June 2004 Revised June 2004

FAIRCHILD

SEMICONDUCTOR

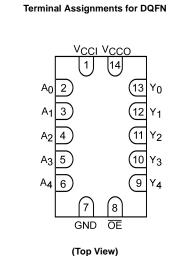
FXL5T244 Low Voltage Dual Supply 5-Bit Signal Translator with Configurable Voltage Supplies and Signal Levels and 3-STATE Outputs

General Description

The FXL5T244 is a configurable dual-voltage-supply translator designed for one-way (unidirectional) voltage translation of signals between two voltage levels. The device allows translation between voltages as high as 3.6V to as low as 1.1V. A Inputs and the OE Control Pin track the $V_{\rm CCI}$ level, and Y Outputs track the $V_{\rm CCO}$ level. Both inputs and outputs are designed to accept supply voltage levels from 1.1V to 3.6V. This allows for unidirectional voltage translation over a variety of voltage levels: 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.

The device remains in 3-STATE until both V_{CC}s reach active levels allowing either V_{CC} to be powered-up first. The device also contains power down control circuits that place the device in 3-STATE if either V_{CC} is removed. The $\overline{\text{OE}}$ input, when HIGH, disables the outputs by placing them in 3-STATE condition.

Features


- One-way (unidirectional) translation between any 2 levels from 1.1V to 3.6V
- \blacksquare Fully configurable, inputs and outputs track respective $V_{\mbox{CC}}$ levels
- Non-preferential power-up sequencing; either V_{CC} may be powered-up first
- \blacksquare Outputs remain in 3-STATE until active V_{CC} level is reached
- \blacksquare Outputs switch to 3-STATE if either V_{CC} is at GND
- Power-off protection
- Control input (OE) level is referenced to V_{CCI} voltage
- Packaged in 14-terminal DQFN (2.5mm x 3.0mm) package
- ESD protection exceeds:
- 4kV HBM ESD
- (per JESD22-A114 & Mil Std 883e 3015.7) • 8kV HBM I/O to GND ESD
- (per JESD22-A114 & Mil Std 883e 3015.7)
- 1kV CDM ESD (per ESD STM 5.3)
- 200V MM ESD (per JESD22-A115 & ESD STM5.2)

Ordering Code:

Order Number	Package Number	Package Description
FXL5T244BQX		14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.0mm

Terminal	Terminal Descriptions									
Terminal Names	Description									
OE	Output Enable Input									
A _n	Data Inputs									
Y _n	3-STATE Outputs									
V _{CCI}	Inputs Power Supply									
V _{CCO}	Outputs Power Supply									
GND	Ground									

Connection Diagram

Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 volts, outputs are in a HIGH-Impedance state. The control input, \overline{OE} , is designed to track the V_{CCI} supply. A pull-up resistor tying \overline{OE} to V_{CCI} should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/ power-down. The size of the pull-up resistor is based upon the current-sinking capability of the \overline{OE} driver.

Truth Table

Inp	uts	Outputs		
OE	OE A _n			
L	L	L		
L	н	н		
н	х	3-STATE		
H = HIGH Voltage Level				

L = LOW Voltage Level

X = Don't Care

Terminal Assignment

Terminal Number	Terminal Name
1	V _{CCI}
2	A ₀ A ₁
3	
4	A ₂ A ₃ A ₄
5	A ₃
6	A ₄
7	GND
8	OE
9	Y ₄
10	Y ₃
11	Y ₂
12	Y ₁
13	Y ₀
14	V _{CCO}

The recommended power-up sequence is the following:

- 1. Apply power to either V_{CC} .
- Apply power to the OE input (Logic HIGH for A-to-B operation; Logic LOW for B-to-A operation) and to the respective data inputs (A Port or B Port). This may occur at the same time as Step 1.
- 3. Apply power to other V_{CC} .
- 4. Drive the \overline{OE} input LOW to enable the device.
- The recommended power-down sequence is the following:
- 1. Drive \overline{OE} input HIGH to disable the device.
- 2. Remove power from either $V_{\mbox{CC}}$
- 3. Remove power from other $V_{\mbox{\scriptsize CC}}.$

Absolute	Maximum	Ratings(Note 1)
----------	---------	-----------------

Recommended Operating

Conditions (Note 3)

Supply Voltage	
V _{CCI}	-0.5V to +4.6V
V _{CCO}	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to +4.6V
Output Voltage (V _O) (Note 2)	
Outputs 3-STATE	-0.5V to +4.6V
Outputs Active	–0.5V to $V_{CCO}^{} + 0.5V$
DC Input Diode Current (I_{IK}) $V_I < 0V$	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
V _O > V _{CC}	+50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	–50 mA / +50 mA
DC V _{CC} or Ground Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Power Supply Operating (V _{CCI} or V _{CCO})	1.1V to 3.6V
Input Voltage	
A _n	0.0V to 3.6V
Control Inputs (OE)	0.0V to 3.6V
Output Current in I _{OH} /I _{OL}	
$V_{CCO} = 3.0V$ to $3.6V$	±24 mA
$V_{CCO} = 2.3V$ to 2.7V	±18 mA
V _{CCO} = 1.65V to 1.95V	±6 mA
V _{CCO} = 1.4V to 1.65V	±2 mA
$V_{CCO} = 1.1V$ to $1.4V$	±0.5 mA
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate (ΔV/Δt)	
$V_{CCA/B} = 1.1V$ to 3.6V	10 ns/V

FXL5T244

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_O Absolute Maximum Rating must be observed.

Note 3: All unused inputs must be held at $\rm V_{\rm CCI}$ or GND.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CCI} (V)	V _{CCO} (V)	Min	Max	Units
VIH	High Level Input Voltage		2.7 - 3.6		2.0		
			2.3 - 2.7		1.6		
			1.65 - 2.3	1.1 - 3.6	0.65 x V _{CCI}		V
			1.4 - 1.65		0.65 x V _{CCI}		
			1.1 - 1.4		0.9 x V _{CCI}		
V _{IL}	Low Level Input Voltage		2.7 - 3.6			0.8	
			2.3 - 2.7			0.7	
			1.65 - 2.3	1.1 - 3.6		0.35 x V _{CCI}	V
			1.4 - 1.65			0.35 x V _{CCI}	
			1.1 - 1.4			0.1 x V _{CCI}	
V _{ОН}	High Level Output Voltage	I _{OH} = -100 μA	1.1 - 3.6	1.1 - 3.6	V _{CC0} - 0.2		
		$I_{OH} = -12 \text{ mA}$	2.7	2.7	2.2		
		I _{OH} = -18 mA	3.0	3.0	2.4		
		$I_{OH} = -24 \text{ mA}$	3.0	3.0	2.2		
		I _{OH} = -6 mA	2.3	2.3	2.0		V
		$I_{OH} = -12 \text{ mA}$	2.3	2.3	1.8		v
		I _{OH} = -18 mA	2.3	2.3	1.7		
		I _{OH} = -6 mA	1.65	1.65	1.25		
		$I_{OH} = -2 \text{ mA}$	1.4	1.4	1.05		
		I _{OH} = -0.5 mA	1.1	1.1	0.75 x V _{CC0}		

FXL5T244

DC Electrical Characteristics (Continued)

V_{CCI} V_{cco} Symbol Parameter Conditions Min Max Units (V) (V) V_{OL} Low Level Output Voltage $I_{OL} = 100 \mu A$ 1.1 - 3.6 1.1-3.6 0.2 $I_{OL} = 12 \text{ mA}$ 2.7 2.7 0.4 $I_{OL} = 18 \text{ mA}$ 3.0 3.0 0.4 $I_{OL} = 24 \text{ mA}$ 3.0 3.0 0.55 $I_{OL} = 12 \text{ mA}$ 2.3 2.3 0.4 V I_{OL} = 18 mA 2.3 2.3 0.6 $I_{OL} = 6 \text{ mA}$ 1.65 1.65 0.3 $I_{OL} = 2 \text{ mA}$ 0.35 1.4 1.4 0.3 x V_{CCI} $I_{OL} = 0.5 \text{ mA}$ 1.1 1.1 Input Leakage Current $V_I = V_{CCI} \text{ or } GND$ 1.1 - 3.6 I_I 3.6 ±1.0 μΑ $A_n, \overline{OE} = 0V \text{ to } 3.6V$ Power Off Leakage Current 0 3.6 ±10.0 I_{OFF} μΑ 3.6 $Y_n = 0V$ to 3.6V 0 ±10.0 3-STATE Output Leakage $\overline{OE} = V_{IH}$ 3.6 3.6 ±10.0 I_{OZ} OE = Don't Care 0 3.6 +10.0 (Note 4) $0 \le V_O \le 3.6V$ μΑ OE = Don't Care $V_I = V_{IH} \text{ or } V_{IL}$ 3.6 0 +10.0 I_{CCI/O} (Note 4) Quiescent Supply Current $V_I = V_{CCI} \text{ or } GND; I_O = 0$ 1.1 - 3.6 1.1 - 3.6 20.0 μΑ I_{CCZ} (Note 5) Quiescent Supply Current $V_I = V_{CCI} \text{ or } GND; I_O = 0$ 1.1 - 3.6 1.1 - 3.6 20.0 μΑ $V_I = V_{CCI} \text{ or } GND; I_O = 0$ 1.1 - 3.6 -10.0 μΑ Quiescent Supply Current 0 I_{CCI} $V_I = V_{CCI} \text{ or } GND; I_O = 0$ 1.1 - 3.6 10.0 0 μΑ Quiescent Supply Current $V_I = V_{CCO} \text{ or } GND; I_O = 0$ 1.1 - 3.6 0 -10.0 μΑ I_{CCO} 1.1 - 3.6 $V_I = V_{CCO}$ or GND; $I_O = 0$ 0 10.0 μΑ $V_{IH} = 3.0$ 500 3.6 3.6 $\Delta I_{\text{CCI/O}}$ Increase in I_{CC} per Input; μΑ Other Inputs at V_{CC} or GND Note 4: Don't Care = Any valid logic level.

Note 4: Don't Care = Any valid logic level.

Note 5: Reflects current per supply, V_{CCI} or V_{CCO}.

AC Electrical Characteristics $v_{\text{CCI}}\,{=}\,3.0V$ to 3.6V

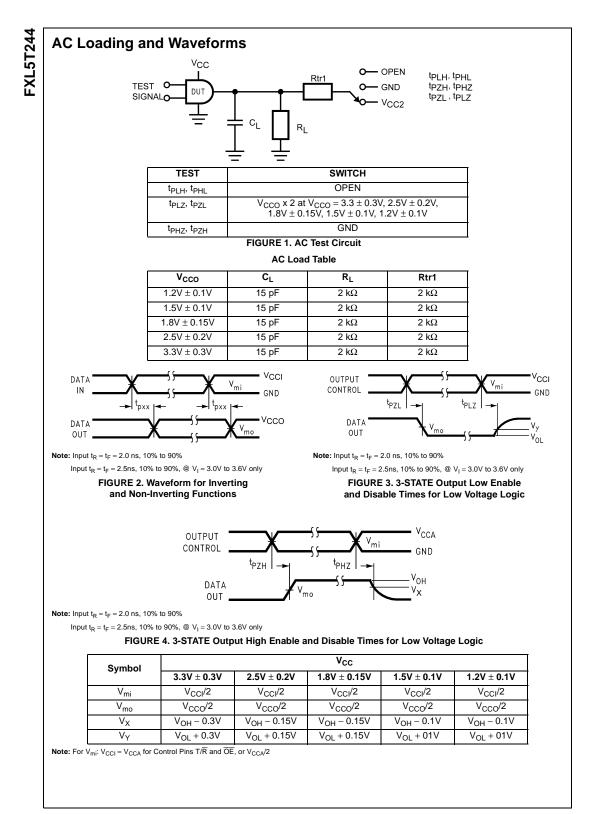
AC Electrical Characteristics V _{CCI} = 3.0V to 3.6V													
	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$												
Symbol	Parameter	V _{CCO} = 3.0V to 3.6V		V _{CCO} = 2.3V to 2.7V		V _{CCO} = 1.65V to 1.95V		V _{CCO} = 1.4V to 1.6V		V _{CCO} = 1.1V to 1.3V		Units	
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1	
t _{PLH} , t _{PHL}	Propagation Delay A to Y	0.2	3.5	0.3	3.9	0.7	5.4	0.8	6.8	1.4	22.0	ns	
t _{PZH} , t _{PZL}	Output Enable OE to Y	0.5	4.0	0.7	4.4	1.0	5.9	1.0	6.4	1.5	17.0	ns	
t _{PHZ} , t _{PLZ}	Output Disable OE to Y	0.2	3.8	0.2	4.0	0.7	4.8	1.5	6.2	2.0	17.0	ns	

