2-Bit Dual-Supply Non-Inverting Level Translator

The NLSV2T244 is a 2-bit configurable dual-supply voltage level translator. The input A_n and output B_n ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. Both supply rails are configurable from 0.9 V to 4.5 V allowing universal low-voltage translation from the input A_n to the output B_n port.

Features

- Wide V_{CCA} and V_{CCB} Operating Range: 0.9 V to 4.5 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 4.5 V
- Non-preferential V_{CCA} and V_{CCB} Sequencing
- Outputs at 3-State until Active V_{CC} is Reached
- Power-Off Protection
- Outputs Switch to 3-State with V_{CCB} at GND
- Ultra-Small Packaging: 1.8 mm x 1.2 mm UDFN8
- This is a Pb-Free Device

Typical Applications

• Mobile Phones, PDAs, Other Portable Devices

Important Information

• ESD Protection for All Pins: HBM (Human Body Model) > 5000 V

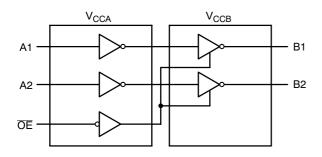
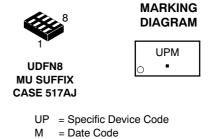
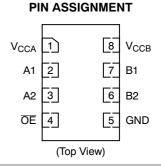



Figure 1. Logic Diagram



ON Semiconductor®

http://onsemi.com

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NLSV2T244MUTAG	UDFN8 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PIN ASSIGNMENT

PIN	FUNCTION
V _{CCA}	Input Port DC Power Supply
V _{CCB}	Output Port DC Power Supply
GND	Ground
A _n	Input Port
B _n	Output Port
ŌĒ	Output Enable

TRUTH TABLE

In	Inputs			
ŌE	A _n	B _n		
L	L	L		
L	Н	Н		
н	х	3-State		

MAXIMUM RATINGS

Symbol	Rating		Value	Condition	Unit
V_{CCA}, V_{CCB}	DC Supply Voltage		-0.5 to +5.5		V
VI	DC Input Voltage	An	-0.5 to +5.5		V
V _C	Control Input	OE	-0.5 to +5.5		V
V _O	DC Output Voltage (Power Down)	B _n	-0.5 to +5.5	$V_{CCA} = V_{CCB} = 0$	V
	(Active Mode)	B _n	-0.5 to +5.5		V
	(Tri-State Mode)	B _n	-0.5 to +5.5		V
I _{IK}	DC Input Diode Current		-20	V _I < GND	mA
I _{OK}	DC Output Diode Current		-50	V _O < GND	mA
Ι _Ο	DC Output Source/Sink Current		±50		mA
I _{CCA} , I _{CCB}	DC Supply Current Per Supply Pin		±100		mA
I _{GND}	DC Ground Current per Ground Pin		±100		mA
T _{STG}	Storage Temperature		-65 to +150		°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Parameter				
V _{CCA} , V _{CCB}	Positive DC Supply Voltage		0.9	4.5	V	
VI	Bus Input Voltage		GND	4.5	V	
V _C	Control Input	ŌĒ	GND	4.5	V	
V _{IO}	Bus Output Voltage (Power Down Mode)	B _n	GND	4.5	V	
	(Active Mode)	B _n	GND	V _{CCB}	V	
	(Tri-State Mode)	B _n	GND	4.5	V	
T _A	Operating Temperature Range		-40	+85	°C	
Δt / ΔV	Input Transition Rise or Rate V _I , from 30% to 70% of V _{CC} ; V _{CC} = 3.3 V ± 0.3 V		0	10	nS	

DC ELECTRICAL CHARACTERISTICS

					-40°C to	o +85°C	
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
VIH	Input HIGH Voltage		3.6 - 4.5	0.9 - 4.5	2.2	-	V
	(An, OE)		2.7 – 3.6	1	2.0	-	
			2.3 – 2.7	1	1.6	-	
			1.4 - 2.3	1	0.65 * V _{CCA}	-	
			0.9 – 1.4		0.9 * V _{CCA}	-	
VIL	Input LOW Voltage		3.6 - 4.5	0.9 - 4.5	-	0.8	V
	(An, OE)		2.7 – 3.6		-	0.8	
			2.3 – 2.7	1	-	0.7	
			1.4 - 2.3		-	0.35 * V _{CCA}	
			0.9 – 1.4	1	-	0.1 * V _{CCA}	
V _{OH}	Output HIGH Voltage	$I_{OH} = -100 \ \mu A; \ V_I = V_{IH}$	0.9 - 4.5	0.9-4.5	V _{CCB} - 0.2	-	V
		I _{OH} = -0.5 mA; V _I = V _{IH}	0.9	0.9	0.75 * V _{CCB}	-	
		$I_{OH} = -2 \text{ mA}; V_I = V_{IH}$	1.4	1.4	1.05	-	
		$I_{OH} = -6 \text{ mA}; V_I = V_{IH}$	1.65	1.65	1.25	-	
			2.3	2.3	2.0	-	
		I _{OH} = -12 mA; V _I = V _{IH}	2.3	2.3	1.8	-	
			2.7	2.7	2.2	-	
		I _{OH} = -18 mA; V _I = V _{IH}	2.3	2.3	1.7	-	
			3.0	3.0	2.4	-	
		I _{OH} = -24 mA; V _I = V _{IH}	3.0	3.0	2.2	-	
V _{OL}	Output LOW Voltage	I _{OL} = 100 μA; V _I = V _{IL}	0.9 - 4.5	0.9-4.5	-	0.2	V
		$I_{OL} = 0.5 \text{ mA}; V_I = V_{IH}$	1.1	1.1	-	0.3	
		I_{OL} = 2 mA; V_I = V_{IH}	1.4	1.4	-	0.35	
		$I_{OL} = 6 \text{ mA}; V_I = V_{IL}$	1.65	1.65	-	0.3	
		I _{OL} = 12 mA; V _I = V _{IL}	2.3	2.3	-	0.4	
			2.7	2.7	-	0.4	
		I _{OL} = 18 mA; V _I = V _{IL}	2.3	2.3	-	0.6	
			3.0	3.0	-	0.4	
		I_{OL} = 24 mA; V_I = V_{IL}	3.0	3.0	-	0.55	
l _l	Input Leakage Current	$V_I = V_{CCA}$ or GND	0.9-4.5	0.9 - 4.5	-1.0	1.0	μA
I _{OFF}	Power-Off Leakage Current	OE = 0 V	0 0.9 – 4.5	0.9-4.5 0	-1.0 -1.0	1.0 1.0	μA
I _{CCA}	Quiescent Supply Current		0.9 - 4.5	0.9 - 4.5	-	1.0	μA
I _{CCB}	Quiescent Supply Current	$V_{I} = V_{CCA}$ or GND; $I_{O} = 0$, $V_{CCA} = V_{CCB}$	0.9 - 4.5	0.9 - 4.5	-	1.0	μA
CA + I _{CCB}	Quiescent Supply Current		0.9 - 4.5	0.9 - 4.5	-	2.0	μA
ΔI_{CCA}	Increase in I_{CC} per Input Voltage, Other Inputs at V_{CCA} or GND	$V_{I} = V_{CCA} - 0.6 V;$ $V_{I} = V_{CCA}$ or GND	4.5 3.6	4.5 3.6	-	10 5.0	μA
ΔI_{CCB}	Increase in I_{CC} per Input Voltage, Other Inputs at V_{CCA} or GND	$V_{I} = V_{CCA} - 0.6 V;$ $V_{I} = V_{CCA}$ or GND	4.5 3.6	4.5 3.6	-	10 5.0	μA
I _{OZ}	I/O Tri-State Output Leakage Current	$T_A = 25^{\circ}C, \overline{OE} = 0 V$	0.9-4.5	0.9 - 4.5	-1.0	1.0	μA

TOTAL STATIC POWER CONSUMPTION (I_{CCA} + I_{CCB})

					–40°C t	o +85°C						
V _{CCB} (V)												
	4.5		3.3		2.8		1.8		0.9		1	
V _{CCA} (V)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
4.5		2		2		2		2		< 1.5	μA	
3.3		2		2		2		2		< 1.5	μA	
2.8		< 2		< 1		< 1		< 0.5		< 0.5	μA	
1.8		< 1		< 1		< 0.5		< 0.5		< 0.5	μA	
0.9		< 0.5		< 0.5		< 0.5		< 0.5		< 0.5	μA	

NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB}. This device is designed with the feature that the power-up sequence of V_{CCA} and V_{CCB} will not damage the IC.

AC ELECTRICAL CHARACTERISTICS

							-40°C t	o +85°C					
							Vcc	_B (V)					
			4	.5	3	.3	2	.8	1	.8	1	.2	
Symbol	Parameter	V _{CCA} (V)	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation	4.5		1.6		1.8		2.0		2.1		2.3	nS
t _{PHL} (Note 1)	Delay,	3.3		1.7		1.9		2.1		2.3		2.6	
	A _n to B _n	2.8		1.9		2.1		2.3		2.5		2.8	
		1.8		2.1		2.4		2.5		2.7		3.0	
		1.2		2.4		2.7		2.8		3.0		3.3	
t _{PZH} ,	Output	4.5		2.6		3.8		4.0		4.1		4.3	nS
t _{PZL} (Note 1)	Enable, OE to B _n	3.3		3.7		3.9		4.1		4.3		4.6	
(Note I)		2.5		3.9		4.1		4.3		4.5		4.8	1
		1.8		4.1		4.4		4.5		4.7		5.0	
		1.2		4.4		4.7		4.8		5.0		5.3	
t _{PHZ} ,	Output	4.5		2.6		3.8		4.0		4.1		4.3	nS
t _{PLZ} (Note 1)	Disable,	3.3		3.7		3.9		4.1		4.3		4.6	
(Note I)	OE to B _n	2.5		3.9		4.1		4.3		4.5		4.8	
		1.8		4.1		4.4		4.5		4.7		5.0	
		1.2		4.4		4.7		4.8		5.0		5.3	
t _{OSHL} ,	Output to	4.5		0.15		0.15		0.15		0.15		0.15	nS
t _{OSLH} (Note 1)	Output Skew,	3.3		0.15		0.15		0.15		0.15		0.15	
	Time	2.5		0.15		0.15		0.15		0.15		0.15	
		1.8		0.15		0.15		0.15		0.15		0.15	
		1.2		0.15		0.15		0.15		0.15		0.15	

