Version 1.2, February 2002

# **Application Note**

AN-SMPS-ICE2xXXX-1

**CoolSET**<sup>™</sup>

ICE2xXXX for OFF – Line Switch Mode Power Supply (SMPS)

Authors: Harald Zöllinger

**Rainer Kling** 

Published by Infineon Technologies AG http://www.infineon.com

Power Management & Supply



Never stop thinking



# Contents:

| OPERATING PRINCIPLES                                            | 3  |
|-----------------------------------------------------------------|----|
| PROTECTION FUNCTIONS                                            | 9  |
| OVERLOAD AND OPEN-LOOP PROTECTION (FIG. 6)                      | 11 |
| OVERVOLTAGE PROTECTION DURING SOFT START (FIG. 7)               | 12 |
| FREQUENCY REDUCTION                                             | 13 |
| DESIGN PROCEDURE                                                | 14 |
| Input Diode Bridge (BR1):                                       | 15 |
| Determine Input Capacitor (C3):                                 | 15 |
| Transformer Design (TR1):                                       | 17 |
| SENSE RESISTOR                                                  |    |
| Winding Design:                                                 |    |
| Output Rectifier (D1):                                          |    |
| Output Capacitors (C5, C9):                                     |    |
| Output Filter (L3, C23):                                        |    |
| RC-Filter at Feedback Pin                                       |    |
| Soft-start capacitor                                            |    |
| VCC Capacitor:                                                  |    |
| Start-up Resistor (R6, R7):                                     |    |
| CLAMPING NETWORK:                                               |    |
| CALCULATION OF LOSSES:                                          |    |
| Switching losses:                                               |    |
| Conduction losses:                                              |    |
| REGULATION LOOP:                                                |    |
| Regulation Loop Elements:                                       |    |
| Zeros and Poles of transfer characteristics:                    |    |
| Calculation of transient impedance Z <sub>PWM</sub> of ICE2AXXX |    |
| Transfer characteristics:                                       |    |
| CONTINUOUS CONDUCTION MODE (CCM)                                |    |
| TRANSFORMER CALCULATION:                                        |    |
| SLOPE COMPENSATION                                              |    |
| TRANSFORMER CONSTRUCTION                                        |    |
| LAYOUT RECOMMENDATION:                                          |    |
| OUTPUT POWER TABLE                                              |    |
| SUMMARY OF USED NOMENCLATURE                                    | 41 |
| References                                                      |    |
|                                                                 |    |



# **Operating Principles**

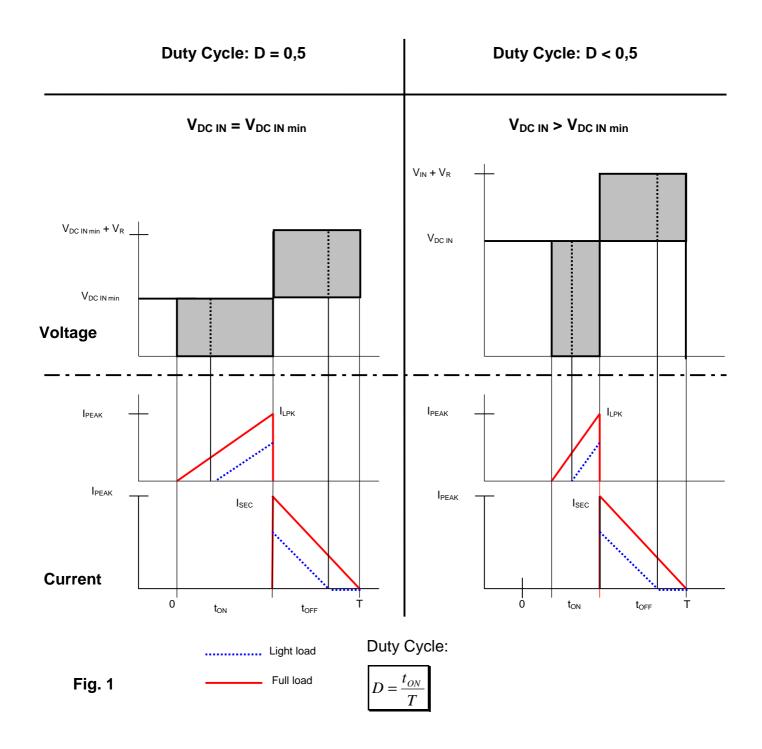
The ICE2AXXX is designed for a current-mode flyback configuration in **discontinous (DCM) or** continous conduction (CCM) mode.

The control circuit has a fixed frequency. The duty cycle (D) of the integrated CoolMOS Transistor is controlled to maintain a constant output voltage ( $V_{OUT}$ ).

Fig. 1 shows the input voltage ( $V_{DC IN}$ ), the primary current( $I_{LPK}$ ), and the secondary ( $I_{SEC}$ ) transformer currentof the flyback converter depicted on p. 3

When the CoolMOS Transistor is swiched on, the initial state of all windings on the transformer is at positive potential.

The rectifier diode (D1) on the secondary side is reverse biased and therefore does not conduct. Consequently no current flows in the secondary winding. During this phase, energy is stored in the inductance of the primary winding and the transformer can be treated as a simple series inductor. Fig. 1 shows that there is a linear increase of the primary current (I<sub>PRI</sub>) while the CoolMOS Transistor is on.


When the CoolMOS Transistor is swiched off, the voltage reverses on all transformer windings (flyback action) until it is clamped by rectifier diode on the secondary side. Now the secondary rectifier diode (D1) is conducting, and the magnetizing energy stored in the transformer core is transferred to the secondary side during the reset interval.

In the **discontinous conduction mode DCM** the secondary current ( $I_{SEC}$ ) decreases from its peak value to zero (Fig. 1). During this period the whole energy stored in the primary inductance is transferred to the secondary side (neglecting losses and energy stored in the primary leakage inductance), then the next storage cycle starts. Taking into account the transformer turns ratio, the secondary voltage ( $V_{SEC}$ ) is "reflected" back ( $V_R$ ) to the primary winding and adds to the input voltage ( $V_{DC IN} + V_R$ ). An additional transient voltage may appear on the primary winding due to energy stored in the uncoupled "leakage" inductance in the primary winding. This voltage is not clamped by the secondary side winding. If the flyback current ( $I_{LPK}$  and  $I_{SEC}$ ) does not reach zero before the next "on" – cycle the converter is operating in **continous conduction mode** (Fig. 2). Note:

When the system shifts to continous conduction operation, its transfer function is changed to a two pole system with low output impedance. In this case additional design rules have to be taken into account including different loop compensation and slope compensation on the primary side.



Voltage and current waveforms in **discontinous conduction mode** (DCM) operation:





Comparison of **continuus conduction** (CCM) and **discontinuus conduction** (DCM) mode.

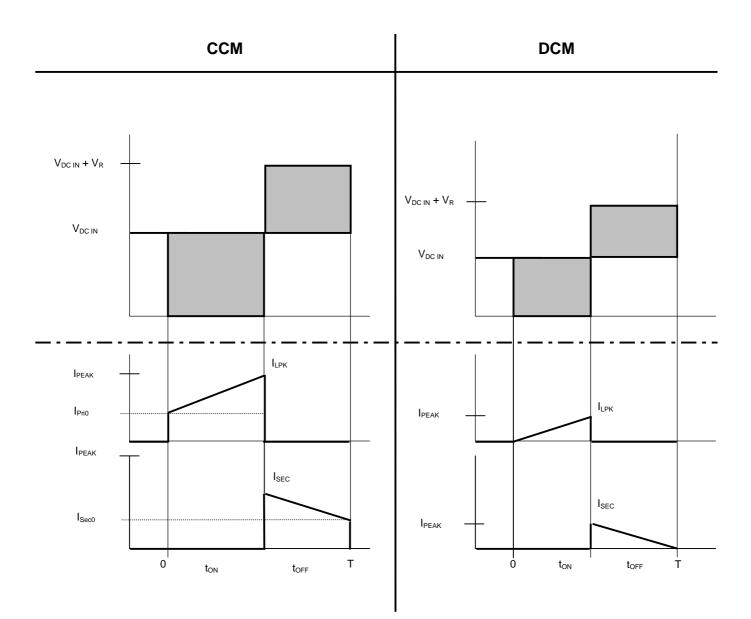



Fig. 2



#### Input stage

As shown in Fig. 3 the AC input power is rectified and filtered by the bridge rectifier (BR1) and the bulk capacitor C3. This create a DC high voltage bus which is connected to the primary winding of the transformer (TR1). The transformer is driven by the CoolSET integrated high voltage, avalanche rugged CoolMOS transistor, with an external sense resistor (R17) for precision current mesurement.

#### Output stage

The secondary winding power is rectified and filtered by a diode (D1), capacitors (C5, C9 and C20). The output LC-filter (L3, C23) reduces the output voltage ripple.

#### Other output voltages

Other output voltages can be realized by adjusting the transformer turn ratio and the output stage.

#### Chip supply

The current in the bias winding is rectified and filtered by a diode (D2) and a resistor (R8) in order to charge the the supply capacitor (C4). This creates a bias voltage that powers the CoolSET ICE 2AXXX. The resistors R6 and R7 charge the VCC Cap and supply the chip during startup. The Zener diode (D4) clamps the chip supply voltage (Vcc) in order to protect the chip in case of an over-voltage condition. Capacitor C13 filters high frequency ripples on the chip supply voltage (Vcc).

#### Soft-Start

A soft-start function is activated during start-up, and can be adjusted by capacitor C14. In addition to start-up, soft-start is activated at each restart attempt during auto-restart and when restarting after one of the several protection functions are activated. This effectively minimizes current and voltage stresses on the CoolMOS MOSFET, the snubber network, and the output rectifier during start-up. The soft-start feature further helps to minimize output overshoot and prevents saturation of the transformer during start-up.

### **Clamping network**

The clamping network which consists of a diode (D3), a resistor (R10) and a capacitor (C12) clamps the voltage spike caused by the transformer leakage inductance to a safe value this limits the avalanche losses of the CoolMOS transistor.



#### **Control Loop**

The resistors R1 and R2 represent the voltage divider for the reference diode TL431CLP (IC2). R4 supplies the TL431CLP reference diode with a minimum current and R3 the LED of the optocoupler. The network which consists of capacitors C1 and C2 determines the corner frequencies fg1 and fg2. R5 sets the gain of the control loop.

#### **Slope Compensation**

The current mode controller becomes unstable whenever the steady – state duty cycle D is larger than 0.5. In order to realize a design with a duty cycle greater 0.5, the slope of the current needs to be compensated. The slope compensation is realized by the network consisting of capacitor C17, C18 and the resistor R19.

#### **Ripple Reduction**

Inductor L5 and capacitor C23 attenuate the differential – mode emission currents caused by the fundamental and harmonic frequencies of the primary current waveform.

#### **SMPS Calculation Software FLYCAL**

FLYCAL is an EXCEL spread sheet with all Equations needed for the easy calculaton of your SMPS. FLYCAL corresponds with the calculaton example in this application note. You only have to enter the main parameters of your application in FLYCAL and to follow step by step the principle outlined in the calculation example. FLYCAL contains all equations used in the example with the same consecutive numbering.



# Circuit Diagram:

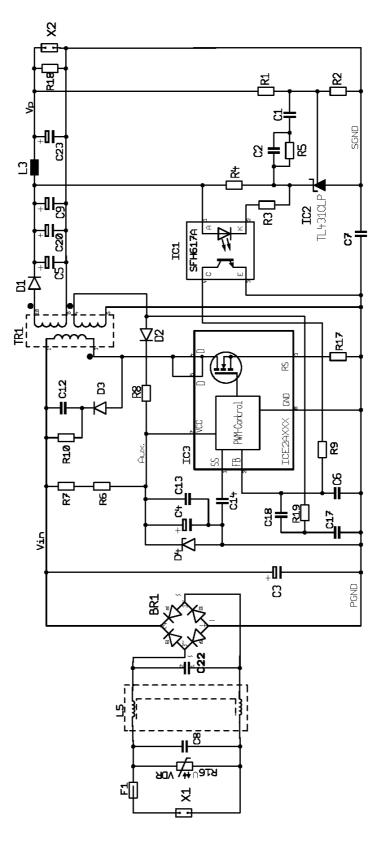



Fig. 3



### **Protection Functions**

The block diagram displayed in Fig. 4 shows the interal functions of the protection unit. The comparators C1, C2, C3 and C4 compare the soft-start and feedback-pin voltages. Logic gates connected to the comparator outputs ensure the combination of the signals and enables the setting of the "Error-Latch".

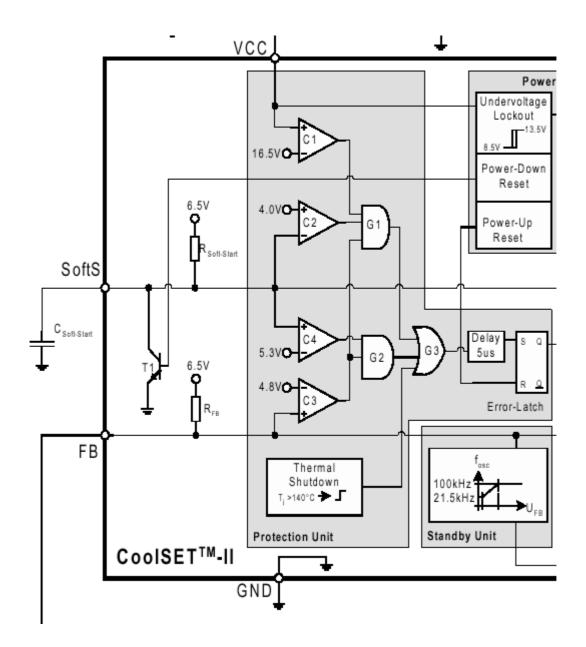
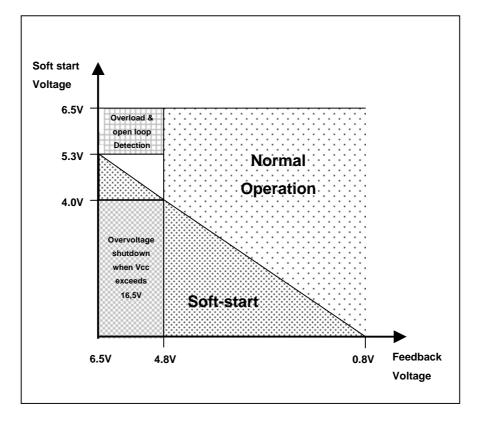


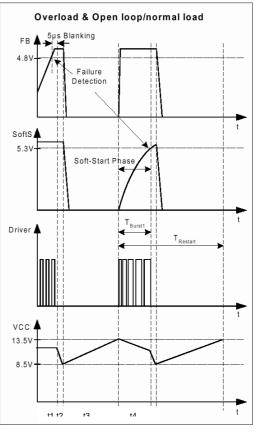





Fig. 5 shows the relation between the voltages at the soft start (Vss) and the feedback pins ( $V_{FB}$ ) of **ICE2AXXX**, as a function of the supply voltage (Vcc) during an overvoltage condition at CoolSET soft start.

Depending on the voltage levels at the inputs, the overvoltage and (Vcc – PIN 7) and overload ( $V_{FB}$  – PIN 2) protection functions are activated.





Fig. 5



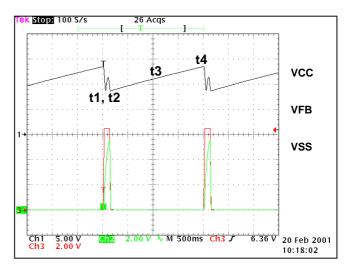
### **Overload and Open-Loop Protection**

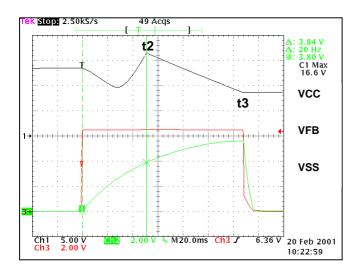
- Feedback voltage (VFB) exceeds 4.8V and soft start voltage (VSS) is above 5.3V (soft start is completed) (t1)
- After a 5µs delay the **CoolMOS** is switched off (t2)
- Voltage at Vcc Pin (VCC) decreases to 8.5V (t2)
- Control logic is switched off (t3)
- Start-up resistor charges Vcc capacitor (t3)
- Operation starts again with soft start after Vcc voltage has exceeded 13.5V (t4)

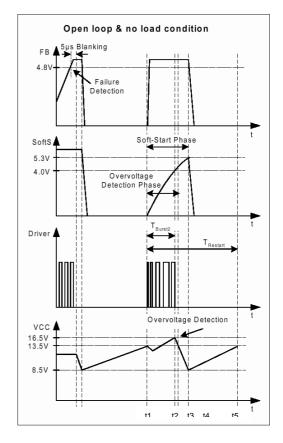










Fig. 8


Fig. 7



### **Overvoltage Protection During Soft Start**

- Feedback voltage (VFB) exceeds 4.8V and soft-start voltage (VSS) is below 4.0V (soft start phase) (t1)
- Voltage at Vcc pin (VCC) exceeds 16.5V (t2)
- CoolMOS transistor is immediately switched off (t2)
- Voltage at VCC pin decreases to 8.5V (t3)
- Control logic is switched off (t3)
- Start-up resistor charges VCC capacitor (t4)
- Operation starts again with soft start after VCC voltage has exceeded 13.5V (t5)









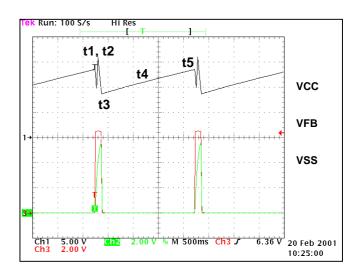



Fig. 11



# **Frequency Reduction**

The frequency of the oscillator depends on the voltage at pin FB. Below a voltage of typ. 1.75V the frequency decreases down to 21.5 kHz. Due to this frequency reduction the power losses in low load condition can be reduced very effectively. This dependency is shown in Fig. 12

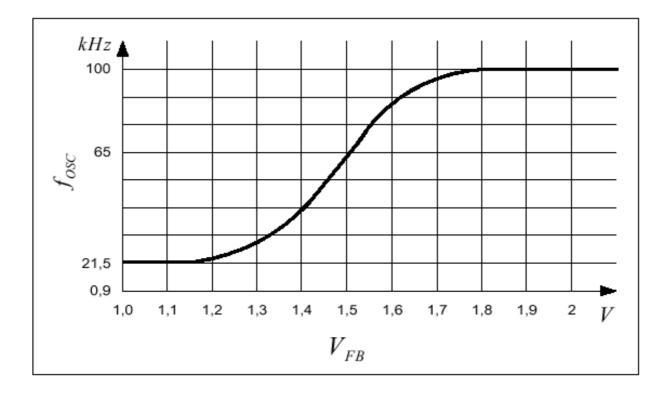



Fig. 12



### **Design Procedure**

for fixed frequency Flyback Converter with ICE2AXXX operating in discontinuous current mode.

| Procedu                                | re                        | Example                                |  |
|----------------------------------------|---------------------------|----------------------------------------|--|
| Define input Parameters:               |                           |                                        |  |
| Minimal AC input voltage:              | V <sub>AC min</sub>       | 90V                                    |  |
| Maximal AC input voltage:              | V <sub>AC max</sub>       | 264V                                   |  |
| Line frequency:                        | f <sub>AC</sub>           | 50Hz                                   |  |
| Max. output power:                     | P <sub>OUT max</sub>      | 50W                                    |  |
| Nom. output power:                     | P <sub>OUT nom</sub>      | 40W                                    |  |
| Min. output power:                     | P <sub>OUT min</sub>      | 0,5W                                   |  |
| Output voltage:                        | V <sub>OUT</sub>          | 16V                                    |  |
| Output ripple voltage:                 | V <sub>OUT Ripple</sub>   | 0,05V                                  |  |
| Reflection voltage:                    | V <sub>Rmax</sub>         | 120V                                   |  |
| Estimated efficiency:                  | η                         | 0,85                                   |  |
| DC ripple voltage:                     | V <sub>DC IN Ripple</sub> | 30V                                    |  |
| Auxiliary voltage:                     | V <sub>Aux</sub>          | 12V                                    |  |
| Optocoupler gain:                      | G <sub>c</sub>            | 1                                      |  |
| Used CoolSET                           |                           | ICE2A365                               |  |
|                                        |                           |                                        |  |
|                                        |                           | I                                      |  |
| There are no special requirem          | nents imposed on          |                                        |  |
| the input rectifier and storage        | capacitor in the          |                                        |  |
| flyback converter. The compo           | nents will be             |                                        |  |
| selected to meet the power ra          | iting and hold-up         |                                        |  |
| requirements.                          |                           |                                        |  |
|                                        |                           |                                        |  |
|                                        |                           |                                        |  |
| Maximum input power:                   |                           |                                        |  |
| $P_{IN \max} = \frac{P_{OUT \max}}{n}$ | (Eq 1)                    | 50W 50W                                |  |
| $\eta$                                 | (=9 )                     | $P_{IN \max} = \frac{50W}{0.85} = 59W$ |  |
|                                        |                           |                                        |  |
|                                        |                           |                                        |  |
|                                        |                           |                                        |  |
|                                        |                           |                                        |  |
|                                        |                           | 1                                      |  |



Input Diode Bridge (BR1):
$$I_{ACRMS} = \frac{P_{DVMX}}{V_{ACmin} \cdot \cos \varphi}$$
 (Eq 2) $I_{ACRMS} = \frac{59W}{90V \cdot 0.6} = 1.09A$ Maximum DC IN voltage  
 $V_{DCmax PK} = V_{ACmin} \cdot \sqrt{2}$  (Eq 3) $V_{DC max PK} = 264V \cdot \sqrt{2} = 373V$ Determine Input Capacitor (C3):  
Minimum peak input voltage at "no load" condition  
 $V_{DC min PK} = V_{AC min} \cdot \sqrt{2}$  (Eq 4) $V_{DC min PK} = 90V \cdot \sqrt{2} = 127V$ We choose a ripple voltage of 30V  
 $V_{DC min PK} = V_{DC min PK} - V_{Ripple}$  (Eq 5)we choose a ripple voltage of 30V  
 $V_{DC min = 127V - 30V = 97V$ Calculation of discharging time at each half-line  
cycle: $T_D = 5ms \cdot \left(1 + \frac{\arcsin \frac{V_{DC min PK}}{90}}{90} - (Eq 6)\right)$  $T_D = 5ms \cdot \left(1 + \frac{\arcsin \frac{97V}{127V}}{90} = 7.7ms$ Required energy at discharging time of C3:  
 $W_{DV} = P_{N max} \cdot T_D$  (Eq 7) $W_{IN} = 59W \cdot 7.7ms = 0.46Ws$ Calculation of input capacitor value  $C_{IN}$ :  
 $C_{IN} = \frac{2 \cdot W_{IN}}{V_{DC min FK} - V_{DC min}}$  (Eq 8) $C_{IN} = \frac{2 \cdot 0.46Ws}{16129V^2 - 9409V^2} = 136.9\mu F$ 



1

| Alternatively a rule of thumb for choosing $C_{\text{IN}}$ can be applied:                                                                                                                                                  |                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Input voltage         C <sub>IN</sub> 115V         2μF/W           230V         1μF/W           85V270V         23μF/W                                                                                                      | $59W \cdot 3\frac{\mu F}{W} = 177 \mu F$                                |
| Recalculation of input Capacitor:                                                                                                                                                                                           |                                                                         |
| Select a capacitor from the Epcos Databook of <b>Aluminium Electrolytic Capacitors</b> .                                                                                                                                    |                                                                         |
| The following types are <b>preferred</b> :                                                                                                                                                                                  |                                                                         |
| For 85°C Applications:Series B433032000h life timeB4350110000h life time                                                                                                                                                    |                                                                         |
| For 105°C Applications:Series B435043000h life timeB435055000h life time                                                                                                                                                    | We choose 150μF 400V (based on Eq 8)                                    |
| $V_{DC\min} = \sqrt{V_{DC\min PK}^2 - \frac{2 \cdot W_{IN}}{C_{IN}}} $ (Eq 9)                                                                                                                                               | $V_{DC\min} = \sqrt{16129V^2 - \frac{2 \cdot 0.46Ws}{150\mu F}} = 100V$ |
| Note that special requirements for hold up<br>time, including cycle skip/dropout, or other<br>factors which affect the resulting minimum DC<br>input voltage and capacitor time should be<br>considered at this point also. |                                                                         |
|                                                                                                                                                                                                                             |                                                                         |



### Transformer Design (TR1):

Calculation of peak current of primary inductance:  $D_{\max} = \frac{V_{R\max}}{V_{R\max} + V_{DC\min}}$ (Eq 10a)  $I_{LPK} = \frac{2 \cdot P_{IN MAX}}{V_{DC \min} \cdot D_{\max}}$ (Eq 10b)  $I_{LRMS} = I_{LPK} \cdot \sqrt{\frac{D_{\text{max}}}{3}}$ (Eq 11) Calculation of primary inductance within the limit of maximum Duty-Cycle :  $L_P = \frac{D_{\max} \cdot V_{DC\min}}{I_{LPK} \cdot f}$ (Eq 12) Selected core: E 25/13/7 Select core type and inductance factor (AL) from Epcos Material = N27 "Ferrite Databook" or CD-ROM A<sub>L</sub> = 111 nH "Passive Components". s = 0,75 mm Fix maximum flux density:  $A_e = 52 \text{ mm}^2$  $B_{max} \approx 0.2T \dots 0.3T$  for ferrite cores depending on core material.  $A_{\rm N} = 61 \, {\rm mm}^2$ We choose 0,2T for material N27  $I_{N} = 57,5 \text{ mm}$ The number of primary turns can be calculated as:  $N_P = \sqrt{\frac{L_P}{A_L}}$ (Eq 13) The number of secondary turns can be calculated as:  $Ns = \frac{N_P \cdot \left(V_{OUT} + V_{FDIODE}\right)}{V_{R \max}}$ (Eq 14)

The number of auxiliary turns can be calculated as:

$$N_{Aux} = \frac{Ns \cdot (V_{Aux} + V_{FDIODE})}{V_{R \max}}$$
(Eq 15)

$$D_{\max} = \frac{120V}{120V + 100V} = 0,55$$

$$I_{LPK} = \frac{2 \cdot 59W}{100V \cdot 0.55} = 2,16A$$

$$I_{LRMS} = 2,16A \cdot \sqrt{\frac{0,55}{3}} = 0,92A$$

$$L_P = \frac{0,55 \cdot 100V}{2,16A \cdot 100 * 10^3 Hz} = 253 \mu H$$

$$N_P = \sqrt{\frac{253\mu H}{111nH}} = 47,7$$
 turns

we choose Np = 46 turns

$$Ns = \frac{46 \cdot (16V + 0.8V)}{120V} = 6.46$$

$$Ns = \frac{46 \cdot (12V + 0.7V)}{120V} = 5.6$$

we choose N<sub>Aux</sub> = 5 turns

AN-SMPS-ICE2xXXX-1



Verification of primary inductance, primary peak current, max. duty cycle, flux density and gap: (Eq 16)  $L_P = 46^2 \cdot 111 nH = 235 \mu H$  $L_{P} = N_{P}^{2} \cdot A_{I}$ (Eq 17)  $I_{LPK} = \sqrt{\frac{59W}{0.5 \cdot 235 \mu H \cdot 100 * 10^3 Hz}} = 2.24 A$  $I_{LPK} = \sqrt{\frac{P_{IN \max}}{0.5 \cdot Lp \cdot f}}$  $V_R = \frac{(V_{OUT} + V_{FDIODE}) \cdot N_P}{N_S}$ (Eq 18)  $V_R = \frac{(16V + 0.8V) \cdot 46}{7} = 110V$ (Eq 19)  $D_{\text{max}} = \frac{235\mu H \cdot 2,24A \cdot 100kHz}{100V} = 0,53$  $D_{\max} = \frac{L_P \cdot I_{LPK} \cdot f}{V_{DC\min}}$ (Eq 20)  $D'_{\text{max}} = \frac{235\mu H \cdot 2,24A \cdot 100kHz}{110V} = 0,47$  $D'_{\max} = \frac{L_P \cdot I_{LPK} \cdot f}{V_P}$ (Eq 21)  $B_{\text{max}} = \frac{235\mu H \cdot 2,24A}{46 \cdot 52mm^2} = 210mT$  $B_{\max} = \frac{L_P \cdot I_{LPK}}{N_P \cdot A}$ (Eq 22)  $s = \frac{4 \cdot \pi \cdot 10^{-7} \cdot 46^2 \cdot 52mm^2}{235\mu H} = 0,588mm$  $s = \frac{4 \cdot \pi \cdot 10^{-7} \cdot N_P^2 \cdot A_e}{L_P}$ Sense resistor The sense resistance R<sub>Sense</sub> can be used to individually define the maximum peak current and thus the maximum power transmitted. Caution: When calculating the maximum peak current, short term peaks in output-power must also be Vcsth = 1.0V typ. (taken from data sheet) taken into consideration.  $R_{Sense} = \frac{V_{csth}}{I_{IPK}}$ (Eq23)  $R_{Sense} = \frac{1,0V}{2.24A} = 0,45\Omega$ we select  $0,43\Omega$  $I_{I PK} = 2,33A$ POUTmax = 54W



| Winding Design:                                                             |                                                          |
|-----------------------------------------------------------------------------|----------------------------------------------------------|
| see also page 38                                                            |                                                          |
| Transformer Construction                                                    |                                                          |
|                                                                             |                                                          |
| The primary winding of 46 turns has to be divide                            | t l                                                      |
| into 23+23 turns in order to get the best coupling                          |                                                          |
| between primary and secondary winding.                                      |                                                          |
|                                                                             | From bobbin datasheet E25/13/7: BW = 15,6mm              |
| The effective bobbin width and winding cross                                | Margin determined: $M = 0$ mm                            |
| section can be calculated as:                                               | we use triple insulated wire for secondary               |
|                                                                             |                                                          |
|                                                                             | winding                                                  |
|                                                                             | DW/ 15.6                                                 |
| $BW_e = BW - 2 \cdot M \tag{Eq 24}$                                         | $BW_e = 15,6mm$                                          |
|                                                                             |                                                          |
| $A_{Ne} = \frac{A_N \cdot BW_e}{BW} $ (Eq 25)                               | $A_{Ne} = 61mm^2$                                        |
| BW                                                                          |                                                          |
|                                                                             |                                                          |
| Calculate copper section for primary and                                    |                                                          |
| secondary winding:                                                          |                                                          |
|                                                                             |                                                          |
| The winding cross section $A_{N}$ has to be                                 |                                                          |
| subdivided according to the number of windings.                             |                                                          |
| Primary winding 0,5                                                         |                                                          |
| Secondary winding 0,45                                                      |                                                          |
| Auxiliary winding 0,05                                                      |                                                          |
|                                                                             |                                                          |
| Copper space factor $f_{Cu}$ :0,20,4                                        | We calculate the <b>available area</b> for each winding: |
| ., ,                                                                        | Used for calculation: $f_{Cu} = 0,3$                     |
|                                                                             |                                                          |
| $0.5 \cdot A_{yy} \cdot f_{xy} \cdot BW$                                    |                                                          |
| $A_P = \frac{0.5 \cdot A_N \cdot f_{Cu} \cdot BW_e}{N_P \cdot BW} $ (Eq 26) | $A_P = \frac{0.5 \cdot 61mm^2 \cdot 0.3}{46} = 0.2mm^2$  |
| $-r_{F} = \cdots$                                                           | 46                                                       |
|                                                                             |                                                          |
|                                                                             |                                                          |
| $AWG = 9.97 \cdot (1.8277 - (2 \cdot \log(d)))$ (Eq 27)                     | diameter dp $\approx$ 0,5mm <b>25 AWG</b>                |
|                                                                             |                                                          |
|                                                                             |                                                          |
|                                                                             |                                                          |
|                                                                             |                                                          |
| AN-SMPS-ICE2xXXX-1 Page                                                     | 19 of 44 Version 1.2                                     |



1

$$A_{n} = \frac{0.45 \cdot A_{W} \cdot f_{CS} \cdot BW_{n}}{N_{n} \cdot BW}$$
(Eq 28) $A_{n} = \frac{0.45 \cdot 6 \ln m^{2} \cdot 0.3}{7} = 1.18 mm^{2}$  $A_{aux} = \frac{0.05 \cdot A_{N} \cdot f_{Cu} \cdot BW_{n}}{N_{aux} \cdot BW}$ (Eq 29) $A_{aux} = \frac{0.05 \cdot 6 \ln m^{2} \cdot 0.3}{5} = 0.18 mm^{2}$ With the effective bobbin width we check the number of turns per layer:Primary: $N_{r} = \frac{BW_{r}}{d_{p}}$ (Eq 30) $N_{r} = \frac{15.6 mm}{0.46 mm} = 31$  turns per layer $2$  layer neededSecondary: $N_{s} = \frac{15.6 mm}{2 \cdot 1.21 mm} = 6$  turns per layer $2$  layer neededAuxilliary:1 layer !



### Output Rectifier (D1):

The output rectifier diodes in flyback converters are subjected to a large PEAK and RMS current stress. The values depend on the load and operating mode. The voltage requirements depend on the output voltage and the transformer winding ratio.

Calculation of the maximum reverse voltage:

$$V_{RDiode} = V_{OUT} + \left(V_{DC \max PK} \cdot \frac{N_s}{N_P}\right) \qquad \text{(Eq 31)} \qquad V_{RDiode} = 16V + \left(373V \cdot \frac{7}{46}\right) = 72,8V$$

Calculation of the maximum current on secondary side:

$$I_{SPK} = I_{LPK} \cdot \frac{N_P}{N_S}$$
(Eq 32)

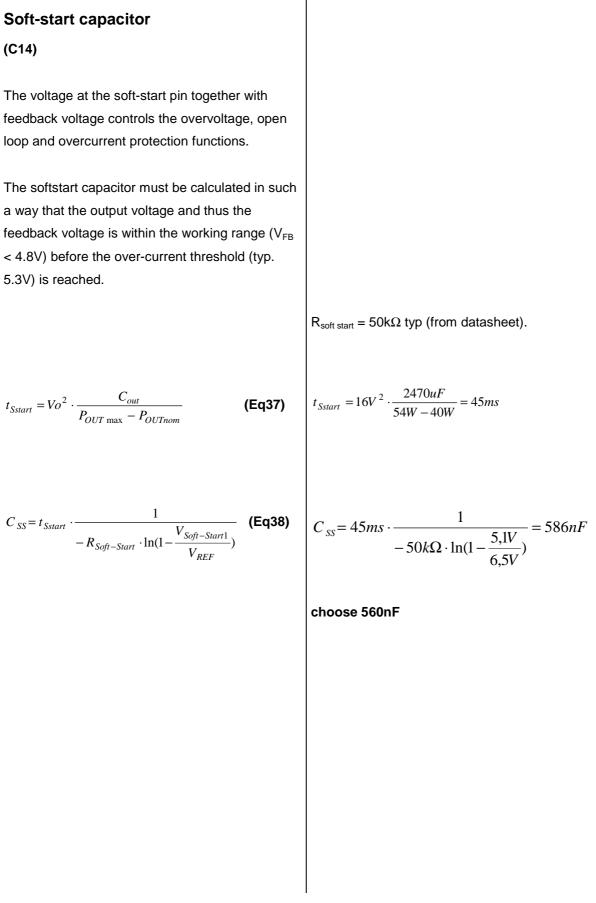
$$I_{SRMS} = I_{SPK} \cdot \sqrt{\frac{1}{3} \cdot D'_{\text{max}}}$$
 (Eq 33)

$$I_{SPK} = 2,55A \cdot \sqrt{7}$$

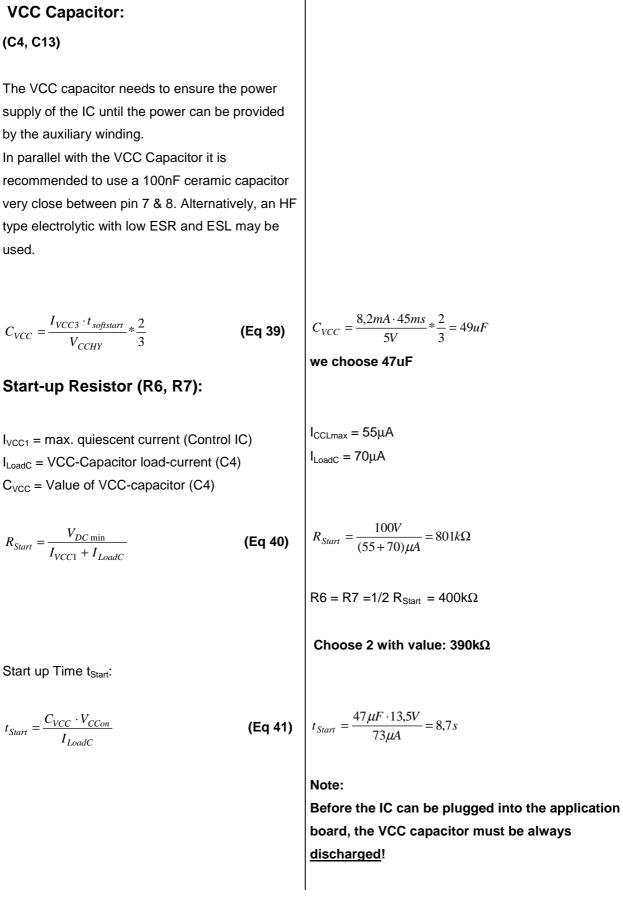
$$I_{SRMS} = 15,3A \cdot \sqrt{\frac{1}{3} \cdot 0,47} = 5,9A$$

 $-2334.\frac{46}{-1534}$ 

ı




| Output Capacitors (C5, C9):                                                                    | To calculate the output capacitor, it is necessary<br>to set the maximum voltage overshoot in case o<br>switching off @ maximum load condition. |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Output capacitors are highly stressed in flyback                                               | After switching off the load, the control loop                                                                                                  |  |  |
| converters. Normally the capacitor will be selected                                            | needs about 1020 internal clock periods to                                                                                                      |  |  |
| for 3 major parameters: capacitance value, low                                                 | reduce the duty cycle.                                                                                                                          |  |  |
| ESR and ripple current rating.                                                                 |                                                                                                                                                 |  |  |
| Max. voltage overshoot: $\Delta V_{OUT}$                                                       | $\Delta V_{OUT} = 0,5V$                                                                                                                         |  |  |
| Number of clock periods: n <sub>CP</sub>                                                       | $\Delta V_{OUT} = 0,5V$ $n_{CP} = 20$                                                                                                           |  |  |
| $C_{OUT} = \frac{I_{OUT \max} \cdot \mathbf{n}_{CP}}{\Delta V_{OUT} \cdot f}$ (Eq 34)          | $C_{OUT} = \frac{3,1A \cdot 20}{0,5V \cdot 100 * 10^3 Hz} = 1250 \mu F$                                                                         |  |  |
| $I_{OUT} = \frac{P_{OUT \max}}{V_{OUT}}$ (Eq 34a)                                              | $I_{OUT} = \frac{50W}{16V} = 3.1A$ $I_{Ripple} = \sqrt{5.9A^2 - 3.1A^2} = 5.0A$                                                                 |  |  |
| $I_{Ripple} = \sqrt{I_{SRMS}^2 - I_{OUT}^2} $ (Eq 34b)                                         | $I_{Ripple} = \sqrt{5,9A^2 - 3,1A^2} = 5,0A$                                                                                                    |  |  |
| Select a capacitor out of <b>Epcos</b> Databook for <b>Aluminium Electrolytic Capacitors</b> . |                                                                                                                                                 |  |  |
| The following types are <b>preferred</b> :                                                     | We select 1000μF 35V (based on Eq 34):                                                                                                          |  |  |
| For 105°C Applications low impedance:                                                          | B41859-F7108-M                                                                                                                                  |  |  |
| Series B41856 4000h life time                                                                  |                                                                                                                                                 |  |  |
|                                                                                                | ESR ≈ Zmax = 0,034Ω @ 100kHz                                                                                                                    |  |  |
| For 105°C Applications lowest impedance:                                                       |                                                                                                                                                 |  |  |
| Series B41859 4000h life time                                                                  | lac <sub>R</sub> = 1,94A                                                                                                                        |  |  |
|                                                                                                | we need 2 capacitors in parallel                                                                                                                |  |  |
|                                                                                                |                                                                                                                                                 |  |  |




# Output Filter (L3, C23): The output filter consists of one capacitor (C23) and one inductor (L3) in a L-C filter topology. Zero frequency of output capacitor (C5,C9, C20) and associated ESR: $f_{ZCOUT} = \frac{1}{2 \cdot \pi \cdot R_{ESR} \cdot C_{OUT}}$ (Eq 35) $f_{ZCOUT} = \frac{1}{2 \cdot \pi \cdot 0.034 \Omega \cdot 1000 \mu F} = 4.7 k Hz$ Calculation of the inductance (L3) needed for the We use C<sub>LC</sub> (C23) 470uF substitution of the zero caused by the output capacitors: $L_{OUT} = \frac{(C_{OUT} \cdot R_{ESR})^2}{C_{IC}}$ (Eq 36) $L_{OUT} = \frac{(1000uF \cdot 0.034\Omega)^2}{470uF} = 2.5uH$ **RC-Filter at Feedback Pin** (C6, R9) The RC Filter at the Feedback pin is designed to supress any noise which may be coupled in on this track. Typical values: C6:1...4,7nF R9:22 Ohm Note that the value of C6 interacts with the internal pullup (3,7k typical) to create a filter.











| Clamping Network:                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| (R10/C12/D3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                          |
| $V_{Clamp} = V_{(BR)DSS} - V_{DC\max} - V_R $ (Eq 42)                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{Clamp} = 650V - 373V - 110V = 166V$                                                                                                  |
| For calculating the clamping network it is<br>necessary to know the leakage inductance. The<br>most common way is to have the value of the<br>leakage inductance $(L_{LK})$ given in percentage of<br>the primary inductance (Lp). If it is known that the<br>transformer construction is very consistent,<br>measuring the primary leakage inductance by<br>shorting the secondary windings will give an exact<br>number (assuming the availability of a good LCR<br>analyser). | In our example we choose 5% of the primary inductance for leakage inductance.                                                            |
| $L_{LK} = Lp \cdot x\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $L_{LK} = 235\mu H \cdot 5\% = 11,8\mu H$                                                                                                |
| $C_{Clamp} = \frac{I_{LPK}^{2} \cdot L_{LK}}{(V_R + V_{Clamp}) \cdot V_{Clamp}} $ (Eq 43)                                                                                                                                                                                                                                                                                                                                                                                        | $C_{Clamp} = \frac{(2,24A)^2 \cdot 11,8\mu H}{(110V + 166V) \cdot 166V} = 1,2nF \approx$<br>we choose 1,5nF                              |
| $R_{Clamp} = \frac{(V_{Clamp} + V_R)^2 - V_R^2}{0.5 \cdot L_{LK} \cdot I_{LPK}^2 \cdot f}$ (Eq 44)                                                                                                                                                                                                                                                                                                                                                                               | $R_{Clamp} = \frac{(166V + 110V)^2 - 110V^2}{0.5 \cdot 11.8 \mu H \cdot (2.24A)^2 \cdot 100 * 10^3 Hz} = 23.9 k\Omega$<br>we choose 22kΩ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                          |
| AN-SMPS-ICE2xXXX-1 Page 2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26 of 44 Version 1.2                                                                                                                     |



| Calculation of Losses:                                                                  |                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input diode bridge (BR1):                                                               |                                                                                                                                                                                                             |
| $P_{DIN} = I_{ACRMS} \cdot V_F \cdot 2 $ (Eq 45)                                        | $P_{DIN} = 1,1A \cdot 1V \cdot 2 = 2,2W$<br>Copper resistivity $p_{100}$ @ 100°C = 0,0172Ωmm <sup>2</sup> /m                                                                                                |
|                                                                                         |                                                                                                                                                                                                             |
| $R_{PCu} = \frac{l_N \cdot N_P \cdot p_{100}}{A_P} $ (Eq 46)                            | $R_{PCu} = \frac{0,0644m \cdot 46 \cdot 17,2m\Omega mm^2 / m}{0,46mm^2} = 277,1m\Omega$ $R_{SCu} = \frac{0,0644m \cdot 7 \cdot 17,2m\Omega mm^2 / m}{2,10mm^2} = 6,6m\Omega$                                |
|                                                                                         |                                                                                                                                                                                                             |
| $P_{PCu} = I_{LPK}^2 \cdot D_{MAX} \cdot \frac{1}{3} \cdot R_{PCu} $ (Eq 47)            | $P_{PCu} = (2,33A)^2 \cdot 0.53 \cdot \frac{1}{3} \cdot 277, 1m\Omega = 225, 7mW$ $P_{SCu} = (15,3A)^2 \cdot 0.47 \cdot \frac{1}{3} \cdot 2.01m\Omega = 227, 4mW$ $P_{Cu} = 225, 7mW + 227, 4mW = 453, 1mW$ |
| $P_{SCu} = I_{SPK}^2 \cdot D'_{MAX} \cdot \frac{1}{3} \cdot R_{SCu}$                    | $P_{SCu} = (15,3A)^2 \cdot 0,47 \cdot \frac{1}{3} \cdot 2,01m\Omega = 227,4mW$                                                                                                                              |
|                                                                                         | $P_{Cu} = 225,7mW + 227,4mW = 453,1mW$                                                                                                                                                                      |
| Output rectifier diode (D1):                                                            |                                                                                                                                                                                                             |
| $P_{DDIODE} = I_{SPK} \cdot \sqrt{\frac{D'_{\text{max}}}{3}} \cdot V_{FDIODE} $ (Eq 48) | $P_{DDIODE} = 15,3A \cdot \sqrt{\frac{0,47}{3}} \cdot 0,8V = 5W$                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                             |



| COOLMOS TRANSISTOR:<br>ICE2A365 $C_{o(er)} = 30pF$<br>Calculated @ $V_{DCmin} = 100V$<br>$C_{O} \approx 80pF$ ( $C_{O} = C_{O(er)} + C_{Extern}$ )<br>$R_{DSON} = 1,1\Omega$ (@ 125°C) |                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Switching losses:                                                                                                                                                                      | (see also ICE2AXXX Data Sheet)                                                  |
| $P_{SON} = \frac{1}{2} \cdot C_O \cdot V_{DC\min}^2 \cdot f $ (Eq 49)                                                                                                                  | $P_{SON} = \frac{1}{2} \cdot 80  pF \cdot 100V^2 \cdot 100 * 10^3  Hz = 40  mW$ |
| Conduction losses:                                                                                                                                                                     |                                                                                 |
| $P_D = \frac{1}{3} \cdot R_{DSON} \cdot I_{LPK}^2 \cdot D_{\max} $ (Eq 50)                                                                                                             | $P_D = \frac{1}{3} \cdot 1\Omega \cdot (2,33A)^2 \cdot 0,53 = 0,95W$            |
| Summary of Losses:                                                                                                                                                                     |                                                                                 |
| $P_{Losses} = P_{SON} + P_D $ (Eq 51)                                                                                                                                                  | $P_{Losses} = 40mW + 950mW = 0,99W$                                             |
| Thermal Calculation:Table of typical thermal Resistance $[\frac{K}{W}]$ :HeatsinkDIP8DIP7TO220No9096743 cm²64726 cm²5665                                                               |                                                                                 |
| $dT = P_{Losses} * R_{th} $ (Eq 52)                                                                                                                                                    | $dT = 0,99W * 56 \frac{K}{W} = 55,4K$                                           |
| Tj = dT + Ta (Eq 53)                                                                                                                                                                   | $Tj = 55,4K + 50^{\circ}C = 115,4^{\circ}C$                                     |



Fig. 13

Fig. 14

6,5

FΒ

R4 R1

**∎** C1

C2

R2

R5

Vout

3,7

 $V_{FB}$ 

**\$**\$

R3

41

TL431

### Regulation Loop:

Reference: TL431 (IC2)  $V_{REF} = 2,5V$   $I_{KAmin} = 1mA$ Optocoupler: SFH617-3 (IC1)  $Gc = 1 \dots 2 \equiv CTR \ 100\% \dots 200\%$   $V_{FD} = 1,2V$  $I_{Fmax} = 20mA$  (maximum current limit)

#### Primary side:

Feedback voltage: Values from ICE2AXXX datasheet  $V_{Ref int} = 6,5V$  typ.  $V_{FBmax} = 4,5V$ Av = 3,65  $R_{FB} = 3,7k$  typ.

$$I_{FB\max} = \frac{V_{\text{Re } f \text{ int}}}{R_{FB}}$$
(Eq 54)

$$I_{FB\min} = \frac{V_{\text{Refint}} - V_{FB\max}}{R_{FB}}$$
(Eq 55)

$$I_{FB\max} = \frac{6.5V}{3.7k\Omega} = 1.76mA$$

$$I_{FB\min} = \frac{6.5V - 4.6V}{3.7k\Omega} = 0.5mA$$

(Eq 56) 
$$R_1 = 4,3k \cdot \left(\frac{16V}{2,5V} - 1\right) = 23,22k$$

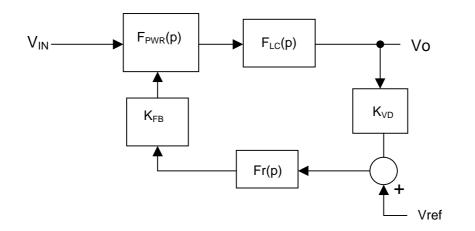
the value of R2 can be fixed at 4,3k

Secondary side:

 $R_1 = R_2 \left( \frac{V_{OUT}}{V_{REF}} - 1 \right)$ 

$$R_3 \ge \frac{(V_{OUT} - (V_{FD} + V_{REF}))}{I_{F \max}}$$
 (Eq 57)

$$R_4 \leq \frac{V_{FD} + \left(R_3 \cdot \frac{I_{FB\min}}{Gc}\right)}{I_{KA\min}}$$


$$R_3 \ge \frac{(16V - (1, 2V + 2, 5V))}{20mA} = 0,74k \approx 0,75k$$

(Eq 58) 
$$R_4 \leq \frac{1,2V + 0,75k \cdot \left(\frac{0,5mA}{1}\right)}{1mA} = 1,58k \approx 1,5k$$

AN-SMPS-ICE2xXXX-1



### **Regulation Loop Elements:**



### Fig. 15

#### Transfer Characteristics of Regulation Loop Elements:

$$K_{FB} = \frac{G_C \cdot 3k7}{R3}$$
 (Eq 59) Feedback

$$K_{VD} = \frac{R2}{R1 + R2} = \frac{V_{REF}}{V_{OUT}}$$
 (Eq 60) VoltageDivider

$$F_{PWR}(p) = \frac{1}{Z_{PWM}} \cdot \sqrt{\frac{R_L \cdot L_P \cdot f \cdot \eta}{2}} \cdot \left( \frac{\left(1 + p \cdot R_{ESR} \cdot C_5\right)}{\left(1 + p \cdot \left(\frac{R_L}{2} + R_{ESR}\right) \cdot C_5\right)} \right)$$
(Eq 61) Powerstage

 $Z_{\text{PWM}} = Transimpedance \ \Delta V_{\text{FB}} / \Delta I_{\text{D}}$ 

$$F_{LC}(p) = \frac{1 + p \cdot R_{ESR} \cdot C_9}{1 + p \cdot R_{ESR} \cdot C_9 + p^2 \cdot L \cdot C_9}$$
 (Eq 62) Output filter

$$Fr(p) = \frac{1 + p \cdot R5 \cdot (C1 + C2)}{p \cdot \frac{R1 \cdot R2}{R1 + R2} \cdot C1 \cdot (1 + p \cdot R5 \cdot C2)}$$
 (Eq 63) Regulator



#### Zeros and Poles of transfer characteristics:

Poles of powerstage @ min. and max. load:

$$R_{LH} = \frac{V_{OUT}^{2}}{P_{OUT \max}} = \frac{16V^{2}}{54W} = 4,9\Omega \quad \text{(Eq 64)} \qquad R_{LL} = \frac{V_{OUT}^{2}}{P_{OUT \min}} = \frac{16V^{2}}{0,5W} = 512\Omega \quad \text{(Eq 65)}$$

$$f_{OH} = \frac{1}{\pi \cdot R_{LH} \cdot C5} \qquad \qquad f_{OH} = \frac{1}{\pi \cdot 4,9\Omega \cdot 2000\mu F} = 31,1Hz \qquad (Eq 66)$$

$$f_{OL} = \frac{1}{\pi \cdot R_{LL} \cdot C5} \qquad \qquad f_{OL} = \frac{1}{\pi \cdot 512\Omega \cdot 2000\mu F} = 0.31 Hz$$
 (Eq 67)

We use the gain (Gc) of the optocoupler stage  $K_{FB}$  and the voltage divider  $K_{VD}$  as a constant.

$$K_{FB} = \frac{G_C \cdot 3k7}{R3}$$
 K<sub>FB</sub> = 4,9 G<sub>FB</sub> = 13,9db

$$K_{VD} = \frac{R2}{R1 + R2} = \frac{V_{REF}}{V_{OUT}}$$
  $K_{VD} = 0,15$   $G_{VD} = -16,4db$ 

With adjustment of the transfer characteristics of the regulator we want to reach equal gain within the operating range and to compensate the pole **fo** of the powerstage  $F_{PWR}(\omega)$ .

Because of the compensation of the output capacitor's zero (see page 22 Eq35, Eq36) we neglect it as well as the LC-Filter pole.

Consequently the transfer characteristic of the power stage is reduced to a single-pole response.

In order to calculate the gain of the open loop we have to select the cross-over frequency.

We calculate the gain of the Power-Stage with max. output power at the selected cross-over frequency

fg = 3kHz:



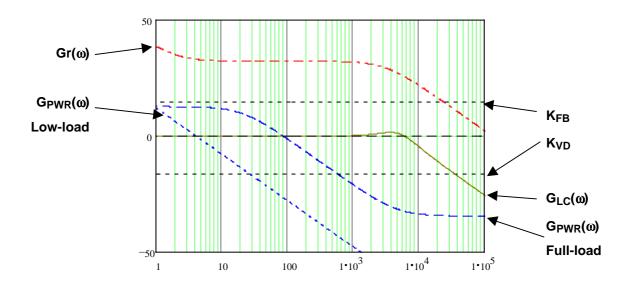
### Calculation of transient impedance Z<sub>PWM</sub> of ICE2AXXX

The transient impedance defines the direct relationship between the level of the peak current and the feedback pin voltage. It is required for the calculation of the power stage amplification. PWM-Op gain -Av = 3,65 (according to datasheet)

$$Z_{PWM} = \frac{\Delta V_{FB}}{\Delta I_{pk}} = A_v \cdot \frac{R_{sense}}{V_{csth}}$$

$$Z_{PWM} = \frac{\Delta V_{FB}}{\Delta I_{pk}} = 3,65 \cdot \frac{0,43\Omega}{1,00V} = 1,57 \frac{V}{A}$$
(Eq 68)

#### Gain @ crossover frequency:


$$\left|F_{PWR}(fg)\right| = \frac{1}{Z_{PWM}} \cdot \sqrt{\frac{R_L \cdot L_p \cdot f \cdot \eta}{2}} \cdot \left(\frac{1}{\sqrt{1 + \left(\frac{fg}{fo}\right)^2}}\right)$$
(Eq 69)

$$\left|F_{PWR}(3kHz)\right| = \frac{1}{1.7} \cdot \sqrt{\frac{5.1R \cdot 235\mu H \cdot 100kHz \cdot 0.8}{2}} \cdot \left(\frac{1}{\sqrt{1 + \left(\frac{3000}{31.1}\right)^2}}\right) = 0.05$$

 $G_{PWR}(3kHz) = \textbf{-26,2db}$ 



### Transfer characteristics:



#### Fig. 16

At the crossover frequency (fg) we calculate the open loop gain:

$$G_{ol}(\omega) = Gs(\omega) + Gr(\omega) = 0.$$

With the equations for the transfer characteristics we calculate the gain of the regulation loop @ fg.

For the gain of the regulation loop we calculate:

 $Gs = G_{FB} + G_{PWR} + G_{VD} = 13,9db - 26,2db - 16,4db$ 

Gs = -28,7db

We calculate the separate components of the regulator:

Gs ( $\omega$ ) + Gr ( $\omega$ ) = 0 Gr = 0 - (-28,7db) = **28,7db** 



$$Fr(p) = \frac{1 + p \cdot R5 \cdot (C1 + C2))}{p \cdot \frac{R1 \cdot R2}{R1 + R2} \cdot C1 \cdot (1 + p \cdot R5 \cdot C2)}$$

$$Gr = 20 \cdot \log \frac{R5 \cdot (R1 + R2)}{R1 \cdot R2} \qquad \qquad R5 = 10^{\frac{Gr}{20}} \cdot \frac{R1 \cdot R2}{R1 + R2}$$

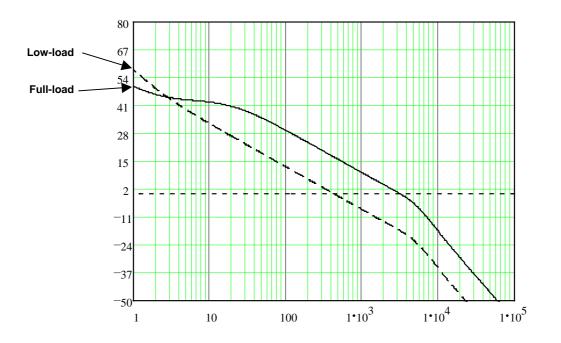
$$R5 = 10^{\frac{32.2}{20}} \cdot 3,65k = 99,15k \approx 100k$$
 (Eq 70)

$$fp = \frac{1}{2 \cdot \pi \cdot R5 \cdot C2}$$

$$C2 = \frac{1}{2 \cdot \pi \cdot R5 \cdot fg}$$

$$C2 = \frac{1}{2 \cdot \pi \cdot 100k \cdot 3kHz} = 530 \, pF \approx 560 \text{pF} \quad \text{(Eq 71)}$$

In order to have enough phase margin @ low load condition we select the zero frequency of the compensation network to be at the middle between the min. and max. load poles of the power stage.


$$f_{om} = f_{oh} \cdot 10^{0.5 \cdot \log \frac{f_{ol}}{f_{oh}}} \qquad f_{om} = 31,1Hz \cdot 10^{0.5 \cdot \log \frac{0.15}{31,1}} = 3,2Hz$$

$$fz = \frac{1}{2 \cdot \pi \cdot R5 \cdot (C1 + C2)} \qquad C1 = \frac{1}{2 \cdot \pi \cdot R5 \cdot fom} - C2$$

$$C1 = \frac{1}{2 \cdot \pi \cdot 100k \cdot 3,2Hz} - 560\,pF = 492nF \approx 470nF \qquad (Eq 72)$$



#### Open Loop Gain





### **Open Loop Phase**

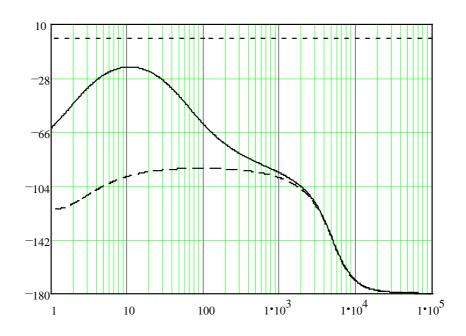
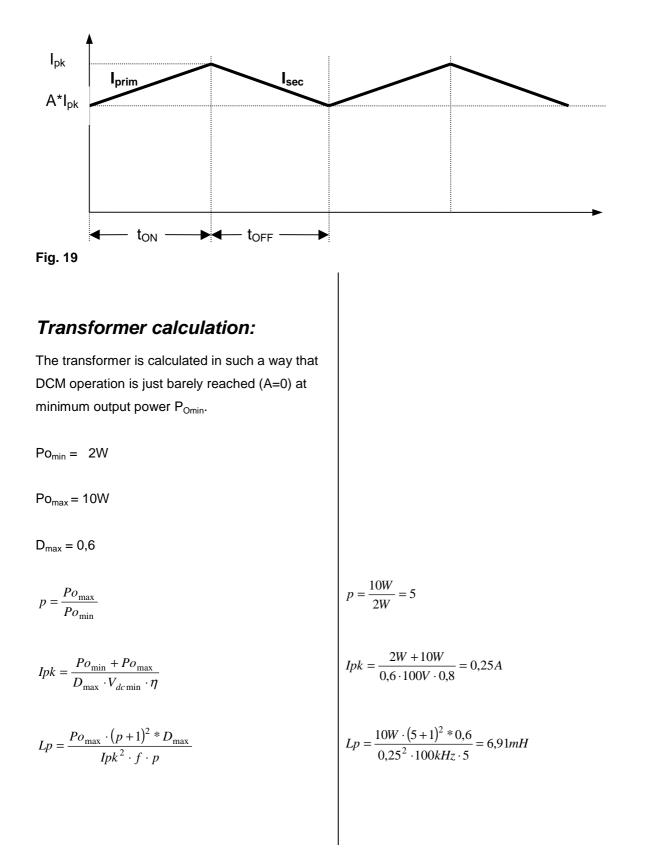
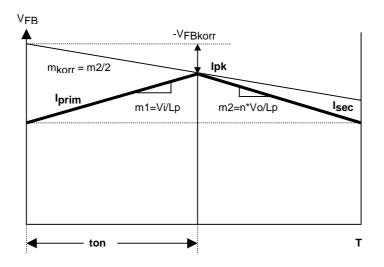




Fig. 18



# Continuous Conduction Mode (CCM)






### **Slope Compensation**

Slope compensation is necessary for stable regulator operation in **Continuous Conduction Mode (CCM)**, up to and beyond a duty cycle of 0.5 (see also [4]).

An simple method of slope compensation using the components R19, C17 and C18 is illustrated in the circuit diagram on page 3.



#### Fig. 20

 $V_R = n \cdot Vo$  n =

$$m2 = \frac{n \cdot Vo}{L_p} = \frac{V_R}{L_p} \qquad \qquad m_{korr} = \frac{m2}{2} = \frac{V_R}{2 \cdot L_p}$$

n.

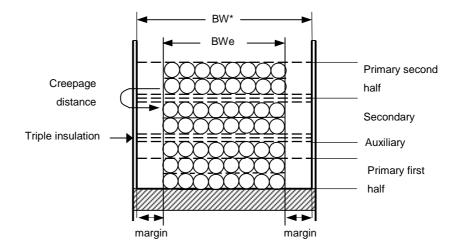
#### For duty cycle = 0,5 applies:

$$m_{korr} = \frac{V_{FBkorr}}{5us} \qquad \qquad V_{FBkorr} = \left(\frac{V_R \cdot 5us}{2 \cdot L_p}\right) \cdot Z_{PWM}$$

 $C_{Comp}$  (C17) is selected at 10nF. C18 is selected at 100nF.

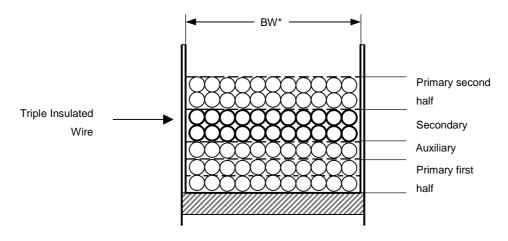
R<sub>Comp</sub> (R19):

$$R_{Comp} = -\frac{t}{\ln\left(1 - \frac{V_{FBkorr}}{VCC}\right) \cdot C_{Comp}}$$




### Transformer Construction

The winding topology has a considerable influence on the performance and reliability of the transformer. In order to reduce leakage inductance and proximity to acceptable limits, the use of a sandwich construction is recommended. In order to meet international safety requirements a transformer for Off - Line power supply must have adequate insulation between primary and secondary windings.

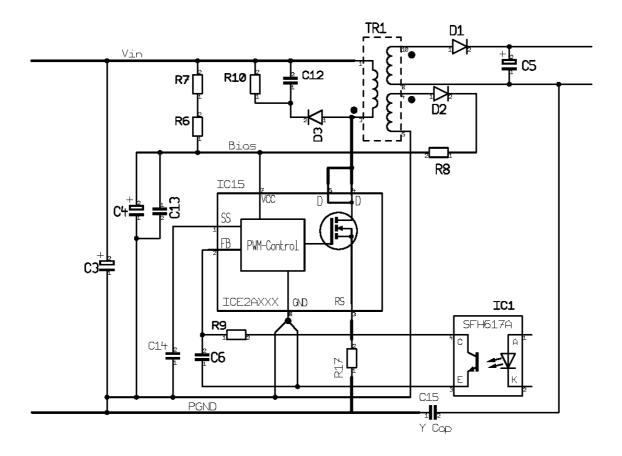

This can be achieved by using a margin-wound construction or by using triple insulated wire for the secondary winding. The creepage distance for the universal input voltage range is typically 8mm. This results in a minimum margin width (as a half of the creepage distance) of 4mm. Additionally the neccesary insulation between primary and secondary winding is provided using three layers of basic insulation tape.

Example of winding topology for margin wound transformers:



#### Fig. 21

Example of winding topology with triple insulated wire for secondary winding:




#### Fig. 22

BW\* : value from bobbin datasheet



# Layout Recommendation:



#### Fig. 23

In order to avoid crosstalk on the board between power and signal path we have to use care regarding the track layout when designing the PCB.

The power path (see Fig. 23) has to be as short as possible and needs to be separated from the VCC Path and the feedback path. All GND paths have to be connected together at pin 8 (star ground) of ICE2AXX.



# CoolSET Table

| DevICE                | Package | Current | Rdson | Pout @                | Pout @               | Heatsink          | Frequency |
|-----------------------|---------|---------|-------|-----------------------|----------------------|-------------------|-----------|
|                       |         | Α       | Ω     | 190Vacin              | 85Vacin              |                   | KHz       |
|                       |         |         |       | Ta=75°C / Tj = 125°C  | Ta=75°C / Tj = 125°C |                   |           |
|                       |         | •       |       | V <sub>DS</sub> =650V | •                    |                   | •         |
| ICE2A0565             | DIP8    | 0.5     | 6.0   | 23                    | 13                   | 6 cm <sup>2</sup> | 100       |
| ICE2A0565Z            | DIP7    | 0.5     | 6.0   | 21                    | 12                   | 6 cm <sup>2</sup> | 100       |
| ICE2A165              | DIP8    | 1.0     | 3.0   | 31                    | 18                   | 6 cm <sup>2</sup> | 100       |
| ICE2B165              | DIP8    | 1.0     | 3.0   | 31                    | 18                   | 6 cm <sup>2</sup> | 67        |
| ICE2A265              | DIP8    | 2.0     | 0.9   | 52                    | 32                   | 6 cm <sup>2</sup> | 100       |
| ICE2B265              | DIP8    | 2.0     | 0.9   | 52                    | 32                   | 6 cm <sup>2</sup> | 67        |
| ICE2A365              | DIP8    | 3.0     | 0.45  | 67                    | 45                   | 6 cm <sup>2</sup> | 100       |
| ICE2B365              | DIP8    | 3.0     | 0.45  | 73                    | 45                   | 6 cm <sup>2</sup> | 67        |
| ICE2A765P             | TO220   | 7.0     | 0.5   | 240                   | 130                  | 2.7 k/W           | 100       |
| ICE2B765P             | TO220   | 7.0     | 0.5   | 240                   | 130                  | 2.7 k/W           | 67        |
| V <sub>DS</sub> =800V |         |         |       |                       |                      |                   |           |
| ICE2A180              | DIP8    | 1.0     | 3.0   | 31                    | 18                   | 6 cm <sup>2</sup> | 100       |
| ICE2A180Z             | DIP7    | 1.0     | 3.0   | 29                    | 17                   | 6 cm <sup>2</sup> | 100       |
| ICE2A280              | DIP8    | 2.0     | 0.8   | 54                    | 34                   | 6 cm <sup>2</sup> | 100       |
| ICE2A280Z             | DIP7    | 2.0     | 0.8   | 50                    | 31                   | 6 cm <sup>2</sup> | 100       |

Output Power Notes:

The output power was created using the equations of this application note (see "Calculation of Losses" on page 27). It shows the maximum practical continuous power @ Ta = 75 °C and Tj = 125 °C with the recommended heatsink as a copper area on PCB for DIP7 / 8 and PDSO14 packages.



### Summary of used Nomenclature

| <b>D</b>                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B <sub>max</sub>                                                                                                                                                                                      | Magnetic Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BW                                                                                                                                                                                                    | Bobbin Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BWe                                                                                                                                                                                                   | Effective Bobbin Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CIN                                                                                                                                                                                                   | Capacitance of Bulk Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COUT                                                                                                                                                                                                  | Output Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Coss                                                                                                                                                                                                  | Output Capacitance of CoolMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C <sub>Extern</sub>                                                                                                                                                                                   | Output Capacitance of external Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                       | Capacitance of Clamping – Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                       | Capacitance of VCC – Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D                                                                                                                                                                                                     | Duty Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D <sub>max</sub>                                                                                                                                                                                      | Maximum Duty Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| f Dmax                                                                                                                                                                                                | Operating Frequency of <b>CoolSET</b> (f = 100kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| f <sub>AC</sub>                                                                                                                                                                                       | Line Frequency (Germany $F_{AC} = 50Hz$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| f <sub>g</sub><br>₄                                                                                                                                                                                   | Crossover Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| f <sub>Cu</sub>                                                                                                                                                                                       | Copper Space Factor (0,2 0,4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| f <sub>OH</sub>                                                                                                                                                                                       | Frequency Open Loop (High)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| f <sub>Om</sub>                                                                                                                                                                                       | Frequency Open Loop (middle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| f <sub>OL</sub>                                                                                                                                                                                       | Frequency Open Loop (Low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| f <sub>ZCOUT</sub>                                                                                                                                                                                    | Zero Frequency of output Capacitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Gc                                                                                                                                                                                                    | Optocoupler Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FBmax                                                                                                                                                                                                 | Maximum Feedback Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FBmin                                                                                                                                                                                                 | Minimum Feedback Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fmax                                                                                                                                                                                                  | Maximum Current (Optocoupler)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| I <sub>KAmin</sub>                                                                                                                                                                                    | Minimum Current (TL431)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LoadC                                                                                                                                                                                                 | VCC – Capacitor Load – Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| I <sub>LPK</sub>                                                                                                                                                                                      | Peak Current through the primary Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACRMS                                                                                                                                                                                                 | Root Mean Square Current through the primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Inductan                                                                                                                                                                                              | ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| I <sub>ACRMS</sub>                                                                                                                                                                                    | Root Mean Square Current through the Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Rectifier                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I <sub>PRI</sub>                                                                                                                                                                                      | Primary Current @ time t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ISEC                                                                                                                                                                                                  | Secondary Current @ time t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SPK                                                                                                                                                                                                   | Peak Current through the secondary diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I <sub>SPK</sub><br>ISBMS                                                                                                                                                                             | Peak Current through the secondary diode<br>RMS Current through the secondary diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I <sub>SRMS</sub>                                                                                                                                                                                     | RMS Current through the secondary diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I <sub>SRMS</sub><br>I <sub>VCC1</sub>                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| I <sub>SRMS</sub><br>I <sub>VCC1</sub><br>IC)                                                                                                                                                         | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| I <sub>SRMS</sub><br>I <sub>VCC1</sub><br>IC)<br>L <sub>OUT</sub>                                                                                                                                     | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| I <sub>SRMS</sub><br>I <sub>VCC1</sub><br>IC)<br>L <sub>OUT</sub><br>L <sub>P</sub>                                                                                                                   | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I <sub>SRMS</sub><br>Ivcc1<br>IC)<br>L <sub>OUT</sub><br>L <sub>P</sub><br>L <sub>LK</sub>                                                                                                            | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I <sub>SRMS</sub><br>IVCC1<br>IC)<br>L <sub>OUT</sub><br>L <sub>P</sub><br>L <sub>LK</sub><br>M                                                                                                       | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I <sub>SRMS</sub><br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>NCP                                                                                                                                    | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| I <sub>SRMS</sub><br>IVCC1<br>IC)<br>LOUT<br>L <sub>P</sub><br>L <sub>LK</sub><br>M<br>n <sub>CP</sub><br>n <sub>p</sub> cout                                                                         | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors                                                                                                                                                                                                                                                                                                                                                                                                   |
| Isrms<br>Ivcc1<br>IC)<br>Lout<br>Lp<br>Llk<br>M<br>ncp<br>npcout<br>Np                                                                                                                                | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns                                                                                                                                                                                                                                                                                                                                                                        |
| Isrms<br>Ivcc1<br>IC)<br>Lout<br>Lp<br>Llk<br>M<br>n <sub>CP</sub><br>n <sub>pCOUT</sub><br>Np<br>Ns                                                                                                  | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns                                                                                                                                                                                                                                                                                                                                           |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>nCP<br>npCOUT<br>NP<br>NS<br>NAUX                                                                                                                  | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns                                                                                                                                                                                                                                                                                                              |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>n <sub>C</sub> P<br>n <sub>p</sub> COUT<br>NP<br>NS<br>NAUX<br>PCU                                                                                 | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor                                                                                                                                                                                                                                                                           |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>n <sub>C</sub> P<br>n <sub>p</sub> COUT<br>NP<br>NS<br>NAUX<br>PCU<br>PD                                                                           | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses                                                                                                                                                                                                                                                      |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>n <sub>CP</sub><br>n <sub>pCOUT</sub><br>N <sub>P</sub><br>Ns<br>N <sub>AUX</sub><br>P <sub>CU</sub><br>P <sub>D</sub><br>P <sub>DIN</sub>         | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses input Diode                                                                                                                                                                                               |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>n <sub>C</sub> P<br>n <sub>P</sub> COUT<br>NP<br>NS<br>NAUX<br>PCU<br>PD<br>ND<br>PDIN<br>PDDIODE                                                  | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses input Diode<br>Power losses rectifier Diode (secondary side)                                                                                                                                 |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>nCP<br>npCOUT<br>NP<br>NS<br>NAUX<br>PCU<br>PD<br>NS<br>PCU<br>PDIN<br>PDIODE<br>PIN MAX                                                           | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of parallel output Capacitors<br>Number of secondary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses input Diode<br>Power losses rectifier Diode (secondary side)<br>Maximum Input Power                                                                                                        |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>n <sub>C</sub> P<br>n <sub>P</sub> COUT<br>NP<br>NS<br>NAUX<br>PCU<br>PD<br>ND<br>PDIN<br>PDDIODE                                                  | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses input Diode<br>Power losses rectifier Diode (secondary side)<br>Maximum Input Power<br>Maximum Output Power                                                                                                                          |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>nCP<br>npCOUT<br>NP<br>NS<br>NAUX<br>PCU<br>PD<br>NS<br>PCU<br>PDIN<br>PDIODE<br>PIN MAX                                                           | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses input Diode<br>Power losses rectifier Diode (secondary side)<br>Maximum Input Power<br>Maximum Output Power                                                                                             |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>nCP<br>NP<br>NS<br>NAUX<br>PCU<br>PD<br>NS<br>PDIN<br>PDIODE<br>PIN MAX<br>POUT max<br>POUT max<br>POUT max                                        | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses rectifier Diode<br>Power losses rectifier Diode (secondary side)<br>Maximum Input Power<br>Maximum Output Power<br>Minimum Output Power<br>Power losses of Copper Resistor (primary                     |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>nCP<br>npCOUT<br>NP<br>NS<br>NAUX<br>PCU<br>PDIN<br>PDIN<br>PDIN<br>PDIN<br>PDIN<br>PDIN<br>PDIN<br>PDIN                                           | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses input Diode<br>Power losses rectifier Diode (secondary side)<br>Maximum Input Power<br>Maximum Output Power<br>Minimum Output Power<br>Power losses of Copper Resistor (primary<br>ce)                                               |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>nCP<br>NP<br>NS<br>NAUX<br>PCU<br>PD<br>NS<br>PDIN<br>PDIODE<br>PIN MAX<br>POUT max<br>POUT max<br>POUT max                                        | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses rectifier Diode<br>Power losses rectifier Diode (secondary side)<br>Maximum Input Power<br>Maximum Output Power<br>Minimum Output Power<br>Power losses of Copper Resistor (primary                     |
| ISRMS<br>IVCC1<br>IC)<br>LOUT<br>LP<br>LLK<br>M<br>nCP<br>NPCOUT<br>NP<br>NS<br>NAUX<br>PCU<br>PD<br>NN<br>PDINDE<br>PDIN<br>PDINDE<br>PIN MAX<br>POUT max<br>POUT max<br>POUT min<br>PCU<br>Inductan | RMS Current through the secondary diode<br>Maximum quiescent Current of CoolSET (Control<br>Inductance output Filter<br>Primary Inductance<br>Leakage Inductance<br>Margin (of Transformer)<br>Number of Clock Periods<br>Number of parallel output Capacitors<br>Number of primary Turns<br>Number of secondary Turns<br>Number of auxiliary Turns<br>Power losses of Copper Resistor<br>Conduction losses<br>Power losses input Diode<br>Power losses rectifier Diode (secondary side)<br>Maximum Input Power<br>Maximum Output Power<br>Minimum Output Power<br>Power losses of Copper Resistor (primary<br>ce)<br>Power losses of Copper Resistor (secondary |

Switching losses of CoolMOS Transistor (Off -PSOFE Operation)

Switching losses of CoolMOS Transistor (On -PSON

Operation) Copper Resistor (Transformer)  $R_{Cu}$ Resistance of switching CoolMOS Transistor (On R<sub>DSON</sub> - Operation) RL Load - Resistance Maximum Load  $\mathsf{R}_{\mathsf{LH}}$ Minimum Load (defined by Designer)  $R_{LL}$ Internal Feedback Resistor (CoolSET)  $R_{FB}$ Copper Resistor of primary Inductance  $R_{PCu}$ Copper Resistor of secondary Inductance  $\mathsf{R}_{\mathsf{SCu}}$ Clamping Resistor Start up Resistor R<sub>Clamp</sub>  $\mathsf{R}_{\mathsf{Start}}$ Time of one Period т Discharging Time of Input Capacitor C3  $\mathsf{T}_\mathsf{D}$ On Time (CoolMOS )  $\mathbf{t}_{\text{ON}}$ Off Time (CoolMOS )  $t_{\mathsf{OFF}}$ Rising Time (Voltage) tr Start up Time tStart Minimal AC Input Voltage  $V_{AC min}$  $V_{AC\,\text{max}}$ Maximal AC Input Voltage  $V_{\text{Aux}}$ Auxiliary Voltage Drain Source Breakdown Voltage V<sub>(BR)DSS</sub> Turn On Threshold for CoolSET @ Vcc - Pin  $V_{\text{CCon}}$ V<sub>DC IN</sub> DC Input Voltage V<sub>DC IN max</sub> Maximum DC Input Voltage V<sub>DC IN min</sub> Minimum DC Input Voltage V<sub>DC max PK</sub> Maximum DC Input Voltage Peak V<sub>DC min PK</sub> Minimum DC Input Voltage Peak Minimum DC Input Voltage @ maximum load  $V_{\text{DC min}}$ Reverse Voltage rectifier Diode (secondary side) V<sub>DDIODE</sub> Maximum Feedback Voltage (CoolSET )  $V_{\mathsf{FBmax}}$ Output Diode Forward Voltage  $V_{\text{FDIODE}}$ Forward Diode Voltage (Optocoupler)  $V_{\text{FD}}$ Vout Output Voltage (secondary Side) Output Ripple Voltage (secondary Side) V<sub>OUT Ripple</sub> Reflected Voltage (from secondary side to primary  $\mathsf{V}_\mathsf{R}$ side) V<sub>RDiode</sub> Reverse Voltage Diode Internal Reference Voltage (CoolSET ) V<sub>Refint</sub> Reference Voltage TL431  $V_{\mathsf{REF}}$  $V_{\mathsf{Ripple}}$ DC Ripple Voltage (on primary Side) Voltage on Sekondary Inductor VSEC  $\mathsf{V}_{\mathsf{Clamp}}$ Maximum Voltage overshoot @ clamping network Discharging Energie Input Capacitor WIN Transimpedanz Z<sub>PWM</sub>



### References

- [1] Keith Billings, Switch Mode Power Supply Handbook
- [2] Ralph E. Tarter, Solid-State Power Conversion Handbook
- [3] R. D. Middlebrook and Slobodan Cuk, Advances in Switched-Mode Power Conversion

#### [4] Herfurth Michael,

Ansteuerschaltungen für getaktete Stromversorgungen mit Erstellung eines linearisierten Signalflußplans zur Dimensionierung der Regelung

#### [5] Herfurth Michael,

Topologie, Übertragungsverhalten und Dimensionierung häufig eingesetzter Regelverstärker

[6] Infineon Technologies, Datasheet,
 CoolSET-II
 Off – Line SMPS Current Mode Controller with 650V/800V CoolMOS on Board,

#### [7] Robert W. Erickson,

Fundamentals of Power Electronics



| Revision History                                            |            |                                     |  |  |
|-------------------------------------------------------------|------------|-------------------------------------|--|--|
| Application Note AN-SMPS-ICE2xXXX-1                         |            |                                     |  |  |
| Actual Release: V1.2 Date:05.02.2002 Previous Release: V1.0 |            |                                     |  |  |
| Page of                                                     | Page of    | Subjects changed since last release |  |  |
| actual                                                      | prev. Rel. |                                     |  |  |
| Rel.                                                        |            |                                     |  |  |
| 44                                                          |            | Second Issue                        |  |  |
| 40                                                          |            | CoolSET Table Update                |  |  |

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see the address list on the last page or our webpage at

http://www.infineon.com

#### **CoolMOS™** and **CoolSET™** are trademarks of Infineon Technologies AG.

#### We listen to Your Comments

Any information within this dokument that you feel is wrong, unclear or missing at all?

Your feedback will help us to continously improve the quality of this dokument.

Please send your proposal (including a reference to this dokument) to:

mcdoku.comment@infineon.com

#### Edition 2001-03-01

#### Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München

© Infineon Technologies AG 2000. All Rights Reserved.

#### Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

#### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

#### Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

AN-SMPS-ICE2xXXX-1



#### Infineon Technologies AG sales offices worldwide -

#### partly represented by Siemens AG

Siemens AG Österreich Erdberger Lände 26 A-1031 Wien T (+43)1-17 07-3 56 11 Fax (+43)1-17 07-5 59 73 Siemens Ltd. 885 Mountain Highway Bayswater, Victoria 3153 T (+61)3-97 21 21 11 Fax (+61)3-97 21 72 75 Siemens Electronic Components Benelux Charleroisesteenweg 116/ Chaussée de Charleroi 116 B-1060 Brussel/Bruxelles T (+32)2-5 36 69 05 Fax (+32)2-5 36 28 57 Email:components@siemens.nl Siemens Ltda. Semiconductores Avenida Mutinga,3800-Pirituba 05110-901 São Paulo-SP T (+55)11-39 08 25 64 Fax (+55)11-39 08 27 28 Infineon Technologies Corporation 320 March Road,Suite 604 Canada,Ontario K2K 2E2 T (+1)6 13-5 91 63 86 Fax (+1)6 13-5 91 63 89 Siemens Schweiz AG Bauelemente Freilagerstrasse 40 CH-8047 Zürich T (+41)1-4 953065 Fax (+41)1-4 955050 Infineon Technologies AG Völklinger Str.2 D-40219 Düsseldorf T (+49)2 11-3 99 29 30 Fax (+49)2 11-3 99 14 81 Infineon Technologies AG Werner-von-Siemens-Platz 1 D-30880 Laatzen (Hannover) T (+49)5 11-8 77 22 22 Fax (+49)5 11-8 77 15 20 Infineon Technologies AG Von-der-Tann-Straße 30 **D-90439 Nürnberg** T (+49)9 11-6 54 76 99 Fax (+49)9 11-6 54 76 24 Infineon Technologies AG Weissacher Straße 11 D-70499 Stuttgart T (+49)7 11-1 37 33 14 Fax (+49)7 11-1 37 24 48 Infineon Technologies AG Halbleiter Distribution Richard-Strauss-Straße 76 D-81679 München T (+49)89-92 21 40 86 Fax (+49)89-92 21 20 71 DK Siemens A/S Borupvang 3 DK-2750 Ballerup Т (+45)44 77-44 7 Fax (+45)44 77-40 17 Siemens S.A. Dpto.Componentes Ronda de Europa,5 E-28760 Tres Cantos-Madrid T (+34)91-5 14 71 51 Fax (+34)91-5 14 70 13

Infineon Technologies France, 39/47,Bd.Ornano F-93527 Saint-Denis CEDEX2 T (+33)1-49 22 31 00 Fax (+33)1-49 22 28 01 Siemens Components Scandinavia P.O. Bo x 6 0 FIN-02601 Espoo (Helsinki) T (+3 58)10-5 11 51 51 Fax (+3 58)10-5 11 24 95 scs@components.siemens.se Infineon Technologies Siemens House Oldbury GB-Bracknell,Berkshire RG12 8F7 T (+44)13 44-39 66 18 Fax (+44)13 44-39 66 32 Simacomp Kft Lajos u.103 H-1036 Budapest T (+36)1-4 57 16 90 Fax (+36)1-4 57 16 92 Infineon Technologies Hong Kong Ltd. Suite 302,Level 3, Festival Walk, 80 Tat Chee Avenue. Yam Yat Tsuen, Kowloon Tona Hong Kong T (+8 52)28 32 05 00 Fax (+8 52)28 27 97 62 Siemens S..A. Semiconductor Sales Via Piero e Alberto Pirelli,10 I-20126 Milano T (+39)02-66 76 -1 Fax (+39)02-66 76 43 95 IND Siemens I td Components Division No.84 Keonics Electronic City Hosur Road Bangalore 561 229 T (+91)80-8 52 11 22 Fax (+91)80-8 52 11 80 Siemens Ltd. CMP Div,5th Floor 4A Ring Road, IP Estate New Delhi 110 002 T (+91)11-3 31 99 12 Fax (+91)11-3 31 96 04 Siemens Ltd. CMP Div,4th Floor 130, Pandurang Budhkar Marg, Worli Mumbai 400 018 T (+91)22-4 96 21 99 Fax (+91)22-4 96 22 01 IRL Siemens Ltd. Electronic Components Division 8,Raglan Road IRL-Dublin 4 T (+3 53)1-2 16 23 42 Fax (+3 53)1-2 16 23 49 Nisko Ltd. 2A,Habarzel St. P.O.Box 58151 61580 Tel Aviv –Isreal

T (+9 72)3 -7 65 73 00

Fax (+9 72)3 -7 65 73 33

Siemens Components K.K. Talanawa Park Tower 12F &17F 3-20-14 Higashi-Gotanda Shinagawa-ku Tokyo T (+81)3-54 49 64 11 Fax (+81)3 -54 49 64 01 MAI Infineon Technologies AG Sdn Bhd Bayan Lepas Free Industrial Zone1 **11900 Penang** T (+60)4 -6 44 99 75 Fax (+60)4 -6 41 48 72 Siemens Components Scandinavia Østre Aker vei 24 Postboks 10, Veitvet N-0518 Oslo T (+47)22-63 30 00 Fax (+47)22-68 49 13 Email scs@components.siemens.se NI Siemens Electronic Components Renelux Postbus 16068 NL-2500 BB Den Haag T (+31)70-3 33 20 65 Fax (+31)70-3 33 28 15 Email:components@siemens.nl Siemens Auckland 300 Great South Road Greenland Auckland T (+64)9-5 20 30 33 Fax (+64)9-5 20 15 56 Siemens S.A. an Componentes Electronicos R.Irmaos Siemens,1 Alfragide P-2720-093 Amadora T (+351)1-4 17 85 90 Fax (+351)1-4 17 80 83 Siemens Pakistan Engineering Co.Ltd. PO Box 1129 Islamabad 44000 23 West Jinnah Ave Islamabad T (+92)51-21 22 00 Fax (+92)51-21 16 10 ы Siemens SP.z.o.o. ul.Zupnicza 11 PL-03-821 Warszawa T (+48)22-8 70 91 50 Fax (+48)22-8 70 91 59 ROK Siemens Ltd. Asia Tower,10th Floor 726 Yeoksam-dong,Kang-nam Ku CPO Box 3001 Seoul 135-080 T (+82)2-5 27 77 00 Fax (+82)2-5 27 77 79 RUS INTECH electronics ul.Smolnaya,24/1203 RUS-125 445 Moskva T (+7)0 95 -4 51 97 37 Fax (+7)0 95 -4 51 86 08 Siemens Components Scandinavia Österögatan 1, Box 46 S-164 93 Kista T (+46)8-7 03 35 00 Fax (+46)8-7 03 35 01 Email: scs@components.siemens.se

Infineon Technologies Asia Pacific Pte.Ltd. Taiwan Branch 10F,No.136 Nan King East Road Section 23,Taipei T (+8 86)2-27 73 66 06 Fax (+8 86)2-27 71 20 76 SGE Infineon Technologies Asia Pacific.Pte.Ltd. 168 Kallang Way Singapore 349 253 T (+65)8 40 06 10 Fax (+65)7 42 62 39 IIS A Infineon Technologies Corporation 1730 North First Street San Jose,CA 95112 T (+1)4 08-5 01 60 00 Fax (+1)4 08-5 01 24 24 Siemens Components, Inc. Optoelectronics Division 19000 Homestead Road Cupertino,CA 95014 T (+1)4 08-2 57 79 10 Fax (+1)4 08-7 25 34 39 Siemens Components, Inc. Special Products Division 186 Wood Avenue South Iselin,NJ 08830-2770 T (+1)7 32-9 06 43 00 Fax (+1)7 32-6 32 28 30 VRC Infineon Technologies Hong Kong Ltd. Beijing Office Room 2106, Building A Vantone New World Plaza No.2 Fu Cheng Men Wai Da Jie .lie 100037 Beijing T (+86)10 -68 57 90 -06,-07 Fax (+86)10 -68 57 90 08 Infineon Technologies Hong Kong Ltd. Chengdu Office Room14J1, Jinyang Mansion 58 Tidu Street Chengdu, Sichuan Province 610 016 T (+86)28-6 61 54 46 /79 51 Fax (+86)28 -6 61 01 59 Infineon Technologies Hong Kong Ltd. Shanghai Office Room1101,Lucky Target Square No.500 Chengdu Road North Shanghai 200003 T (+86)21-63 6126 18 /19 Fax (+86)21-63 61 11 67 Infineon Technologies Hong Kong Ltd. Shenzhen Office Room 1502, Block A Tian An International Building Renim South Road Shenzhen 518 005 T (+86)7 55 -2 28 91 04 Fax (+86)7 55-2 28 02 17 Siemens Ltd. Components Division P O B 3438 Halfway House 1685 T (+27)11-6 52 -27 02 Fax (+27)11-6 52 20 42