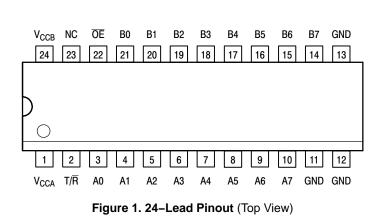

Configurable Dual Supply Octal Transceiver

with 3-State Outputs for 3 V Systems

The 74LVXC3245 is a 24-pin dual-supply, octal configurable voltage interface transceiver especially well suited for PCMCIA and other real time configurable I/O applications. The V_{CCA} pin accepts a 3.0 V supply level; the A port is a dedicated 3.0 V port. The V_{CCB} pin accepts a 3.0 V-to-5.0 V supply level. The B port is configured to track the V_{CCB} supply level. A 5.0 V level on the V_{CCB} pin will configure the I/O pins at a 5.0 V level and a 3.0 V V_{CCB} will configure the I/O pins at a 3.0 V level. The A port interfaces with a 3.0 V host system and the B port to the card slots. This device will allow the V_{CCB} voltage source pin and I/O pins on the B port to float when \overline{OE} is High. This feature is necessary to buffer data to and from a PCMCIA socket that permits PCMCIA cards to be inserted and removed during normal operation. The Transmit/Receive (T/\overline{R}) input determines the direction of data flow. Transmit (active-High) enables data from the A port to B port. Receive (active-Low) enables data from the B port to the A port.

Features


- Bidirectional Interface Between 3.0 V and 3.0 V/5.0 V Buses
- Control Inputs Compatible with TTL Level
- Outputs Source/Sink Up to 24 mA
- Guaranteed Simultaneous Switching Noise Level and Dynamic Threshold Performance
- Available in SOIC and TSSOP Packages
- Flexible V_{CCB} Operating Range
- Allows B Port and V_{CCB} to Float Simultaneously When \overline{OE} is High
- Functionally Compatible With the 74 Series 245
- Pb–Free Packages are Available*

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PIN NAMES

Pins	Function
OE	Output Enable Input
T/R	Transmit/Receive Input
A0-A7	Side A 3–State Inputs or 3–State Outputs
B0-B7	Side B 3–State Inputs or 3–State Outputs

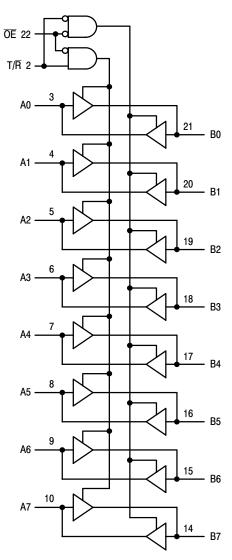


Figure 2. Logic Diagram

INP	UTS	OPERATING MODE			
ŌĒ	T/R	Non-Inverting			
L	L	B Data to A Bus			
L	н	A Data to B Bus			
Н	х	Z			

H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions are Acceptable; for I_{CC} reasons, Do Not Float Inputs

MAXIMUM RATINGS

Symbol	Parameter		Value	Condition	Unit
V _{CCA} , V _{CCB}	DC Supply Voltage		-0.5 to +7.0		V
VI	DC Input Voltage	$\overline{\text{OE}}, T/\overline{R}$	–0.5 to V _{CCA} +0.5		V
V _{I/O}	DC Input/Output Voltage	An	–0.5 to V _{CCA} +0.5		V
		Bn	–0.5 to V _{CCB} +0.5		V
I _{IK}	DC Input Diode Current	$\overline{\text{OE}}, T/\overline{R}$	±20	V _I < GND	mA
I _{OK}	DC Output Diode Current		±50	V_{O} < GND; V_{O} > V_{CC}	mA
Ι _Ο	DC Output Source/Sink Current		±50		mA
I _{CC} , I _{GND}	DC Supply Current	Per Output Pin Maximum Current	±50 ±200		mA
T _{STG}	Storage Temperature Range		-65 to +150		°C
	DC Latchup Source/Sink Current		±300		mA

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Para	Min	Max	Unit	
V _{CCA} , V _{CCB}	Supply Voltage (V _{CCA} \leq V _{CCB})	V _{CCA} V _{CCB}	2.3 3.0	3.6 5.5	V
VI	Input Voltage	OE , T/ R	0	V _{CCA}	V
V _{I/O}	Input/Output Voltage	An Bn	0 0	V _{CCA} V _{CCB}	V
T _A	Operating Free–Air Temperature		-40	+85	°C
$\Delta t / \Delta V$	Minimum Input Edge Rate $V_{\rm IN}$ from 30% to 70% of $V_{\rm CC};V_{\rm CC}$ at 3.0 V, 4	ł.5 V, 5.5 V	0	8	ns/V

DC ELECTRICAL CHARACTERISTICS

						T _A = 25°C		T _A = −40 to +85°C	
Symbol	Parameter		Condition	V_{CCA}	V_{CCB}	Тур	Gu	uaranteed Limits	Unit
V _{IHA}	Minimum HIGH Level Input Voltage	An OE T/R	V _{OUT} ≤ 0.1 V	2.3 3.0 3.6	3.0 3.6 5.5		2.0 2.0 2.0	2.0 2.0 2.0	V
V _{IHB}		Bn	or ≥ V _{CC} – 0.1 V	2.3 3.0 3.6	3.0 3.6 5.5		2.00 2.00 3.85	2.00 2.00 3.85	V
V _{ILA}	Maximum LOW Level Input Voltage	An OE T/R	V _{OUT} ≤ 0.1 V	2.3 3.0 3.6	3.0 3.6 5.5		0.8 0.8 0.8	0.8 0.8 0.8	V
V _{ILB}		Bn	or ≥ V _{CC} – 0.1 V	2.3 3.0 3.6	3.0 3.6 5.5		0.80 0.80 1.65	0.80 0.80 1.65	V
V _{OHA}	Minimum HIGH Level Output Voltage		$I_{OUT} = -100 \ \mu A$ $I_{OH} = -12 \ m A$ $I_{OH} = -24 \ m A$ $I_{OH} = -12 \ m A$ $I_{OH} = -12 \ m A$ $I_{OH} = -24 \ m A$	3.0 3.0 3.0 2.3 2.3	3.0 3.0 3.0 3.0 4.5	2.99 2.85 2.65 2.50 2.30	2.90 2.56 2.35 2.30 2.10	2.90 2.46 2.25 2.20 2.00	V
V _{OHB}			$I_{OUT} = -100 \ \mu A$ $I_{OH} = -12 \ m A$ $I_{OH} = -24 \ m A$ $I_{OH} = -24 \ m A$	3.0 3.0 3.0 3.0	3.0 3.0 3.0 4.5	2.99 2.85 2.65 4.25	2.90 2.56 2.35 3.86	2.90 2.46 2.25 3.76	V

DC ELECTRICAL CHARACTERISTICS

						T _A = 25°C		T _A = −40 to +85°C	
Symbol	Parameter		Condition	V _{CCA}	V _{CCB}	Тур	Gu	uaranteed Limits	Unit
V _{OLA}	Maximum LOW Level Output Voltage		$I_{OUT} = 100 \ \mu A$ $I_{OL} = 24 \ m A$ $I_{OL} = 12 \ m A$ $I_{OL} = 24 \ m A$	3.0 3.0 2.7 2.7	3.0 3.0 3.0 4.5	0.002 0.21 0.11 0.22	0.10 0.36 0.36 0.42	0.10 0.44 0.44 0.50	V
V _{OLB}			I _{OUT} = 100 μA I _{OL} = 24 mA I _{OL} = 24 mA	3.0 3.0 3.0	3.0 3.0 4.5	0.002 0.21 0.18	0.10 0.36 0.36	0.10 0.44 0.44	V
I _{IN}	Max Input Leakage Current	OE, T/R	$V_I = V_{CCA}, GND$	3.6 3.6	3.6 5.5		±0.1 ±0.1	±1.0 ±1.0	μΑ
I _{OZA}	Max 3-State Output Leakage	An	$V_{I} = V_{IH}, V_{IL}$ $\overline{OE} = V_{CCA}$ $V_{O} = V_{CCA}, GND$	3.6 3.6	3.6 5.5		±0.5 ±0.5	±5.0 ±5.0	μΑ
I _{OZB}	Max 3–State Output Leakage	Bn	$V_{I} = V_{IH}, V_{IL}$ $\overline{OE} = V_{CCA}$ $V_{O} = V_{CCB}, GND$	3.6 3.6	3.6 5.5		±0.5 ±0.5	±5.0 ±5.0	μΑ
ΔI_{CC}	Maximum I _{CC} /Input	Bn	$V_I = V_{CCB} - 2.1 V$	3.6	5.5	1.0	1.35	1.5	mA
		All Inputs	$V_{I} = V_{CC} - 0.6 V$	3.6	3.6		0.35	0.5	mA
I _{CCA1}	Quiescent V _{CCA} Sup- ply Current as B Port Floats			3.6	Open		5	50	μΑ
I _{CCA2}	Quiescent V _{CCA} Supply Current			3.6 3.6	3.6 5.5		5 5	50 50	μΑ
I _{CCB}	Quiescent V _{CCB} Supply Current			3.6 3.6	3.6 5.5		5 8	50 80	μΑ
V _{OLPA}	Quiet Output Max Dynamic V _{OL}		Notes 1, 2	3.3 3.3	3.3 5.0		0.8 0.8		V
V _{OLPB}			Notes 1, 2	3.3 3.3	3.3 5.0		0.8 1.5		V
V _{OLVA}	Quiet Output Min Dynamic V _{OL}		Notes 1, 2	3.3 3.3	3.3 5.0		-0.8 -0.8		V
V _{OLVB}			Notes 1, 2	3.3 3.3	3.3 5.0		-0.8 -1.2		V
V _{IHDA}	Min HIGH Level Dynamic Input Voltage		Notes 1, 3	3.3 3.3	3.3 5.0		2.0 2.0		V
V _{IHDB}			Notes 1, 3	3.3 3.3	3.3 5.0		2.0 3.5		V
V _{ILDA}	Max LOW Level Dynamic Input Voltage		Notes 1, 3	3.3 3.3	3.3 5.0		0.8 0.8		V
V _{ILDB}			Notes 1, 3	3.3 3.3	3.3 5.0		0.8 1.5		V

Worst case package.
 Max number of outputs defined as (n). Data inputs are driven 0 V to V_{CC} level; one output at GND.
 Max number of data inputs (n) switching. (n-1) inputs switching 0 V to V_{CC} level. Input under test switching: V_{CC} level to threshold (V_{IHD}), 0 V to threshold (V_{ILD}), f = 1 MHz.

AC ELECTRICAL CHARACTERISTICS

		$T_A = -40$ to +85°C; $C_L = 50$ pF						
		V _{CCA} = 2.7–3.6 V V _{CCB} = 4.5–5.5 V			V _{CCA} = 2.7–3.6 V V _{CCB} = 3.0–3.6 V			
Symbol	Parameter	Min	Typ (Note 4)	Max	Min	Typ (Note 5)	Max	Unit
t _{PHL} t _{PLH}	Propagation Delay A to B	1.0 1.0	4.8 3.9	8.5 7.0	1.0 1.0	5.5 5.2	9.0 8.5	ns
t _{PHL} t _{PLH}	Propagation Delay B to A	1.0 1.0	3.8 4.3	7.0 8.0	1.0 1.0	4.4 5.1	7.5 8.0	ns
t _{PZL} t _{PZH}	Output Enable Time OE to B	1.0 1.0	4.7 4.8	8.5 9.0	1.0 1.0	6.0 6.1	9.5 10.0	ns
t _{PZL} t _{PZH}	Output Enable Time OE to A	1.0 1.0	5.9 5.4	10.0 9.5	1.0 1.0	6.4 5.8	10.5 9.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time OE to B	1.0 1.0	4.0 3.8	8.5 8.0	1.0 1.0	6.3 4.5	10.0 8.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time OE to A	1.0 1.0	4.6 3.1	10.0 7.0	1.0 1.0	5.2 3.4	10.0 7.0	ns
t _{OSHL} t _{OSLH}	Output to Output Skew, Data to Output (Note 6)		1.0	1.5		1.0	1.5	ns

4. Typical values at V_{CCA} = 3.3 V, V_{CCB} = 5.0 V at 25°C.
5. Typical values at V_{CCA} = 3.3 V, V_{CCB} = 3.3 V at 25°C.
6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter mean the device. guaranteed by design.

CAPACITIVE CHARACTERISTICS

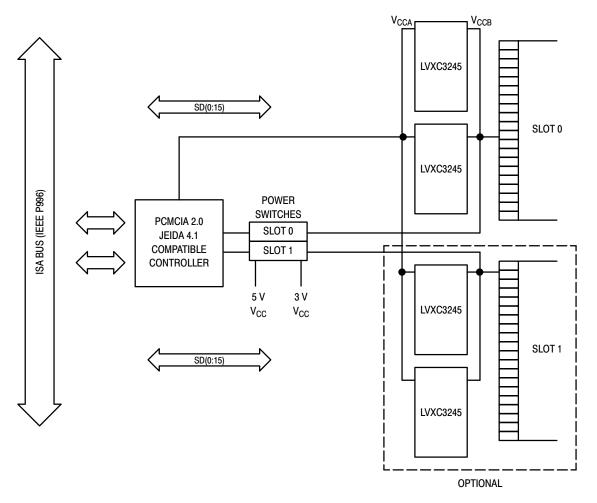
Symbol	Parameter	Condition	Typical	Unit	
C _{IN}	Input Capacitance		$V_{CCA} = 3.3 \text{ V}; V_{CCB} = 5.0 \text{ V}$	4.5	pF
C _{I/O}	Input/Output Capacitance		$V_{CCA} = 3.3 \text{ V}; V_{CCB} = 5.0 \text{ V}$	10	pF
C _{PD}	Power Dissipation Capacitance $A \rightarrow E$ (Measured at 10 MHz) $B \rightarrow A$	-	V _{CCB} = 5.0 V V _{CCA} = 3.3 V	50 40	pF

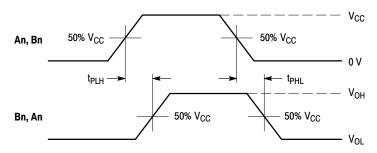
ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVXC3245DWR2	SOIC-24	1000 Tape & Reel
MC74LVXC3245DWR2G	SOIC-24 (Pb-Free)	1000 Tape & Reel
MC74LVXC3245DT	TSSOP-24*	62 Units / Rail
MC74LVXC3245DTR2	TSSOP-24*	2500 Tape & Reel

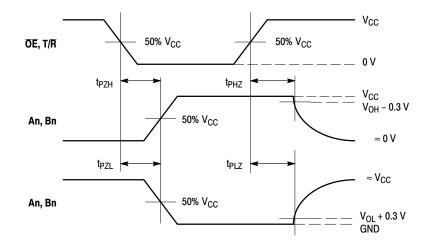
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*This package is inherently Pb-Free.



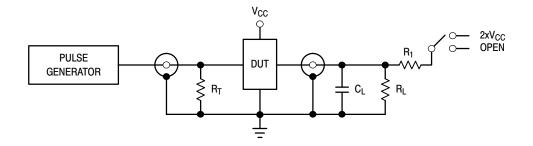

Figure 3. Block Diagram

Configurable I/O Application for PCMCIA Cards


The 74LVXC3245 is a dual–supply device well suited for PCMCIA configurable I/O applications. The LVXC3245 consumes less than 1mW of quiescent power in all modes of operation, making it ideal for low power notebook designs. The LVXC3245 meets all PCMCIA I/O voltage requirements at 5.0 V and 3.3 V operation. By tying the V_{CCB} pin to the card voltage supply, the PCMCIA card will always have

rail-to-rail output swings, maximizing the reliability of the interface.

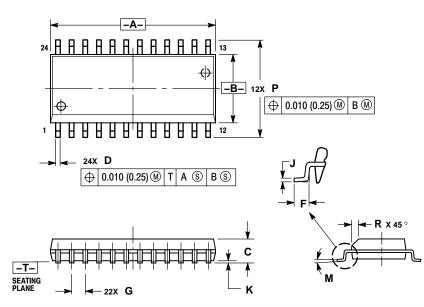
The V_{CCA} pin must always be tied to a 3.3 V power supply. This voltage connection provides internal references needed to account for variations in V_{CCB}. When connected as in the figure above, the LVXC3245 meets all the voltage and current requirements of the ISA bus standard (IEEE P996).



WAVEFORM 1 - PROPAGATION DELAYS $t_{R} = t_{F} = 2.5 \text{ ns}$, 10% to 90%; f = 1 MHz; $t_{W} = 500 \text{ ns}$

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES $t_{R} = t_{F} = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_{W} = 500$ ns

TEST	SWITCH
t _{PLH} , t _{PHL} , t _{PZH} , t _{PHZ}	Open
t _{PZL} , t _{PLZ}	2xV _{CC}

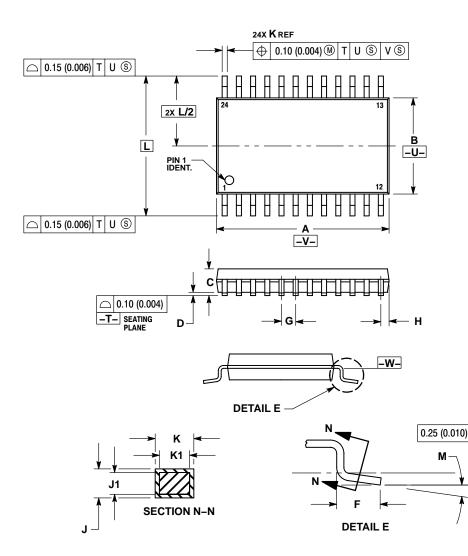

 C_L = 50 pF or equivalent (Includes jig and probe capacitance)

 $\begin{array}{l} \mathsf{R}_{L} = \mathsf{R}_{1} = 500 \; \Omega \; \text{or equivalent} \\ \mathsf{R}_{T} = \mathsf{Z}_{OUT} \; \text{of pulse generator (typically 50 } \Omega) \end{array}$

Figure 5. Test Circuit

PACKAGE DIMENSIONS

SOIC-24 **DW SUFFIX** CASE 751E-04 ISSUE E



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION D DOES NOT INCLUDE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	15.25	15.54	0.601	0.612	
В	7.40	7.60	0.292	0.299	
C	2.35	2.65	0.093	0.104	
D	0.35	0.49	0.014	0.019	
F	0.41	0.90	0.016	0.035	
G	1.27	BSC	0.050 BSC		
ſ	0.23	0.32	0.009	0.013	
K	0.13	0.29	0.005	0.011	
М	0 °	8°	0 °	8 °	
Ρ	10.05	10.55	0.395	0.415	
R	0.25	0.75	0.010	0.029	

PACKAGE DIMENSIONS

TSSOP-24 **DT SUFFIX** CASE 948H-01 **ISSUE A**

NOTES:

- OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED
- INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	7.70	7.90	0.303	0.311	
В	4.30	4.50	0.169	0.177	
C		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
Μ	0 °	8°	0°	8 °	

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in scillated for each customer applications can and to vary in different applications and actual performance may vary over time. All operating parameters which may be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other solution or sustain life, or for any other application in which the balt. The SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use perficient and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.