1. Propagation delays defined per Figure 2.

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 2)	Unit
C _{IN}	Control Pin Input Capacitance	$V_{CCA} = V_{CCB} = 3.3 \text{ V}, V_I = 0 \text{ V or } V_{CCA/B}$	3.5	pF
C _{I/O}	I/O Pin Input Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	5.0	pF
C _{PD}	Power Dissipation Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or V_{CCA},f = 10 MHz	20	pF

2. Typical values are at $T_A = +25^{\circ}C$. 3. C_{PD} is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: $I_{CC(operating)} \cong C_{PD} \times V_{CC} \times f_{IN} \times N_{SW}$ where $I_{CC} = I_{CCA} + I_{CCB}$ and N_{SW} = total number of outputs switching.

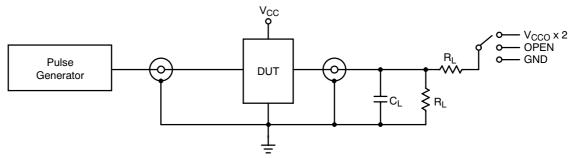
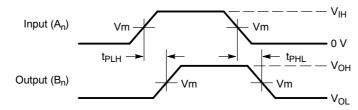
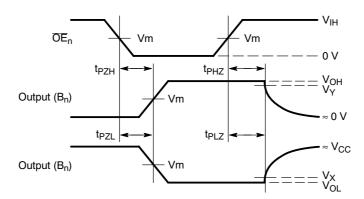
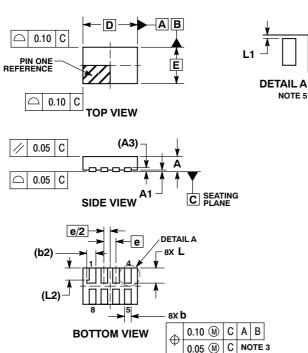




Figure 2. AC (Propagation Delay) Test Circuit

Test	Switch
t _{PLH} , t _{PHL}	OPEN
t _{PLZ} , t _{PZL}	V _{CCO} x 2
t _{PHZ} , t _{PZH}	GND
C_L = 15 pF or equivalent (include R_L = 2 k Ω or equivalent Z_{OUT} of pulse generator = 50 Ω	es probe and jig capacitance)

Waveform 1 – Propagation Delays t_R = t_F = 2.0 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns

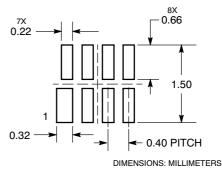


Waveform 2 – Output Enable and Disable Times t_R = t_F = 2.0 ns, 10% to 90%; f = 1 MHz; t_W = 500 ns

		V _{CC}									
Symbol	3.0 V – 4.5 V	2.3 V – 2.7 V	1.65 V – 1.95 V	1.4 V – 1.6 V	0.9 V – 1.3 V						
V _{mA}	V _{CCA} /2										
V _{mB}	V _{CCB} /2										
V _X	V _{OL} x 0.1										
V _Y	V _{OH} x 0.9										

PACKAGE DIMENSIONS

UDFN8 1.8 x 1.2, 0.4P CASE 517AJ-01 ISSUE O



NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN З.
- 0.15 AND 0.30 mm FROM TERMINAL TIP. MOLD FLASH ALLOWED ON TERMINALS 4 ALONG EDGE OF PACKAGE. FLASH MAY
- NOT EXCEED 0.03 ONTO BOTTOM SURFACE OF TERMINALS. 5. DETAIL A SHOWS OPTIONAL CONSTRUCTION FOR TERMINALS.

	MILLIMETERS	
DIM	MIN	MAX
Α	0.45	0.55
A1	0.00	0.05
A3	0.127 REF	
b	0.15	0.25
b2	0.30 REF	
D	1.80 BSC	
Е	1.20 BSC	
е	0.40 BSC	
L	0.45	0.55
L1	0.00	0.03
L2	0.40 REF	

MOUNTING FOOTPRINT SOLDERMASK DEFINED

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC observed on the provided in the evaluation of the rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications and actual performance in the body, or other applications and actual performance in the body, or other applications and actual performance in the body, or other applications are as components in systems intended for surgical implant into the body, or other applications and actual performance and applications are as components in systems intended for surgical implant into the body, or other applications are as components in systems intended for surgical implant into the body, or other applications are as components in systems intended for surgical implant into the body, or other applications are as components in systems intended for surgical implant into the body or other applications are as a components in systems intended for surgical implant into the body or other applications are as a components in systems intended for surgical implant into the body or other applications are as a some point of the surgical implant into the body or other applications are as a some point of the surgical implant into the body or other applications are as a some point of the surgical implant into the body or other applications are as a so intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, ad distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, and claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative