

April 2013


FDP8440 N-Channel PowerTrench[®] MOSFET 40 V, 277 A, 2.2 mΩ

Features

- $R_{DS(on)} = 1.64 \text{ m}\Omega \text{ (Typ.)} \otimes V_{GS} = 10 \text{ V}, I_D = 80 \text{ A}$
- Q_{g(tot)} = 345 nC (Typ.)@ V_{GS} = 10 V
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- RoHS Compliant

Applications

- Power Tools
- Motor Drives and Uninterruptible Power Supplies
- Synchronous Rectification
- Battery Protection Circuit

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol		Parameter			
V _{DSS}	Drain to Source Voltag	e	40	V	
V _{GSS}	Gate to Source Voltage	oltage		±20	V
I _D		- Continuous ($T_C = 25^{\circ}C$, Silicon Limited) - Continuous ($T_C = 100^{\circ}C$, Silicon Limited) - Continuous ($T_C = 25^{\circ}C$, Package Limited)	277* 196* 100	А	
I _{DM}	Drain Current	- Pulsed (N	lote 1)	500	А
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		1682	mJ	
P _D	Dawar Diacia atia a	(T _C = 25°C)		306	W
	Power Dissipation	- Derate above 25°C		2.04	W/ºC
T _{J,} T _{STG}	Operating and Storage	-55 to +175	°C		
TL	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds			300	°C

*Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 100A.

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.49	°C/W
$R_{\theta CS}$	Thermal Resistance, Case to Sink (Typ.)	0.5	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	°C/W

Device Marking Device		Device	Package		Reel Size 1		Tape Width		Quantity	
FDP8440 FDP8440 T		O-220	0-220 N/A		N/A		50units			
	al Char	acteristics T _c	= 25°C unle	ess otherwise note						
Symbol Parameter			Conditions			Min	Тур	Max	Unit	
Off Charac										-
BV _{DSS}	Drain to Source Breakdown Voltage		ltage	$V_{GS} = 0V, I_D = 250\mu A$			40			V
I _{DSS}	Zero Gate Voltage Drain Current		$V_{DS} = 32V$					1	μA	
·DSS	2010 0000	e cale reliage brain ourient		$V_{GS} = 0V$		$T_{\rm C} = 150^{\rm o}{\rm C}$;		250	μA
I _{GSS}	Gate to Bo	Body Leakage Current		$V_{GS} = \pm 20$	$V_{GS} = \pm 20V$				±100	nA
On Charac	teristics									
V _{GS(th)}	Gate to So	ate to Source Threshold Voltage		$V_{DS} = V_{GS}, I_{D} = 250 \mu A$			1		3	V
			V _{GS} = 4.5V, I _D = 80A				1.88	2.4		
	Static Drai	Static Drain-Source On-Resistance			V _{GS} = 10V, I _D = 80A			1.64	2.2	mΩ
				$V_{GS} = 10V, I_D = 80A,$ $T_C = 175^{\circ}C$				3.00	4.4	1115.2
Dynamic C	haracterist	tics								
C _{iss}	Input Capacitance							18600	24740	pF
C _{oss}	Output Ca	Dutput Capacitance Reverse Transfer Capacitance		V _{DS} = 25V, V _{GS} = 0V, f = 1.0MHz				1840	2450	pF
C _{rss}	Reverse T							1400	2100	pF
R _G	Gate Resi	Resistance		V _{GS} = 0.5V, f = 1MHz				1.1		Ω
Q _{g(tot)}	Total Gate	Gate Charge at 10V		$V_{GS} = 0V$ to 10V			345	450	nC	
Q _{g(2)}	Threshold	reshold Gate Charge		$V_{GS} = 0V te$	0V to 2V $V_{DD} = 20V$			32.5		nC
Q _{gs}	Gate to So	Gate to Source Gate Charge		I _D = 80A			49		nC	
Q _{gs2}	Gate Charge Threshold to Plateau				$I_g = 1.0 \text{mA}$		16.5		nC	
Q _{gd}	Gate to Drain "Miller" Charge						74		nC	
	Characteri	stics (V _{GS} = 10V)					I	L	1	
t _{ON}	Turn-On T							175	360	ns
t _{d(on)}	Turn-On D	elay Time			· · · · · · · · · · · · · · · · · · ·			43	95	ns
t _r	Rise Time			$V_{DD} = 20V,I_D$ $V_{GS} = 10V,R$				130	275	ns
t _{d(off)}		elay Time						435	875	ns
t _f	Fall Time			1				290	590	ns
t _{OFF}	Turn-Off Time			1				730	1470	ns
	ce Diode C	haracteristics and	Maximu	m Ratings			I		1	
	Source to Drain Diode Voltage			I _{SD} = 80A					1.25	V
V _{SD}				I _{SD} = 40A					1.0	V
t _{rr}	Reverse F	Recovery Time			$dI_{SD}/dt = 10$	0A/μs		59		ns
Q _{RR}		Recovery Charge		$I_{SD} = 75A, dI_{SD}/dt = 100A/\mu s$				77		nC

