last control signal is the Power down (PD#) that can be implemented only through programming CP0 or CP1 (CP2 and CP3 can not be programmed as PD#). Here is an example with three control pins,
- CLKIN = 33 MHz
- SSCLK1/2/3/4 = 100 MHz with ±1% Spread
- SSCLK 5 = REFOUT(33 MHz)
- CP0 (Pin 4) = PD#
- CP1 (Pin 10) = OE
- CP3 (pin 15) = SSON

The pinout for the above example is shown in Figure 1.





The CLKSEL control pin enables the user to change the output frequency from one frequency (e.g., frequency A) to another frequency (e.g., frequency B). These must be related frequencies that can be derived off of a common VCO frequency, e.g., 33.333 MHz and 66.666 MHz can both be derived from a VCO = 400 MHz and dividing it down by 12 and 6 respectively. *Table 3* shows an example of how this can be implemented. The VCO frequency range is 100–400MHz. The CY25200 has two separate dividers, Divider 1 and Divider 2, these two can be loaded to have any number between 2 and 130 providing two different but related frequencies as explained above.

In the above example SSCLK5 (pin 14) and SSCLK6 (pin 15) are used as output clocks, however they could have been used as control signals. See *Figure 2* for the pinout.

#### Input Frequency (XIN, pin 1 and XOUT pin 16)

The input to the CY25200 can be a crystal or a clock. The input frequency range for crystals is 8 to 30 MHz, and for clock signal is 8 to 166 MHz.

#### CXIN and CXOUT (pin 1 and pin 16)

The load capacitors at pin 1 ( $C_{XIN}$ ) and pin 16 ( $C_{XOUT}$ ) can be programmed from 12 pF to 60 pF with 0.5-pF increments. The programmed value of these on-chip crystal load capacitors are the same (XIN = XOUT = 12 to 60 pF).

The required values of  $\mathbf{C}_{\mathbf{XIN}}$  and  $\mathbf{C}_{\mathbf{XOUT}}$  for matching crystal load (CL) can be calculated using the following formula:

$$C_{XIN} = C_{XOUT} = 2C_L - C_P$$

Where  $C_L$  is the crystal load capacitor as specified by the crystal manufacturer and  $C_P$  is the parasitic PCB capacitance.

For example, if a fundamental 16-MHz crystal with  $C_L$  of 16 pF is used and  $C_P$  is 2 pF,  $C_{XIN}$  and  $C_{XOUT}$  can be calculated as:

$$C_{XIN} = C_{XOUT} = (2 \times 16) - 2 = 30 \text{ pF}.$$

If using a driven reference clock, set  $C_{XIN}$  and  $C_{XOUT}$  to the minimum value 12 pF.

#### Output Frequency (SSCLK1 through SSCLK6 Outputs)

All of the SSCLK outputs are produced by synthesizing the input reference frequency using a PLL and modulating the VCO frequency. SSCLK[1:4] can be programmed to be only output clocks (SSCLK). SSCLK5 and SSCLK6 can also be programmed to function the same as SSCLK[1:4] or a buffered copy of the input reference (REFOUT) or they can be programmed to be a control pin as discussed in the control pins section. To utilize the 2.5V output drive option on SSCLK[1:4], VDDL must be connected to a 2.5V power supply (SSCLK[1:4] outputs are powered by VDDL). When using the 2.5V output drive option, the maximum output frequency on SSCLK[1:4] is 166 MHz.

#### Spread Percentage (SSCLK1 through SSCLK6 Outputs)

The SSCLK frequency can be programmed at any percentage value from ±0.25% to ±2.5% for Center Spread and from –0.5% to –5.0% Down Spread.

#### **Frequency Modulation**

The frequency modulation is programmed at 31.5 kHz for all SSCLK frequencies from 3 to 200 MHz. Contact the factory if a higher modulation frequency is required.

Table 3. Using Clock Select, CLKSEL Control Pin

| Input Freq.<br>(MHz) | CLKSEL<br>(Pin 4) | SSCLK1<br>(Pin 7) | SSCLK2<br>(Pin 8) | SSCLK3<br>(Pin 9) | SSCLK4<br>(Pin 12) | REFOUT<br>(Pin 14) | REFOUT<br>(Pin 15) |
|----------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|
| 14.318               | CLKSEL = 0        | 33.33             | 33.33             | 33.33             | 33.33              | 14.318             | 14.318             |
|                      | CLKSEL = 1        | 66.66             | 66.66             | 66.66             | 66.66              | 14.318             | 14.318             |

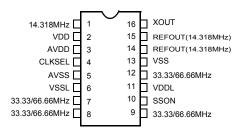
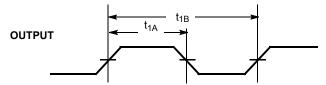
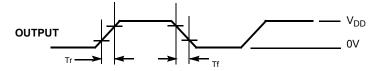
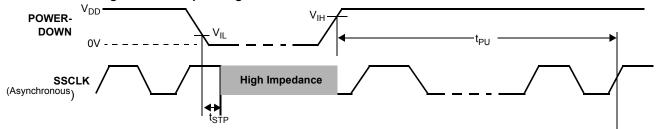




Figure 2. Table 3 Configuration Pinout

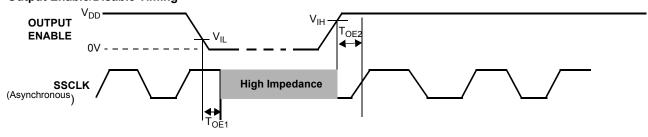



#### **Switching Waveforms**

#### Duty Cycle Timing (DC = $t_{1A}/t_{1B}$ )

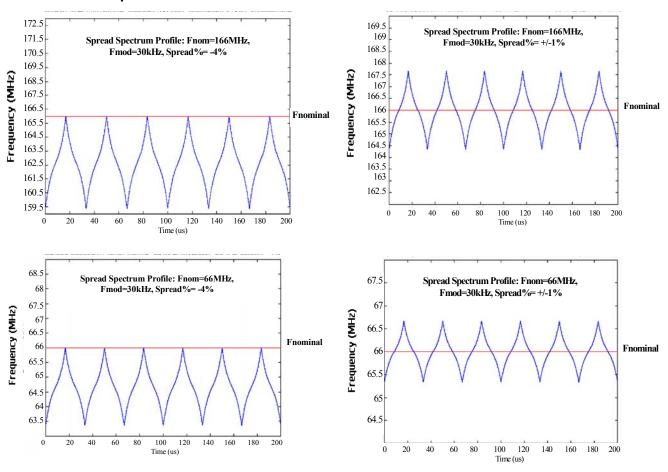



#### Output Rise/Fall Time (SSCLK and REFCLK)




Output Rise time (Tr) =  $(0.6 \times V_{DD})$ /SR1 (or SR3) Output Fall time (Tf) =  $(0.6 \times V_{DD})$ /SR2 (or SR4) Refer to AC Electrical Characteristics table for SR (Slew Rate) values.

#### **Power-down Timing and Power-up Timing**




#### **Output Enable/Disable Timing**





#### Informational Graphs [2]



#### Note:

2. The "Informational Graphs" are meant to convey the typical performance levels. No performance specifications is implied or guaranteed. Refer to the tables on pages 4 and 5 for device specifications.



#### **Absolute Maximum Rating**

| Supply Voltage (VDD)                 | –0.5 to +7.0V                    |
|--------------------------------------|----------------------------------|
| DC Input Voltage                     | . –0.5V to V <sub>DD</sub> + 0.5 |
| Storage Temperature (Non-condensing) | 55°C to +125°C                   |

| Junction Temperature                                   | 40°C to +125°C |
|--------------------------------------------------------|----------------|
| Data Retention @ Tj = 125°C                            | > 10 years     |
| Package Power Dissipation                              | 350 mW         |
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | ≥ 2000V        |

#### **Recommended Crystal Specifications**

| Parameter         | Description                                              | Comments                                                                             | Min. | Тур. | Max. | Unit |
|-------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------|------|------|------|------|
| F <sub>NOM</sub>  | Nominal Crystal Frequency                                | Parallel resonance, fundamental mode, AT cut                                         | 8    |      | 30   | MHz  |
| C <sub>LNOM</sub> | Nominal Load Capacitance                                 | Internal load caps                                                                   | 6    |      | 30   | pF   |
| R <sub>1</sub>    | Equivalent Series Resistance (ESR)                       | Fundamental mode                                                                     |      |      | 25   | Ω    |
| J 1               | Ratio of Third Overtone Mode ESR to Fundamental Mode ESR | Ratio used because typical R <sub>1</sub> values are much less than the maximum spec | 3    |      |      |      |
| DL                | Crystal Drive Level                                      | No external series resistor assumed                                                  |      | 0.5  | 2    | mW   |

### **Recommended Operating Conditions**

| Parameter                      | Description                                                                                         | Min.  | Тур. | Max.  | Unit |
|--------------------------------|-----------------------------------------------------------------------------------------------------|-------|------|-------|------|
| $V_{DD}$                       | Operating Voltage                                                                                   | 3.135 | 3.3  | 3.465 | V    |
| $V_{DDLHI}$                    | Operating Voltage                                                                                   | 3.135 | 3.3  | 3.465 | V    |
| V <sub>DDLLO</sub>             | Operating Voltage                                                                                   | 2.375 | 2.5  | 2.625 | V    |
| T <sub>AC</sub>                | Ambient Commercial Temp                                                                             | 0     | _    | 70    | °C   |
| C <sub>LOAD</sub>              | Max. Load Capacitance V <sub>DD</sub> /V <sub>DDL</sub> = 3.3V                                      | _     | _    | 15    | pF   |
| C <sub>LOAD</sub>              | Max. Load Capacitance V <sub>DDL</sub> = 2.5V                                                       | _     | _    | 15    | pF   |
| F <sub>SSCLK-HighVoltage</sub> | SSCLK1/2/3/4/5/6 when $V_{DD} = A_{VDD} = V_{DDL} = 3.3 \text{ V}$                                  | 3     | _    | 200   | MHz  |
| F <sub>SSCLK-LowVoltage</sub>  | SSCLK5/6 when V <sub>DD</sub> = 3.3.V and V <sub>DDL</sub> = 2.5V                                   | 3     | _    | 166   | MHz  |
| R <sub>EFOUT</sub>             | REFOUT when $V_{DD} = A_{VDD} = 3.3.V$ and $V_{DDL} = 3.3V$ or 2.5V                                 | 8     | _    | 166   | MHz  |
| f <sub>REF1</sub>              | Clock Input                                                                                         | 8     | _    | 166   | MHz  |
| f <sub>REF2</sub>              | Crystal Input                                                                                       | 8     | _    | 30    | MHz  |
| t <sub>PU</sub>                | Power-up time for all $V_{DD}$ s to reach minimum specified voltage (power ramps must be monotonic) | 0.05  | -    | 500   | ms   |

## **DC Electrical Specifications**

| Parameter <sup>[4]</sup>            | Name                | Description                                          | Min. | Тур. | Max. | Unit     |
|-------------------------------------|---------------------|------------------------------------------------------|------|------|------|----------|
| I <sub>OH3.3</sub>                  | Output High Current | $V_{OH} = V_{DD} - 0.5V, V_{DD}/V_{DDL} = 3.3V$      | 10   | 12   | _    | mA       |
| I <sub>OL3.3</sub>                  | Output Low Current  | $V_{OL} = 0.5V, V_{DD}/V_{DDL} = 3.3V$               | 10   | 12   | _    | mA       |
| I <sub>OH2.5</sub>                  | Output High Current | $V_{OH} = V_{DDL} - 0.5V, V_{DDL} = 2.5V$            | 8    | 16   | _    | mA       |
| I <sub>OL2.5</sub>                  | Output Low Current  | V <sub>OL</sub> = 0.5V, V <sub>DDL</sub> = 2.5V      | 8    | 16   | _    | mA       |
| V <sub>IH</sub>                     | Input High Voltage  | CMOS levels, 70% of V <sub>DD</sub>                  | 0.7  | _    | 1.0  | $V_{DD}$ |
| V <sub>IL</sub>                     | Input Low Voltage   | CMOS levels, 30% of V <sub>DD</sub>                  | 0    | -    | 0.3  | $V_{DD}$ |
| I <sub>VDD</sub> <sup>[5]</sup>     | Supply Current      | AV <sub>DD</sub> /V <sub>DD</sub> Current            | -    | -    | 33   | mA       |
| I <sub>VDDL2.5</sub> <sup>[5]</sup> | Supply Current      | V <sub>DDL</sub> Current (V <sub>DDL</sub> = 2.625V) | -    | -    | 20   | mA       |
| I <sub>VDDL3.3</sub> <sup>[5]</sup> | Supply Current      | V <sub>DDL</sub> Current (V <sub>DDL</sub> = 3.465V) | _    | _    | 26   | mA       |
| I <sub>DDS</sub>                    | Power-Down Current  | $V_{DD} = V_{DDL} = AV_{DD} = 3.465V$                | _    | -    | 50   | uA       |
| I <sub>OHZ</sub>                    | Output Leakage      | $V_{DD} = V_{DDL} = AV_{DD} = 3.465V$                | _    | _    | 10   | uA       |
| $I_{OLZ}$                           |                     |                                                      |      |      |      |          |

- Rated for 10 years.
   Not 100% tested, guaranteed by design.
   I<sub>VDD</sub> currents specified for SSCLK1/2/3/4/5/6 = 33.33 MHz with CLKIN = 14.318 MHz and 15 pF on all the output clocks.



## **AC Electrical Specifications**

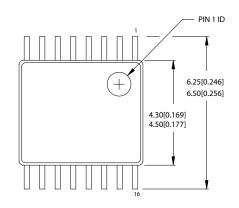
| Parameter         | Description                              | Condition                                                                                                            | Min. | Тур. | Max. | Unit |
|-------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| DC                | Output Duty Cycle                        | SSCLK, Measured at V <sub>DD</sub> /2                                                                                | 45   | 50   | 55   | %    |
|                   | Output Duty Cycle                        | REFCLK, Measured at V <sub>DD</sub> /2<br>Duty Cycle of CLKIN = 50%.                                                 | 40   | 50   | 60   | %    |
| SR1               | Rising/Falling Edge Slew Rate            | SSCLK1/2/3/4 < 100 MHz, V <sub>DD</sub> = V <sub>DDL</sub> = 3.3V                                                    | 0.6  | _    | 2.0  | V/ns |
| SR2               | Rising/Falling Edge Slew Rate            | SSCLK1/2/3/4 ≥ 100 MHz, V <sub>DD</sub> = V <sub>DDL</sub> = 3.3V                                                    | 0.8  | _    | 3.5  | V/ns |
| SR3               |                                          | SSCLK1/2/3/4 < 100 MHz, V <sub>DD</sub> = V <sub>DDL</sub> = 2.5V                                                    | 0.5  | _    | 2.2  | V/ns |
| SR4               |                                          | SSCLK1/2/3/4 $\geq$ 100 MHz, $V_{DD} = V_{DDL} = 2.5V$                                                               | 0.6  | _    | 3.0  | V/ns |
| SR5               | Rising/Falling Edge Slew Rate            | SSCLK5/6 < 100 MHz, V <sub>DD</sub> = V <sub>DDL</sub> = 3.3V                                                        | 0.6  | _    | 1.9  | V/ns |
| SR6               | Rising/Falling Edge Slew Rate            | SSCLK5/6 $\geq$ 100 MHz, $V_{DD} = V_{DDL} = 3.3V$                                                                   | 1.0  | _    | 2.9  | V/ns |
| T <sub>CCJ1</sub> | Cycle-to-Cycle Jitter<br>SSCLK1/2/3/4    | CLKIN = SSCLK1/2/3/4 = 166MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD} = V_{DDL} = 3.3V$                     | -    | _    | 110  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 66.66 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD} = V_{DDL} = 3.3V$                  | _    | _    | 170  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 33.33 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD} = V_{DDL} = 3.3V$                  | -    | -    | 140  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 14.318MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD} = V_{DDL} = 3.3V$                  | _    | -    | 290  |      |
| T <sub>CCJ2</sub> | Cycle-to-Cycle Jitter<br>SSCLK5/6=REFOUT | CLKIN = SSCLK1/2/3/4 = 166 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD} = V_{DDL} = 3.3V$                    | _    | -    | 100  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 66.66 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD} = V_{DDL} = 3.3V$                  | -    | -    | 120  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 33.33 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD} = V_{DDL} = 3.3V$                  | -    | -    | 180  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 14.318 MHz, $\pm$ 2% spread and SSCLK5/6 = REFOUT, $V_{DD} = V_{DDL} = 3.3V$                  | -    | -    | 180  |      |
| T <sub>CCJ3</sub> | Cycle-to-Cycle Jitter<br>SSCLK1/2/3/4    | CLKIN = SSCLK1/2/3/4 = 166 MHz, ±2% spread and<br>SSCLK5/6 = REFOUT, V <sub>DD</sub> = 3.3V, V <sub>DDL</sub> = 2.5V | -    | -    | 110  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = $66.66$ MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD}$ = $3.3$ V, $V_{DDL}$ = $2.5$ V  | _    | _    | 170  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 33.33 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD}$ = 3.3V, $V_{DDL}$ = 2.5V          | _    | _    | 190  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 14.318 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD}$ = 3.3V, $V_{DDL}$ = 2.5V         | -    | -    | 330  |      |
| T <sub>CCJ4</sub> | Cycle-to-Cycle Jitter<br>SSCLK5/6=REFOUT | CLKIN = SSCLK1/2/3/4 = 166 MHz, ±2% spread and SSCLK5/6 = REFOUT, V <sub>DD</sub> = 3.3V, V <sub>DDL</sub> = 2.5V    | _    | _    | 90   | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 66.66 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD}$ = 3.3V, $V_{DDL}$ = 2.5V          | -    | -    | 110  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 33.33 MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD}$ = 3.3V, $V_{DDL}$ = 2.5V          | _    | -    | 160  | ps   |
|                   |                                          | CLKIN = SSCLK1/2/3/4 = 14.318MHz, $\pm 2\%$ spread and SSCLK5/6 = REFOUT, $V_{DD}$ = 3.3V, $V_{DDL}$ = 2.5V          | -    | -    | 150  |      |
| t <sub>STP</sub>  | Power-down Time<br>(pin3 = PD#)          | Time from falling edge on PD# to stopped outputs (Asynchronous)                                                      | _    | 150  | 300  | ns   |
| T <sub>OE1</sub>  | Output Disable Time (pin3 = OE)          | Time from falling edge on OE to stopped outputs (Asynchronous)                                                       | _    | 150  | 300  | ns   |
| T <sub>OE2</sub>  | Output Enable Time (pin3 = OE)           | Time from rising edge on OE to outputs at a valid frequency (Asynchronous)                                           | -    | 150  | 300  | ns   |
| F <sub>MOD</sub>  | Spread Spectrum Modulation Frequency     | SSCLK1/2/3/4/5/6                                                                                                     | 30.0 | 31.5 | 33.0 | kHz  |
| t <sub>PU1</sub>  | Power-up Time,<br>Crystal is used        | Time from rising edge on PD# to outputs at valid frequency (Asynchronous)                                            | _    | 3    | 5    | ms   |