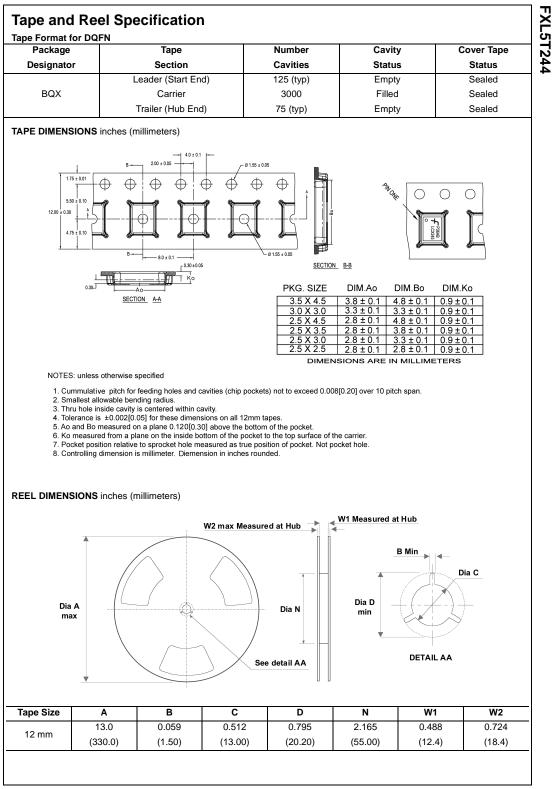
AC E	AC Electrical Characteristics V _{CCI} = 2.3V to 2.7V													
						$T_A = -40^\circ$	C to +85°C	;						
Symbol	Parameter	V _{CCO} = 3.0V to 3.6V		V _{CCO} = 2.3V to 2.7V		V _{CCO} = 1.65V to 1.95V		V _{CCO} = 1.4V to 1.6V		V _{CCO} = 1.1V to 1.3V		Units		
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1		
t _{PLH} , t _{PHL}	Propagation Delay A toY	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	1.4	22.0	ns		
t _{PZH} , t _{PZL}	Output Enable OE to Y	0.6	4.2	0.8	4.6	1.0	6.0	1.0	6.8	1.5	17.0	ns		
t _{PHZ} , t _{PLZ}	Output Disable OE to Y	0.2	4.1	0.2	4.3	0.7	4.8	1.5	6.7	2.0	17.0	ns		

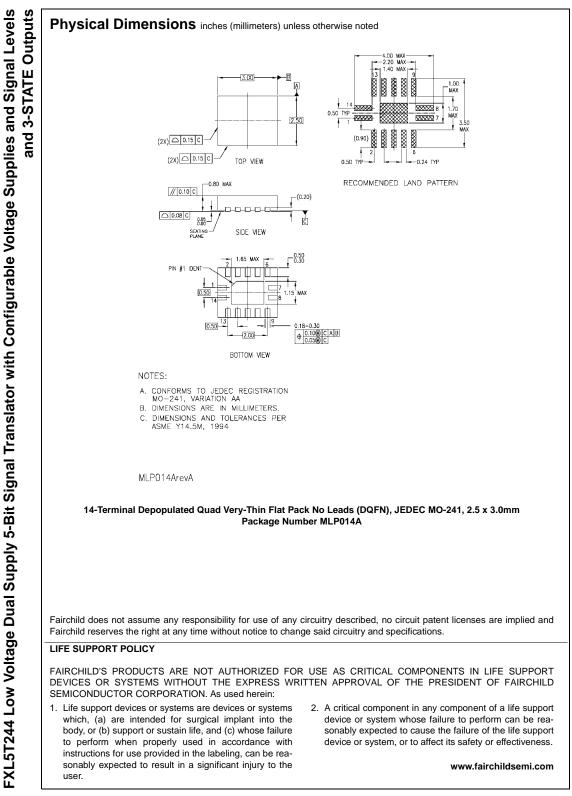
AC Electrical Characteristics V_{CCI} = 1.65V to 1.95V

Symbol	Parameter	T _A = −40°C to +85°C										
		V _{CCO} = 3.0V to 3.6V		V _{CCO} = 2.3V to 2.7V		V _{CCO} = 1.65V to 1.95V		V _{CCO} = 1.4V to 1.6V		V _{CCO} = 1.1V to 1.3V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
t _{PLH} , t _{PHL}	Propagation Delay A to Y	0.3	4.0	0.5	4.5	0.8	5.7	0.9	7.1	1.5	22.0	ns
t _{PZH} , t _{PZL}	Output Enable OE to Y	0.6	5.2	0.8	5.4	1.2	6.9	1.2	7.2	1.5	18.0	ns
t _{PHZ} , t _{PLZ}	Output Disable OE to Y	0.2	5.1	0.2	4.0	0.8	5.2	1.5	7.0	2.0	17.0	ns

AC Electrical Characteristics v_{CCI} = 1.4V to 1.6V


Symbol	Parameter	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$										
		V _{CCO} = 3.0V to 3.6V		V _{CCO} = 2.3V to 2.7V		V _{CCO} = 1.65V to 1.95V		V _{CCO} = 1.4V to 1.6V		V _{CCO} = 1.1V to 1.3V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
t _{PLH} , t _{PHL}	Propagation Delay A to Y	0.5	4.3	0.5	4.8	1.0	6.0	1.0	7.3	1.5	22.0	ns
t _{PZH} , t _{PZL}	Output Enable OE to Y	1.1	7.5	1.1	7.6	1.3	7.7	1.4	7.9	2.0	20.0	ns
t _{PHZ} , t _{PLZ}	Output Disable OE to Y	0.4	6.1	0.4	6.2	0.9	6.2	1.5	7.5	2.0	18.0	ns


AC Electrical Characteristics $v_{CCI} = 1.1V$ to 1.3V


Symbol	Parameter	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$										
		V _{CCO} = 3.0V to 3.6V		V _{CCO} = 2.3V to 2.7V		V _{CCO} = 1.65V to 1.95V		V _{CCO} = 1.4V to 1.6V		V _{CCO} = 1.1V to 1.3V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	1
t _{PLH} , t _{PHL}	Propagation Delay A to Y	0.8	13.0	1.0	7.0	1.2	8.0	1.3	9.5	2.0	24.0	ns
t _{PZH} , t _{PZL}	Output Enable \overline{OE} to Y	1.0	12.0	1.0	9.0	2.0	10.0	2.0	11.0	2.0	24.0	ns
t _{PHZ} , t _{PLZ}	Output Disable \overline{OE} to Y	1.0	15.0	0.7	7.0	1.0	8.0	2.0	10.0	2.0	20.0	ns

Capacitance

Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units	
Symbol	Faranteter	Conditions	Typical	Units	
C _{IN}	Input Capacitance An Control Pin (OE)	$V_{CCI} = V_{CCO} = 3.3V$, $V_I = 0V$ or V_{CCI}	4.0	pF	
C _{OUT}	Output Capacitance Yn	$V_{CCI} = V_{CCO} = 3.3V$, $V_I = 0V$ or V_{CCI}	5.0	pF	
CPD	Power Dissipation Capacitance	$V_{CCI} = V_{CCO} = 3.3V$, $V_I = 0V$ or V_{CCI} , F = 10 MHz	20.0	pF	

