Dual Matched General Purpose Transistor

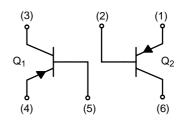
PNP Matched Pair

These transistors are housed in an ultra-small SOT563 package ideally suited for portable products. They are assembled to create a pair of devices highly matched in all parameters, eliminating the need for costly trimming. Applications are Current Mirrors; Differential, Sense and Balanced Amplifiers; Mixers; Detectors and Limiters.

Features

- Current Gain Matching to 10%
- Base-Emitter Voltage Matched to 2 mV
- Drop-In Replacement for Standard Device
- These are Pb-Free Devices

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector - Emitter Voltage	V_{CEO}	-30	V
Collector - Base Voltage	V_{CBO}	-30	V
Emitter-Base Voltage	V_{EBO}	-5.0	V
Collector Current – Continuous	I _C	-100	mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

SOT-563 CASE 463A PLASTIC

MARKING DIAGRAMS

UU = Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NST30010MXV6T1G	SOT-563 (Pb-Free)	•

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

THERMAL CHARACTERISTICS

Characteristic	Parameter	Symbol	One Device Heated	Both Devices Heated	Unit
Total Device Dissipation, $T_A = 25^{\circ}C$ (Note 1) Derate above 25°C (Note 1) $T_A = 25^{\circ}C$ (Note 2) Derate above 25°C (Note 2)	Note 1)		357 2.9 429 3.4	500 (250 ea) 4.0 661 (331 ea) 5.3	mW mW/°C mW mW/°C
Thermal Resistance Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	ction-to-Ambient (Note 1) 350		250 189	°C/W	
Thermal Resistance Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	Unheated Device Heated by Heated Device	Ψ_{JA}	149 88	- -	°C/W
Thermal Resistance Junction-to-Lead (Note 1) Junction-to-Lead (Note 2)	Lead Attached to Heated Device	$\Psi_{\sf JL}$	128 152	76 85	°C/W
Thermal Resistance Junction-to-Lead (Note 1) Junction-to-Lead (Note 2)	Heated Device Heating Lead Attached to Unheated Device	$\Psi_{\sf JL}$	224 222	- -	°C/W
Junction and Storage Temperature Range		T _J , T _{stg}	-55 to +150		°C

PCB with 51 square millimeter of 2 oz (0.070mm thick) copper heat spreading connected to package leads. Mounted on a FR4 PCB 76x76x1.5mm Single layer traces. Natural convection test according to JEDEC 51.

TRICAL CHARACTERISTICS /T 0500 male as attached

Output Capacitance, $(V_{CB} = -10 \text{ V}, f = 1.0 \text{ MHz})$

Noise Figure, (I_C = -0.2 mA, V_{CE} = -5 Vdc, R_S = 2 k Ω , f = 1 kHz, BW = 200Hz)

ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise noted)					
Symbol	Min	Тур	Max	Unit	
V _{(BR)CEO}	-30	-	_	V	
V _{(BR)CES}	-30	_	_	V	
V _{(BR)CBO}	-30	-	_	V	
V _{(BR)EBO}	-5.0	_	_	V	
I _{CBO}	-	-	-15 -4.0	nA μA	
h _{FE}	270 420 0.9	- 520 1.0	- 800 -	-	
V _{CE(sat)}	- -	-	-0.30 -0.60	V	
V _{BE(sat)}	- -	-0.75 -0.90	_ _	V	
$V_{BE(on)}$ $V_{BE(1)} - V_{BE(2)}$	-0.60 - -	- - 1.0	-0.75 -0.82 2.0	V mV	
SMALL-SIGNAL CHARACTERISTICS					
f _T	100	_	_	MHz	
	V(BR)CEO V(BR)CES V(BR)CBO V(BR)EBO ICBO hFE hFE(1)/hFE(2) VCE(sat) VBE(sat) VBE(on) VBE(1) – VBE(2)	V(BR)CEO -30 V(BR)CES -30 V(BR)CBO -30 V(BR)EBO -5.0 ICBO hFE 270 420 420 0.9 VCE(sat) VBE(sat) VBE(sat) VBE(on) -0.60 VBE(1) - VBE(2) -	V(BR)CEO	V(BR)CEO -30 - - V(BR)CES -30 - - V(BR)CBO -30 - - V(BR)EBO -5.0 - - ICBO - - - hFE 270 - - 420 520 800 - NFE(1)/hFE(2) 0.9 1.0 - VCE(sat) - - -0.60 VBE(sat) - - -0.75 - - - -0.90 - VBE(on) -0.60 - -0.75 VBE(1) - VBE(2) - 1.0 2.0	

h_{FE(1)}/h_{FE(2)} is the ratio of one transistor compared to the other transistor within the same package. The smaller h_{FE} is used as numerator.
 V_{BE(1)} - V_{BE(2)} is the absolute difference of one transistor compared to the other transistor within the same package.

