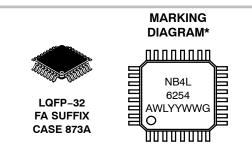
2.5V / 3.3V Differential **LVPECL 2x2 Clock Switch** and Low Skew Fanout **Buffer**

Description

The NB4L6254 is a differential 2x2 clock switch and drives precisely aligned clock signals through its LVPECL fanout buffers. It employs a fully differential architecture with bipolar technology, offers superior digital signal characteristics, has very low clock output skew and supports clock frequencies from DC up to 3.0 GHz.

The NB4L6254 is designed for the most demanding, skew critical differential clock distribution systems. Typical applications for the NB4L6254 are clock distribution, switching and data loopback systems of high-performance computer, networking and telecommunication systems, as well as on-board clocking of OC-3, OC-12 and OC-48 communication systems. In addition, the NB4L6254 can be configured as a single 1:6 or dual 1:3 LVPECL fanout buffer.

The NB4L6254 can be operated from a single 3.3 V or 2.5 V power supply.


Features

- Maximum Clock Input Frequency, 3 GHz
- Maximum Input Data Rate, 3 Gb/s
- Differential LVPECL Inputs and Outputs
- Low Output Skew: 50 ps Maximum Output-to-Output Skew
- Synchronous Output Enable Eliminating Output Runt Pulse Generation and Metastability
- Operating Range: Single 3.3 V or 2.5 V Supply $V_{CC} = 2.375 \text{ V}$ to 3.465 V
- LVCMOS Compatible Control Inputs
- Packaged in LQFP-32
- Fully Differential Architecture
- -40°C to 85°C Ambient Operating Temperature
- These are Pb-Free Devices*

ON Semiconductor®

http://onsemi.com

= Assembly Location

WL = Wafer Lot ΥY = Year WW = Work Week G = Pb-Free Package

^{*}For additional marking information, refer to Application Note AND8002/D.

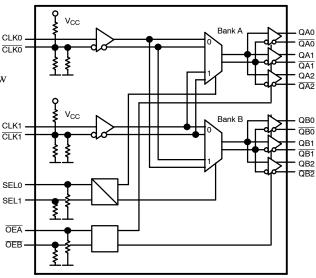


Figure 1. Functional Block Diagram

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

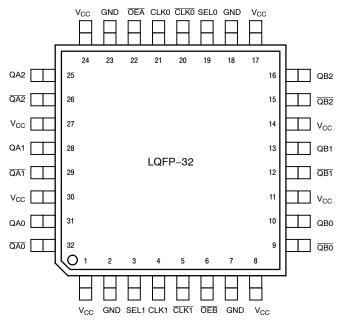


Figure 2. Pin Configuration (Top View)

Table 1. PIN CONFIGURATION

Pin Name	I/O	Description
CLK0, CLK0	LVPECL Input	Differential reference clock signal input 0.
CLK1, CLK1	LVPECL Input	Differential reference clock signal input 1.
OEAb, OEB	LVCMOS Input	Output Enable
SEL0, SEL1	LVCMOS Input	Clock Switch Select
QA[0-2], <u>QA[0-2]</u> QB[0-2], <u>QB[0-2]</u>	LVPECL Output	Differential LVPECL Clock Outputs, (banks A and B) Typically terminated with 50 Ω resistor to $V_{CC}-2.0$ V.
GND	Power Supply	Negative Supply Voltage
V _{CC}	Power Supply	Positive supply voltage. All V _{CC} pins must be connected to the positive power supply for correct DC and AC operation.

Table 2. FUNCTION TABLE

Control	Default	0	1
ŌEĀ	0	QA[0-2], QA[0-2] are active. Deassertion of OEA can be asynchronous to the reference clock without generation of output runt pulses	$QA[0-2] = L$, $\overline{QA[0-2]} = H$ (outputs disabled). Assertion of \overline{OE} can be asynchronous to the reference clock without generation of output runt pulses
ŌEB	0	QB[0-2], QB[0-2] are active. Deassertion of OEB can be asynchronous to the reference clock without generation of output runt pulses	QB[0-2] = L, $\overline{\text{QB}[0-2]}$ = H (outputs disabled). Assertion of $\overline{\text{OE}}$ can be asynchronous to the reference clock without generation of output runt pulses
SEL0, SEL1	00	Refer to Table 3	Refer to Table 3