#### **AC Electrical Specifications** (continued)

| Parameter                        | Description                               | Condition                                                                            | Min. | Тур. | Max. | Unit |
|----------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>PU2</sub>                 | Power-up Time,<br>Reference clock is used | Time from rising edge on PD# to outputs at valid frequency (Asynchronous)            | -    | 2    | 3    | ms   |
| t <sub>SKEW</sub> <sup>[6]</sup> | Clock Skew                                | Output to Output Skew between related clock outputs. Measured at V <sub>DD</sub> /2. | -    | -    | 250  | ps   |

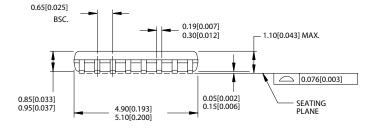
#### **Ordering Information**

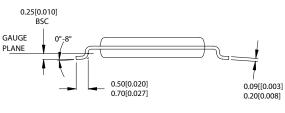

| Ordering Code <sup>[7]</sup> | Package Type                              | Programming | Temperature Operating Range |
|------------------------------|-------------------------------------------|-------------|-----------------------------|
| CY25200ZXC_XXXW              | 16-lead TSSOP (Lead Free)                 | Factory     | Commercial, 0 to 70°C       |
| CY25200ZXC_XXXWT             | 16-lead TSSOP – Tape and Reel (Lead Free) | Factory     | Commercial, 0 to 70°C       |
| CY25200FZXC                  | 16-lead TSSOP (Lead Free)                 | Field       | Commercial, 0 to 70°C       |
| CY25200FZXCT                 | 16-lead TSSOP – Tape and Reel (Lead Free) | Field       | Commercial, 0 to 70°C       |
| CY3672                       | FTG Development Kit                       | N/A         | N/A                         |
| CY3672-PRG                   | FTG Programmer                            | N/A         | N/A                         |
| CY3695                       | CY22050F/CY22150F/CY25200F Socket Adapter | N/A         | N/A                         |

#### 16-lead TSSOP Package Characteristics

| Parameter     | Name     | Value | Unit |
|---------------|----------|-------|------|
| $\Theta_{JA}$ | theta JA | 115   | °C/W |

#### **Package Drawing and Dimensions**


#### 16-lead TSSOP 4.40 MM Body Z16.173




DIMENSIONS IN MM[INCHES] MIN.

MAX.

REFERENCE JEDEC MO-153
PACKAGE WEIGHT 0.05gms





51-85091-\*A

#### Notes:

- 6. Skew and phase alignment is guaranteed within all SSCLK outputs and within both REFOUT outputs. SSCLK and REFOUT outputs will not be phase aligned to each other.
- 7. "XXX" denotes the assigned product dash number. "W" denotes the different revisions of the product.

All products and company names mentioned in this document may be the trademarks of their respective holders.



## **Document History Page**

| Document Title: CY25200 Programmable Spread Spectrum Clock Generator for EMI Reduction Document Number: 38-07633 |         |            |                 |                                                                               |  |
|------------------------------------------------------------------------------------------------------------------|---------|------------|-----------------|-------------------------------------------------------------------------------|--|
| REV.                                                                                                             | ECN NO. | Issue Date | Orig. of Change | Description of Change                                                         |  |
| **                                                                                                               | 204243  | See ECN    | RGL             | New data sheet                                                                |  |
| *A                                                                                                               | 220043  | See ECN    | RGL             | Minor Change: Corrected letter assignment in the ordering info for Lead Free. |  |
| *B                                                                                                               | 267832  | See ECN    | RGL             | Added Field Programmable Devices and Functionality                            |  |
| *C                                                                                                               | 291094  | See ECN    | RGL             | Added t <sub>SKEW</sub> spec. and footnote                                    |  |