2.5 V 1:2 AnyLevel ${ }^{\text {Tu }}$ Input to LVDS Fanout Buffer / Translator

The NB6L11S is a differential 1:2 clock or data receiver and will accept AnyLevel ${ }^{\text {TM }}$ input signals: LVPECL, CML, LVCMOS, LVTTL, or LVDS. These signals will be translated to LVDS and two identical copies of Clock or Data will be distributed, operating up to 2.0 GHz or $2.5 \mathrm{~Gb} / \mathrm{s}$, respectively. As such, the NB6L11S is ideal for SONET, GigE, Fiber Channel, Backplane and other Clock or Data distribution applications.

The NB6L11S has a wide input common mode range from $\mathrm{GND}+50 \mathrm{mV}$ to $\mathrm{V}_{\mathrm{CC}}-50 \mathrm{mV}$. Combined with the 50Ω internal termination resistors at the inputs, the NB6L11S is ideal for translating a variety of differential or single-ended Clock or Data signals to 350 mV typical LVDS output levels.

The NB6L11S is the 2.5 V version of the NB6N11S and is offered in a small 3 mm X 3 mm 16-QFN package. Application notes, models, and support documentation are available at www.onsemi.com.

Features

- Input Clock Frequency $>2.0 \mathrm{GHz}$
- Input Data Rate $>2.5 \mathrm{~Gb} / \mathrm{s}$
- RMS Clock Jitter -0.5 ps , Typical
- $622 \mathrm{Mb} / \mathrm{s}$ Data Dependent Jitter - 6 ps, Typical
- 380 ps Typical Propagation Delay
- 120 ps Typical Rise and Fall Times
- Single Power Supply; $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 5 \%$
- These are $\mathrm{Pb}-F r e e$ Devices

Figure 2. Typical Output Waveform at $2.488 \mathrm{~Gb} / \mathrm{s}$ with PRBS 2^{23-1} ($\mathrm{V}_{\text {INPP }}=400 \mathrm{mV}$; Input Signal DDJ = $\mathbf{1 4} \mathrm{ps}$)

ON Semiconductor ${ }^{\text {® }}$

http://onsemi.com

(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.

Figure 1. Logic Diagram

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

NB6L11S

Figure 3. NB6L11S Pinout, 16-pin QFN (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	1/0	Description
1	Q0	LVDS Output	Non-inverted D output. Typically loaded with 100Ω receiver termination resistor across differential pair.
2	Q0	LVDS Output	Inverted D output. Typically loaded with 100Ω receiver termination resistor across differential pair.
3	Q1	LVDS Output	Non-inverted D output. Typically loaded with 100Ω receiver termination resistor across differential pair.
4	$\overline{\text { Q1 }}$	LVDS Output	Inverted D output. Typically loaded with 100Ω receiver termination resistor across differential pair.
5	V_{CC}	-	Positive Supply Voltage.
6	NC		No Connect.
7	V_{EE}		Negative Supply Voltage.
8	V_{EE}		Negative Supply Voltage.
9	$\bar{V}_{T D}$	-	Internal 50Ω termination pin for $\overline{\mathrm{D}}$.
10	$\overline{\text { D }}$	LVPECL, CML, LVDS, LVCMOS, LVTTL	Inverted Differential Clock/Data Input (Note 1).
11	D	LVPECL, CML, LVDS, LVCMOS, LVTTL	Non-inverted Differential Clock/Data Input (Note 1).
12	$\mathrm{V}_{\text {TD }}$	-	Internal 50Ω termination pin for $\overline{\mathrm{D}}$.
13	$\mathrm{V}_{\text {CC }}$	-	Positive Supply Voltage.
14	$\mathrm{V}_{\text {cc }}$	-	Positive Supply Voltage.
15	$\mathrm{V}_{\text {CC }}$	-	Positive Supply Voltage.
16	V_{CC}	-	Positive Supply Voltage.
EP			Exposed pad. The exposed pad (EP) on the package bottom must be attached to a heat-sinking conduit. The exposed pad may only be electrically connected to V_{EE}.

1. In the differential configuration when the input termination pins(VTD0/VT $\overline{\mathrm{D} 0}, \mathrm{VTD} 1 / \mathrm{VT} \overline{\mathrm{D} 1}$) are connected to a common termination voltage or left open, and if no signal is applied on D0/D0, D1/D1 input, then the device will be susceptible to self-oscillation.