Table 3. CLOCK SELECT CONTROL

SEL0	SEL1	CLK0 Routed To	CLK1 Routed to	Application Mode
0	0	QA[0:2] and QB[0:2]	-	1:6 Fanout of CLK0
0	1	-	QA[0:2] and QB[0:2]	1:6 Fanout of CLK1
1	0	QA[0:2]	QB[0:2]	Dual 1:3 Buffer
1	1	QB[0:2]	QA[0:2]	Dual 1:3 Buffer (Crossed)

Table 4. ATTRIBUTES

Characteristi	Value	
Internal Input Pullup Resistor		37.5 kΩ
Internal Input Pulldown Resistor		75 kΩ
ESD Protection	Human Body Model Machine Model	> 2000 V > 200 V
Latchup Immunity		>200 mA
Cin, inputs		4.0 pF (TYP)
Moisture Sensitivity (Note 1)	LQFP-32	Level 2
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count		336
Meets or exceeds JEDEC Spec EIA/J		

^{1.} For additional information, see Application Note AND8003/D.

Table 5. MAXIMUM RATINGS (Note 2)

Symbol	Parameter	Condition	Condition	Rating	Unit
V _{CC}	Positive Power Supply			$-0.3 \le V_{CC} \le 3.6$	V
V _{IN}	DC Input Voltage			$-0.3 \le V_{IN} \le V_{CC} + 0.3$	V
V _{OUT}	DC Output Voltage			$\begin{array}{c} -0.3 \leq V_{OUT} \leq V_{CC} \\ + 0.3 \end{array}$	V
I _{IN}	DC Input Current			± 20	mA
I _{out}	LVPECL DC Output Current	Continuous Surge		±50 100	mA mA
T _A	Operating Temperature Range	LQFP-32		-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	0 lfpm 500 lfpm	LQFP-32 LQFP-32	80 55	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	2S2P (Note 3)	LQFP-32	12 to 17	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C
V _{TT}	Output Termination Voltage			V _{CC} – 2.0, TYP	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. Maximum Ratings are those values beyond which device damage may occur.

3. JEDEC standard multilayer board – 2S2P (2 signal, 2 power); MIL-SPEC 883E Method 1012.1.

Table 6. DC CHARACTERISTICS V_{CC} = 2.375 V to 3.465 V, GND = 0 V, T_A = -40°C to +85°C

Symbol	Characteristic		Min	Тур	Max	Unit
POWER	SUPPLY CURRENT		•			
I _{GND}	Power Supply Current (Outputs Open)			60	85	mA
LVPECL	CLOCK OUTPUTS		•	•	•	
V _{OH}	LVPECL Output HIGH Voltage (Notes 4, 5)	V _{CC} = 3.3 V V _{CC} = 2.5 V	V _{CC} - 1145 2155 1355	V _{CC} - 1020 2280 1480	V _{CC} – 895 2405 1605	mV
V _{OL}	LVPECL Output LOW Voltage (Notes 4, 5)	V _{CC} = 3.3 V V _{CC} = 2.5 V	V _{CC} – 1945 1355 555	V _{CC} – 1770 1530 730	V _{CC} - 1600 1700 900	mV
CLOCK	INPUTS		•	•	•	
V _{PP}	Dynamic Differential Input Voltage (Clock Inputs)		0.1		1.3	V
V _{CMR}	Differential Cross-point Voltage (Clock Inputs)		1.0		V _{CC} - 0.3	V
LVCMOS	CONTROL INPUTS					
V _{IH}	Output HIGH Voltage (LVTTL/LVCMOS)		2.0			V
V _{IL}	Output LOW Voltage (LVTTL/LVCMOS)				0.8	V
I _{IH}	Input Current V _{IN} = V _{CC} or V _{IN} = GND		-100		+100	μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{4.} LVPECL Outputs loaded with 50 Ω termination resistors to V_{TT} = V_{CC} – 2.0 V for proper operation. 5. LVPECL Output parameters vary 1:1 with V_{CC}.

Table 7. AC CHARACTERISTICS V_{CC} = 2.375 V to 3.465 V, GND = 0 V, T_A = -40°C to +85°C (Note 6)

Symbol	Characteristic	Min	Тур	Max	Unit
V _{INPP}	Differential Input Voltage (Peak-to-Peak)	0.3		1.3	٧
V _{CMR}	Differential Input Cross-Point Voltage (Clock Inputs)	1.2		V _{CC} - 0.3	٧
f _{IN}	Clock Input Frequency			3.0	GHz
V _{OUTPP}	Differential Output Output Voltage Amplitude (Peak-to-Peak) (Note 7) $ \begin{array}{c} f_0 < 1.1 \text{ GHz} \\ f_0 < 2.5 \text{ GHz} \\ f_0 < 3.0 \text{ GHz} \end{array} $		0.70 0.55 0.35		V
f _{CLKOUT}	Output Clock Frequency Range			3.0	GHz
t _{pd}	Propagation Delay CLKx to Qx (Differential Configuration)		485	610	ps
t _{skew}	Within Device Output-to-Output Skew (Differential Configuration) Device-to-Device Skew Output Pulse Skew (Duty Cycle Skew) (Note 8)		25 30 10	50 250 60	ps
DCO	Output CLOCK Duty Cycle (DC Ref = 50%) (Note 9) t _{REF} <100 MH			50.6 54.8	%
t _{JIT}	CLOCK Random Jitter (RMS) (SEL0 ≠ SEL1) (Note 10)		0.3	0.8	ps
t _r , t _f	Output Rise/Fall Times (Note 11) CLKx / CLKx	50	130	300	ps
t _{PDL}	Output Disable Time, T = CLK period	2.5 T + t _{PD}		3.5 T + t _{PD}	ns
tPLD	Output Enable Time, T = CLK period	3 T + t _{PD}		4 T + t _{PD}	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{6.} LVPECL Outputs loaded with 50 Ω to V_{CC} – 2.0V.
7. V_{OUTPP} MIN = 0.1 V @ +85°C, f_O < 3.0 GHz.
8. Output Pulse Skew is the absolute difference of the propagation delay times: $|t_{PLH} - t_{PHL}|$ 9. DCO_{MIN/MAX} = 43.2%/59.2% @ +85°C.
10. t_{JITMAX} = 1.6 ps @ 85°C, 3.0 V
11. Measured 20% to 80%

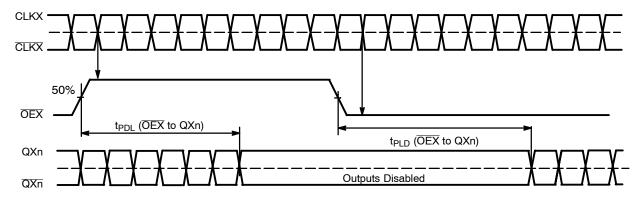


Figure 3. Output Disable / Enable Timing

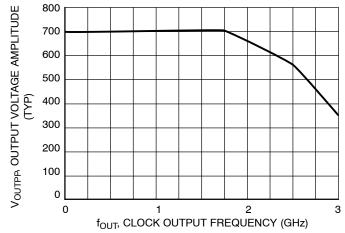


Figure 4. Output Voltage Amplitude (V_{OUTPP}) versus Clock Output Frequency at Ambient Temperature (Typical)

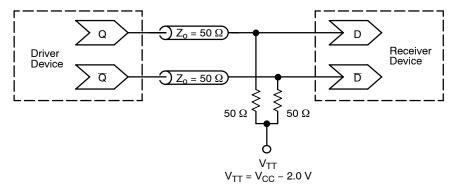


Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

Example Configurations

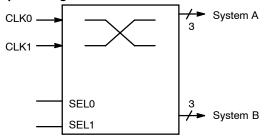


Figure 6. 2 x 2 Clock Switch

SEL0	SEL1	Switch Configuration
0	0	CLK0 Clocks System A and System B
0	1	CLK1 Clocks System A and System B
1	0	CLK0 Clocks System A and CLK1 Clocks System B
1	1	CLK1 Clocks System B and CLK1 Clocks System A

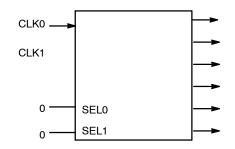


Figure 7. 1:6 Clock Fanout Buffer

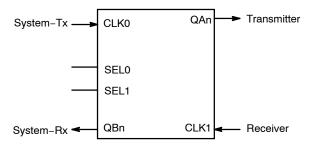
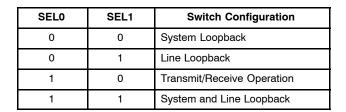



Figure 8. Loopback Device

APPLICATIONS INFORMATION

Maintaining Lowest Device Skew

The NB4L6254 guarantees low output-output bank skew at 50 ps and a part-to-part skew of 250 ps. To ensure low skew clock signals in the application, both outputs of any differential output pair need to be terminated identically, even if only one output is used. When fewer than all nine output pairs are used, identical termination of all output pairs within the output bank is recommended. If an entire output bank is not used, it is recommended to leave all of these outputs open and unterminated. This will reduce the device power consumption while maintaining minimum output skew.

Power Supply Bypassing

The NB4L6254 is a mixed analog/digital product. The differential architecture of the NB4L6254 supports low noise signal operation at high frequencies. In order to maintain its superior signal quality all $V_{\rm CC}$ pins should be bypassed by high–frequency ceramic capacitors connected to GND. If the spectral frequencies of the internally generated switching noise on the supply pins cross the series resonant port of an individual bypass capacitor, its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the noise bandwidth.

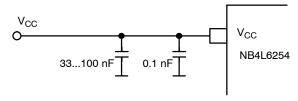
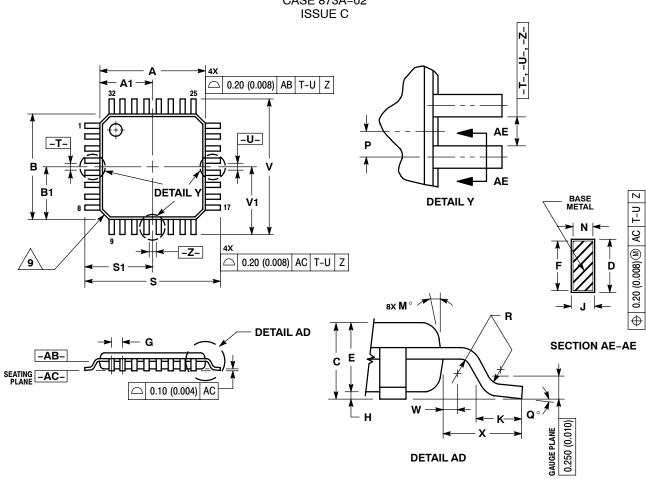


Figure 9. V_{CC} Power Supply Bypass


ORDERING INFORMATION

Device	Package	Shipping [†]
NB4L6254FAG	LQFP-32 (Pb-Free)	250 Units / Tray
NB4L6254FAR2G	LQFP-32 (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

32 LEAD LQFP CASE 873A-02

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION:
- 2. CON HOLLING DIMENSION:
 MILLIMETER.
 3. DATUM PLANE AB IS LOCATED AT
 BOTTOM OF LEAD AND IS COINCIDENT
 WITH THE LEAD WHERE THE LEAD
 EXITS THE PLASTIC BODY AT THE

- EXITS THE PLASTIC BODY AT THE
 BOTTOM OF THE PARTING LINE.

 4. DATUMS -T-, -U-, AND -Z- TO BE
 DETERMINED AT DATUM PLANE -AB-.

 5. DIMENSIONS S AND V TO BE
 DETERMINED AT SEATING PLANE -AC-.

 6. DIMENSIONS A AND B DO NOT INCLUDE
 MOLD PROTRUSION. ALLOWABLE
 PROTRUSION IS 0.250 (0.010) PER SIDE.
 DIMENSIONS A AND B DO INCLUDE
 MOLD MISMATCH AND ARE
 DETERMINED AT DATI IM PLANE -AB-
- MOLD MISMATCH AND ARE
 DETERMINED AT DATUM PLANE -AB-.

 7. DIMENSION D DOES NOT INCLUDE
 DAMBAR PROTRUSION. DAMBAR
 PROTRUSION SHALL NOT CAUSE THE
 D DIMENSION TO EXCEED 0.520 (0.020).

 8. MINIMUM SOLDER PLATE THICKNESS
 SHALL BE 0.0076 (0.0003).
- EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	7.000	BSC	0.276 BSC	
A1	3.500	BSC	0.138 BSC	
В	7.000	BSC	0.276	BSC
B1	3.500	BSC	0.138	BSC
С	1.400	1.600	0.055	0.063
D	0.300	0.450	0.012	0.018
Е	1.350	1.450	0.053	0.057
F	0.300	0.400	0.012	0.016
G	0.800	BSC	0.031 BSC	
Н	0.050	0.150	0.002	0.006
J	0.090	0.200	0.004	0.008
K	0.450	0.750	0.018	0.030
M	12°	REF	12° REF	
N	0.090	0.160	0.004	0.006
P	0.400	BSC	0.016 BSC	
Q	1°	5°	1°	5°
R	0.150	0.250	0.006	0.010
S	9.000 BSC		0.354	BSC
S1	4.500 BSC		0.177 BSC	
٧	9.000 BSC		0.354 BSC	
V1	4.500 BSC		0.177	BSC
W	0.200 REF		0.008	REF
Χ	1.000	REF	0.039	REF

ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.