NOTES:

1: Pulse width limited by maximum junction temperature.

2: Starting T_J = 25°C, L = 1mH, I_{AS} = 58A, V_{DD} = 36V, V_{GS} = 10V.

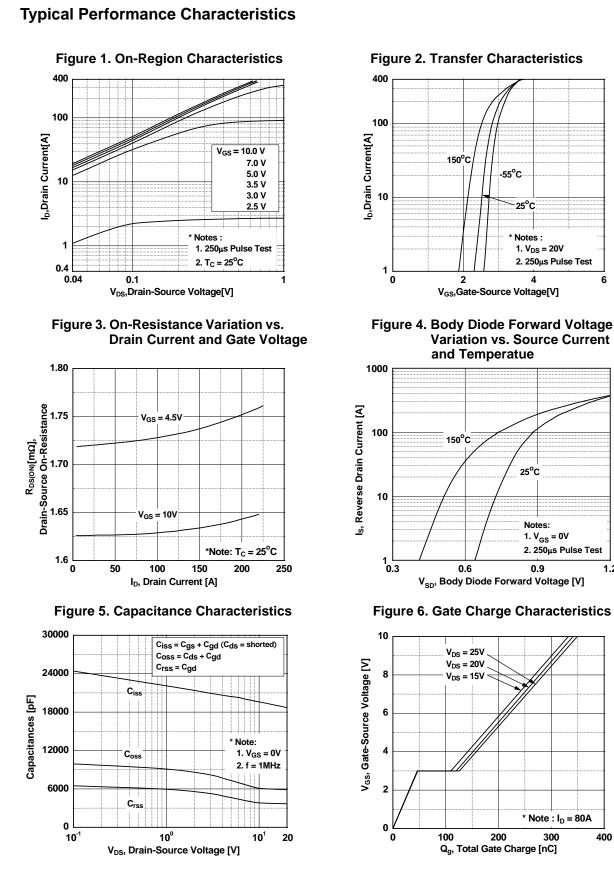


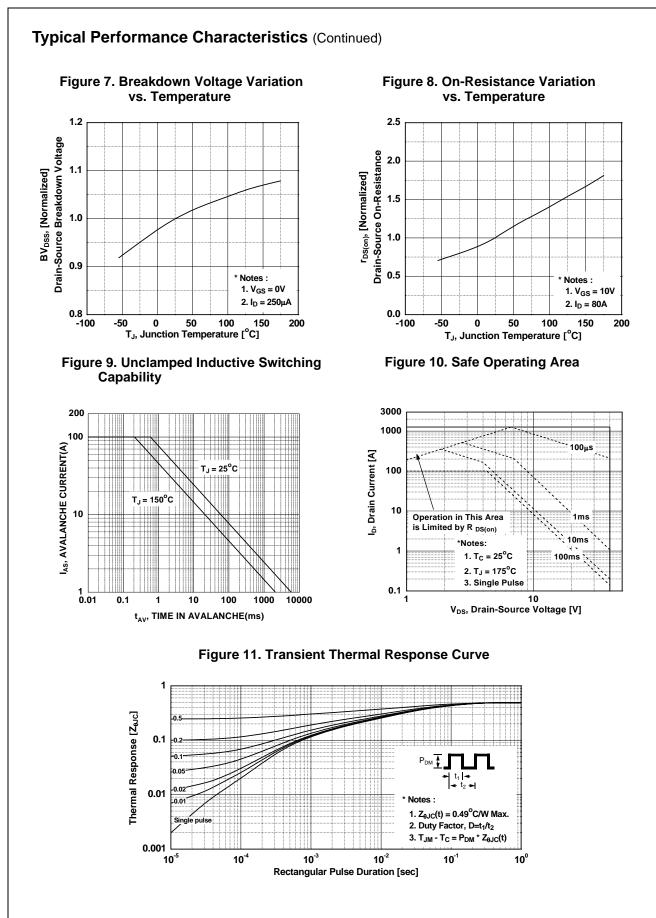
Figure 2. Transfer Characteristics

4

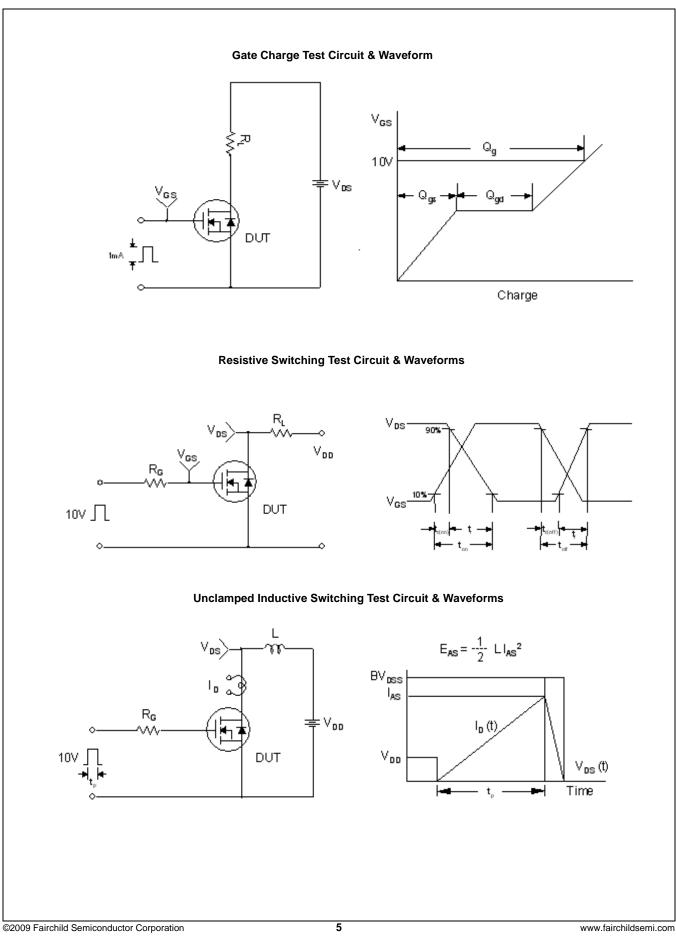
25°C

Notes: 1. V_{GS} = 0V 2. 250µs Pulse Test

0.9

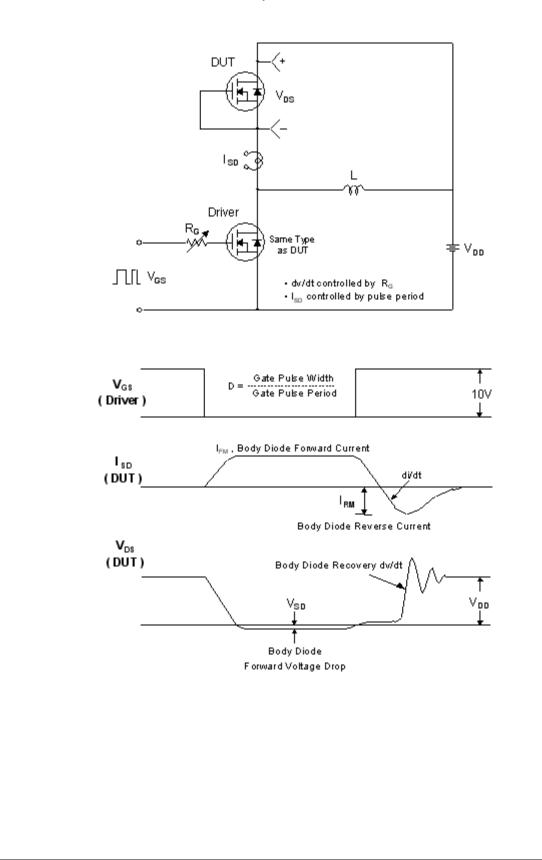

* Note : I_D = 80A

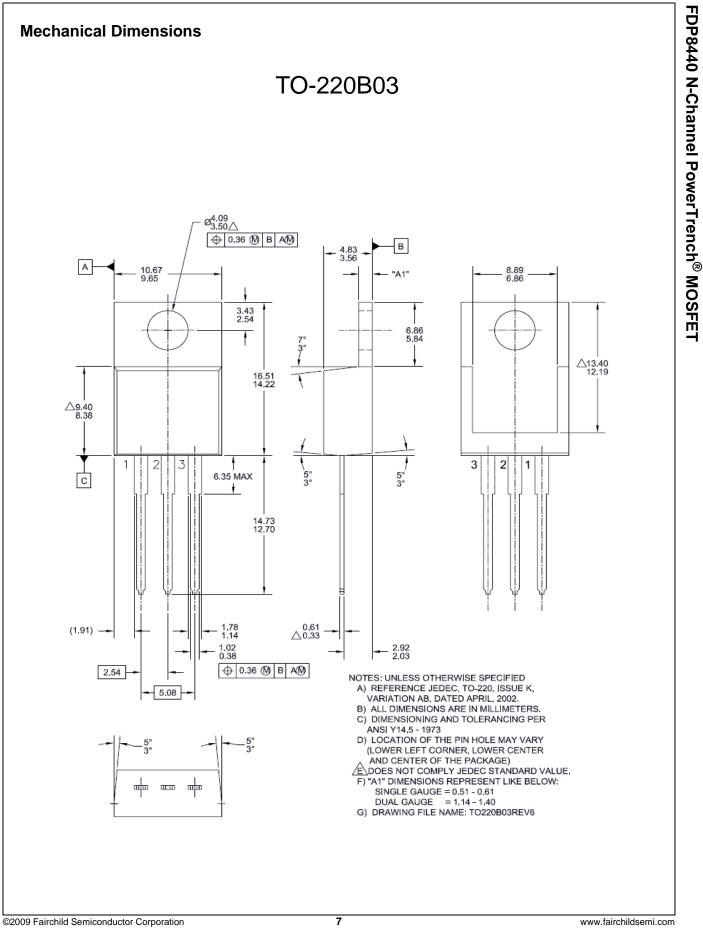
300


6

1.2

400




FDP8440 N-Channel PowerTrench[®] MOSFET

FDP8440 N-Channel PowerTrench[®] MOSFET

Peak Diode Recovery dv/dt Test Circuit & Waveforms

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED Dual Cool™ **EcoSPARK[®]** EfficentMax™ ESBC™

F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS[™] e-Series[™] Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ OPTOLOGIC[®] **OPTOPLANAR[®]**

FPSTM

F-PFS™

PowerTrench[®] PowerXS™ Programmable Active Droop™ **QFĔT[®]** QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

SYSTEM^{®*} GENERAL TinyBoost[™] TinyBuck™ TinyCalc™ TinyLogic® TIŃYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

XS™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

8