NB6L11S

Table 2. ATTRIBUTES

Characteristic	Value
ESD ProtectionHuman Body Model Machine Model Charged Device Model	$\begin{gathered} >2 \mathrm{kV} \\ >200 \mathrm{~V} \\ >1 \mathrm{kV} \end{gathered}$
Moisture Sensitivity (Note 2)	Pb-Free Pkg
QFN-16	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V -0 @ 0.125 in
Transistor Count	225
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

2. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Positive Power Supply	GND $=0 \mathrm{~V}$		3.8	V
$\mathrm{V}_{\text {IN }}$	Positive Input	GND $=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$	3.8	V
I_{N}	Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor)	Static Surge		$\begin{aligned} & 35 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iosc	Output Short Circuit Current Line-to-Line (Q to $\overline{\mathrm{Q}}$) Line-to-End (Q or $\overline{\mathrm{Q}}$ to GND)	$\begin{aligned} & \mathrm{Q} \text { or } \overline{\mathrm{Q}} \\ & \mathrm{Q} \text { to } \overline{\mathrm{Q}} \text { to GND } \end{aligned}$	Continuous Continuous	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	QFN-16		-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \text { QFN-16 } \\ & \text { QFN-16 } \end{aligned}$	$\begin{aligned} & 41.6 \\ & 35.2 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	1S2P (Note 3)	QFN-16	4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. JEDEC standard multilayer board - 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.

NB6L11S

Table 4. DC CHARACTERISTICS, CLOCK INPUTS, LVDS OUTPUTS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V , $\mathrm{GND}=0 \mathrm{~V}$,
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit
$I_{\text {CC }}$	Power Supply Current (Note 8)		30	45	mA

DIFFERENTIAL INPUTS DRIVEN SINGLE-ENDED (Figures 11, 12, 16, and 18)

$\mathrm{V}_{\text {th }}$	Input Threshold Reference Voltage Range (Note 7)	GND +100	$\mathrm{~V}_{\mathrm{CC}}-100$	mV	
V_{IH}	Single-ended Input HIGH Voltage	$\mathrm{V}_{\text {th }}+100$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-100$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7, 8, 9, 10, 17, and 19)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	100		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\mathrm{CMR}}$	Input Common Mode Range (Differential Configuration)	$\mathrm{GND}+50$		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage ($\left.\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}\right)$	100		$\mathrm{~V}_{\mathrm{CC}}-\mathrm{GND}$	mV
$\mathrm{R}_{\mathrm{TIN}}$	Internal Input Termination Resistor	40	50	60	Ω

LVDS OUTPUTS (Note 4)

V_{OD}	Differential Output Voltage	250		450	mV
$\Delta \mathrm{V}_{\mathrm{OD}}$	Change in Magnitude of V_{OD} for Complementary Output States (Note 9)	0	1	25	mV
V_{OS}	Offset Voltage (Figure 15)	1125		1375	mV
$\Delta \mathrm{V}_{\mathrm{OS}}$	Change in Magnitude of V_{OS} for Complementary Output States (Note 9)	0	1	25	mV
V_{OH}	Output HIGH Voltage (Note 5)		1425	1600	mV
V_{OL}	Output LOW Voltage (Note 6)	900	1075		mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. LVDS outputs require 100Ω receiver termination resistor between differential pair. See Figure 14.
5. $\mathrm{V}_{\text {OH }}$ max $=\mathrm{V}_{\text {OSmax }}+1 / 2 \mathrm{~V}_{\text {OD }}$ max.
6. $\mathrm{V}_{\text {OL }} \max =\mathrm{V}_{\text {OS }} \min -1 / 2 \mathrm{~V}_{\text {OD }}$ max .
7. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
8. Input termination pins open, D / \bar{D} at the $D C$ level within $V_{C M R}$ and output pins loaded with $R_{L}=100 \Omega$ across differential.
9. Parameter guaranteed by design verification not tested in production.

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 2.625 V , GND $=0 \mathrm{~V}$; (Note 10)

Symbol	Characteristic	-40 ${ }^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V OUTPP		$\begin{aligned} & 220 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & 270 \end{aligned}$		$\begin{aligned} & 220 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & 270 \end{aligned}$		$\begin{aligned} & 220 \\ & 200 \\ & 170 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \\ & 270 \end{aligned}$		mV
$\mathrm{f}_{\text {DATA }}$	Maximum Operating Data Rate	1.5	2.5		1.5	2.5		1.5	2.5		Gb/s
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	Differential Input to Differential Output Propagation Delay	250		450	250	380	450	250		450	ps
${ }_{\text {tSKEW }}$	Duty Cycle Skew (Note 11) Within Device Skew (Note 16) Device-to-Device Skew (Note 15)		$\begin{gathered} 8 \\ 5 \\ 30 \end{gathered}$	$\begin{gathered} 45 \\ 25 \\ 100 \end{gathered}$		$\begin{gathered} \hline 8 \\ 5 \\ 30 \end{gathered}$	$\begin{gathered} \hline 45 \\ 25 \\ 100 \end{gathered}$		$\begin{gathered} \hline 8 \\ 5 \\ 30 \end{gathered}$	$\begin{gathered} 45 \\ 25 \\ 100 \end{gathered}$	ps
$\mathrm{t}_{\text {IITTER }}$	$\begin{array}{ll} \hline \text { RMS Random Clock Jitter (Note 13) } \begin{array}{c} f_{\text {in }}=1.0 \mathrm{GHz} \\ f_{\text {in }}=1.5 \mathrm{GHz} \\ \text { Peak-to-Peak Data Dependent Jitter (Note } 14) \\ f_{\text {DATA }}=622 \mathrm{Mb} / \mathrm{s} \\ \mathrm{f}_{\text {DATA }}=1.5 \mathrm{~Gb} / \mathrm{s} \\ \mathrm{f}_{\text {DATA }}=2.488 \mathrm{~Gb} / \mathrm{s} \end{array} . \end{array}$		$\begin{gathered} 0.5 \\ 0.5 \\ 6 \\ 7 \\ 70 \end{gathered}$			$\begin{gathered} 0.5 \\ 0.5 \\ 6 \\ 7 \\ 7 \\ 10 \end{gathered}$			$\begin{gathered} 0.5 \\ 0.5 \\ \\ 6 \\ 7 \\ 10 \end{gathered}$		ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 12)	100		$\mathrm{V}_{\mathrm{Cc}}-$ GND	100		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{GND} \end{aligned}$	100		$\begin{array}{\|l} \mathrm{V}_{\mathrm{CC}}- \\ \mathrm{GND} \end{array}$	mV
$\begin{array}{\|l\|l} \mathrm{t}_{\mathrm{r}} \\ \mathrm{t}_{\mathrm{f}} \end{array}$	Output Rise/Fall Times @ 250 MHz $(20 \%-80 \%)$	70	120	170	70	120	170	70	120	170	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
10. Measured by forcing $\mathrm{V}_{\text {INPPmin }}$ with 50% duty cycle clock source and $\mathrm{V}_{\mathrm{CC}}-1400 \mathrm{mV}$ offset. All loading with an external $\mathrm{R}_{\mathrm{L}}=100 \Omega$ across "D" and "D" of the receiver. Input edge rates 150 ps ($20 \%-80 \%$).
11. See Figure 13 differential measurement of $\mathrm{t}_{\text {skew }}=\left|\mathrm{t}_{\mathrm{PLH}}-\mathrm{t}_{\text {PHL }}\right|$ for a nominal 50% differential clock input waveform @ 250 MHz .
12. Input voltage swing is a single-ended measurement operating in differential mode.
13. RMS jitter with 50% Duty Cycle input clock signal.
14. Deterministic jitter with input NRZ data at PRBS $2^{23}-1$ and K28.5.
15. Skew is measured between outputs under identical transition @ 250 MHz .
16. The worst case condition between Q0/Q0 and Q1/Q1 from either D0/D0 or D1/D1, when both outputs have the same transition.

Figure 4. Output Voltage Amplitude (VOUTPP) versus Input Clock Frequency (f_{in}) and Temperature ($@ \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V}$)

NB6L11S

Figure 5. Typical Output Waveform at $2.488 \mathrm{~Gb} / \mathrm{s}$ with PRBS 2^{23-1} and OC48 mask ($\mathrm{V}_{\text {INPP }}=100 \mathrm{mV}$; Input Signal DDJ = 14 ps)

Figure 6. Input Structure

Figure 7. LVPECL Interface

Figure 9. Standard 50Ω Load CML Interface

Figure 11. LVCMOS Interface

Figure 8. LVDS Interface

Figure 10. HSTL Interface

Figure 12. LVTTL Interface
${ }^{*} \mathrm{R}_{\mathrm{TIN}}$, Internal Input Termination Resistor.

Figure 13. AC Reference Measurement

Figure 14. Typical LVDS Termination for Output Driver and Device Evaluation

Figure 15. LVDS Output

Figure 16. Differential Input Driven Single-Ended

Figure 18. $\mathrm{V}_{\text {th }}$ Diagram

Figure 17. Differential Inputs Driven Differentially

Figure 19. $\mathrm{V}_{\text {CMR }}$ Diagram

NB6L11S

ORDERING INFORMATION

Device	Package	Shipping †
NB6L11SMNG	QFN-16,3 (Pb-Free) $)$	123 Units / Rail
NB6L11SMNR2G	QFN-16,3 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NB6L11S

PACKAGE DIMENSIONS

16 PIN QFN
CASE 485G-01
ISSUE C

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. $L_{\text {max }}$ CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.18	0.30
D	3.00 BSC	
D2	1.65	1.85
E	3.00 BSC	
E2	1.65	1.85
e	0.50 BSC	
K	0.18 TYP	
L	0.30	0.50

SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and 10 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