 C_{ob}

NF

pF

10

^{2.} PCB with 250 square millimeter of 2 oz (0.070mm thick) copper heat spreading connected to package leads. Mounted on a FR4 PCB 76x76x1.5mm Single layer traces. Natural convection test according to JEDEC 51.

TYPICAL CHARACTERISTICS

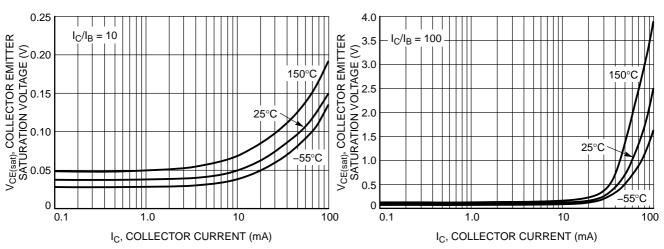


Figure 1. Collector Emitter Saturation Voltage vs. Collector Current

Figure 2. Collector Emitter Saturation Voltage vs. Collector Current

25°C

150°C

100

10

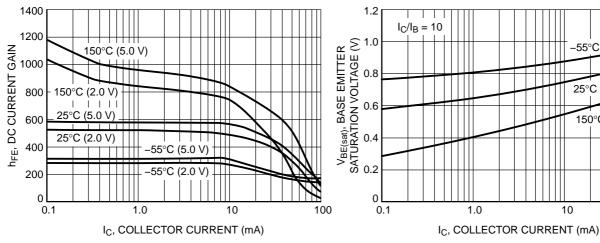


Figure 3. DC Current Gain vs. Collector Current

Figure 4. Base Emitter Saturation Voltage vs. **Collector Current**

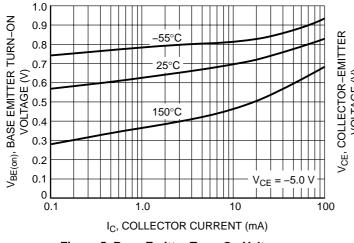


Figure 5. Base Emitter Turn-On Voltage vs. **Collector Current**

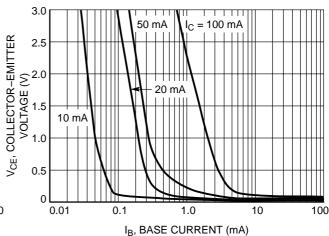
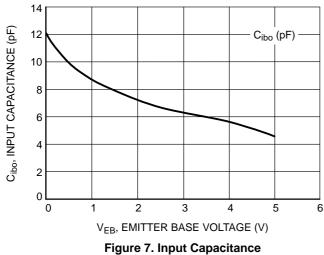



Figure 6. Saturation Region @ 25°C

TYPICAL CHARACTERISTICS

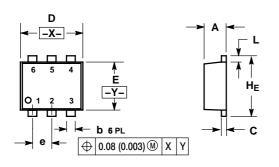

Cobo, OUTPUT CAPACITANCE (pF) Cobo (pF) V_{CB} , COLLECTOR BASE VOLTAGE (V)

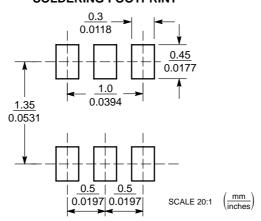
Figure 8. Output Capacitance

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A-01

CASE 463A-01 ISSUE F

NOTES


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS
- CONTROLLING DIMENSION: MILLIME I ERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.021	0.023	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.12	0.18	0.003	0.005	0.007	
D	1.50	1.60	1.70	0.059	0.062	0.066	
E	1.10	1.20	1.30	0.043	0.047	0.051	
е	0.5 BSC				0.02 BS0		
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.50	1.60	1.70	0.059	0.062	0.066	

SOLDERING FOOTPRINT*

STYLE 1: PIN 1. EMITTER 1 2. BASE 1

3. COLLECTOR 2 4. EMITTER 2 5. BASE 2 6. COLLECTOR 1

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative