1.8V / 2.5V 10Gbps **Equalizer Receiver with 1:6 Differential CML Outputs**

Multi-Level Inputs w/ Internal Termination

Description

The NB7VQ1006M is a high performance EQualizer Receiver (signal enhancer) that operates up to 10 Gbps/7.5 GHz with a 1.8 V or 2.5 V power supply. When placed in series with a Data/Clock path, it will enhance the degraded signal transmitted across a FR4 backplane or cable interconnect and output six identical CML copies of the input

The EQualizer ENable pin (EQEN) allows the IN/IN inputs to either flow through or bypass the EQualizer section. Control of the EQualizer function is realized by setting EQEN; When EQEN is set Low, the IN $/ \overline{IN}$ inputs bypass the Equalizer. When EQEN is set High, the IN / IN inputs flow through the EQualizer. The default state at start-up is LOW.

The differential Data/Clock inputs incorporate a pair of internal 50 Ω Termination resistors, in a 100 Ω center-tapped configuration, via the VT Pin and will accept differential LVPECL, CML or LVDS logic levels. This feature provides transmission line termination on-chip, at the receiver end, eliminating external components.

The NB7VQ1006M is a member of the PEEO GigaComm[™] family of high performance Data/Clock products.

Features

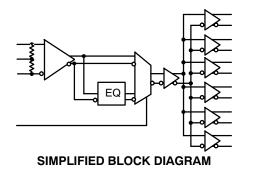
- Maximum Input Data Rate > 10 Gbps
- Maximum Input Clock Frequency > 7.5 GHz
- Backplane and Cable Interconnect Compensation
- 225 ps Typical Propagation Delay
- 30 ps Typical Rise and Fall Times
- Differential CML Outputs, 400 mV Peak-to-Peak, Typical
- Operating Range: $V_{CC} = 1.71 \text{ V}$ to 2.625 V, GND = 0 V
- Internal Input Termination Resistors, 50 Ω
- QFN-24 Package, 4 mm x 4 mm
- -40°C to +85°C Ambient Operating Temperature
- These are Pb-Free Devices*

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM*

QFN-24 **MN SUFFIX** CASE 485L



= Assembly Location

= Wafer Lot = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

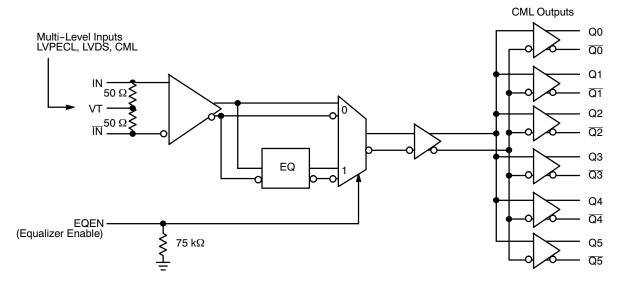


Figure 1. Detailed Block Diagram of NB7VQ1006M

Table 1. EQUALIZER ENABLE FUNCTION

EQEN	Function
0	IN/IN Inputs Bypass the EQualizer Section
1	Inputs Flow through the EQualizer

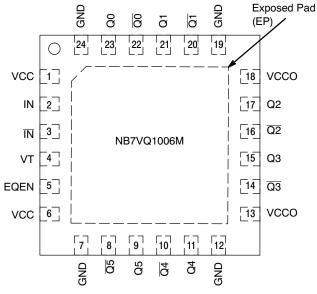


Figure 2. QFN-24 Lead Pinout (Top View)

Table 2. PIN DESCRIPTION

Pin	Name	I/O	Description	
1	VCC		Positive Supply Voltage for the Core Logic	
2	IN	LVPECL, CML, LVDS Input	Non-inverted Differential Clock/Data Input. (Note 1)	
3	ĪN	LVPECL, CML, LVDS Input	Inverted Differential Clock/Data Input. (Note 1)	
4	VT		Internal 50 Ω Termination Pin for IN and $\overline{\text{IN}}$	
5	EQEN	LVCMOS Input	Equalizer Enable Input; pin will default LOW when left open (has internal pull-down resistor)	
6	VCC		Positive Supply Voltage for the Core Logic	
7	GND		Negative Supply Voltage	
8	Q5	CML	Inverted Differential Output. (Note 1)	
9	Q5	CML	Non-inverted Differential Output. (Note 1)	
10	Q4	CML	Inverted Differential Output. (Note 1)	
11	Q4	CML	Non-inverted Differential Output. (Note 1)	
12	GND		Negative Supply Voltage	
13	VCCO		Positive Supply Voltage for the pre-amplifier and output buffer	
14	Q3	CML	Inverted Differential Output. (Note 1)	
15	Q3	CML	Non-inverted Differential Output. (Note 1)	
16	Q2	CML	Inverted Differential Output. (Note 1)	
17	Q2	CML	Non-inverted Differential Output. (Note 1)	
18	VCCO		Positive Supply Voltage for the pre-amplifier and output buffer	
19	GND		Negative Supply Voltage	
20	Q1	CML	Inverted Differential Output. (Note 1)	
21	Q1	CML	Non-inverted Differential Output. (Note 1)	
22	Q0	CML	Inverted Differential Output. (Note 1)	
23	Q0	CML	Non-inverted Differential Output. (Note 1)	
24	GND		Negative Supply Voltage	
-	EP	-	The Exposed Pad (EP) on the QFN-24 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat-sinking conduit. The pad is electrically connected to GND and is recommended to be electrically connected to GND on the PC board.	

In the differential configuration when the input termination pin (VT) is connected to a common termination voltage or left open, and if no signal is applied on IN/IN, then the device will be susceptible to self-oscillation. Qn/Qn outputs have internal 50 Ω source.
 All VCC, VCCO and GND pins must be externally connected to the same power supply voltage to guarantee proper device operation.

Table 3. ATTRIBUTES

Charac	Value		
ESD Protection Human Body Model Machine Model		> 4 kV > 200 V	
Moisture Sensitivity (Note 3)	Level 1		
Flammability Rating Oxygen Index: 28 to 34		UL 94 V-0 @ 0.125 in	
Transistor Count	244		
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test			

^{3.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC} , V _{CCO}	Positive Power Supply	GND = 0 V		3.0	V
VI	Input Voltage	GND = 0 V		-0.5 to V _{CC} + 0.5	V
V _{INPP}	Differential Input Voltage D - D			V _{CC} - GND	V
I _{IN}	Input Current Through R _T (50 Ω Resistor)			±40	mA
l _{OUT}	Output Current Through R _T (50 Ω Resistor)			±40	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient) (Note 4) TGSD 51-6 (2S2P Multilayer Test Board) with Filled Thermal Vias	0 lfpm 500 lfpm	QFN-24 QFN-24	37 32	°C/W °C/W
θ _{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	QFN-24	11	°C/W
T _{sol}	Wave Solder Pb-Free			265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

^{4.} JEDEC standard multilayer board – 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 5. DC CHARACTERISTICS – CML OUTPUT V_{CC} = V_{CCO} = 1.71 V to 2.625 V; GND = 0 V T_A = -40°C to 85°C

Symbol	Characteristic	Min	Тур	Max	Unit	
POWER SUPPLY CURRENT (Inputs and Outputs open)						
I _{CC}	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	V V	100 85 180 150	115 95 200 175	mA	
CML OU	TPUTS (Notes 5 and 6) (Figure 10)	•	<u>.</u>	<u>I</u>		
V _{OH}	Output HIGH Voltage $ \begin{array}{c} V_{CC} = 2.5 \\ V_{CC} = 1.8 \end{array} $		V _{CC} - 10 2490 1790	V _{CC} 2500 1800	mV	
V _{OL}	Output LOW Voltage $ \begin{aligned} V_{CC} &= 2.5 \\ V_{CC} &= 1.8 \end{aligned} $	V _{CC} - 600 1900 V _{CC} - 525 1275	V _{CC} - 500 2000 V _{CC} - 425 1375	V _{CC} - 400 2100 V _{CC} - 300 1500	mV	
DATA/CLOCK INPUTS (IN, IN) (Note 7) (Figures 6 & 7)						
V_{IHD}	Differential Input HIGH Voltage	1100		V _{CC}	mV	
V_{ILD}	Differential Input LOW Voltage	GND		V _{CC} - 100	mV	
V _{ID}	Differential Input Voltage (V _{IHD -} V _{ILD})	100		1200	mV	
I _{IH}	Input HIGH Current	-150	30	+150	μΑ	
I _{IL}	Input LOW Current	-150	-40	+150	μΑ	
CONTRO	DL INPUTS (EQEN)					
V _{IH}	Input HIGH Voltage	V _{CC} x 0.65		V _{CC}	mV	
V _{IL}	Input LOW Voltage	GND		V _{CC} x 0.35	mV	
I _{IH}	Input HIGH Current	-150	25	+150	μΑ	
I _{IL}	Input LOW Current	-150	10	+150	μΑ	
TERMIN	ATION RESISTORS	•			-	
R _{TIN}	Internal Input Termination Resistor	40	50	60	Ω	
R _{TOUT}	Internal Output Termination Resistor	40	50	60	Ω	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{5.} CML outputs loaded with 50 Ω to V_{CC} for proper operation.
6. Input and output parameters vary 1:1 with $V_{CC/}V_{CCO}$.
7. V_{IHD} , V_{ILD} , V_{ID} and V_{CMR} parameters must be complied with simultaneously.

Table 6. AC CHARACTERISTICS $V_{CC} = V_{CCO} = 1.71 \text{ V}$ to 2.625 V; GND = 0 V $T_A = -40 ^{\circ}\text{C}$ to 85 °C (Note 8)

Symbol	Characteristic		Тур	Max	Unit
f _{DATA}	Maximum Operating Input Data Rate	10			Gbps
f _{INCLK}	Maximum Input Clock Frequency $V_{CC} = 2.5V$ $V_{CC} = 1.8V$	7.5 6.5			GHz
V _{OUTPP}	Output Voltage Amplitude EQEN = 0 or 1 $f_{in} \le 5.0$ GHz V_{CC} = 2.5V (See Figures 4, Note 9) $f_{in} \le 7.5$ GHz V_{CC} = 2.5V	275 225	440 360		mV
	$f_{in} \le 5 \text{ GHz V}_{CC} = 1.8V$ $f_{in} \le 6.5 \text{ GHz V}_{CC} = 1.8V$	225 200	360 315		
V_{CMR}	Input Common Mode Range (Differential Configuration, Note 10) (Figure 8)	1050		V _{CC} - 50	mV
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential, IN/IN to Q/Q	170	225	315	ps
t _{PLH} TC	Propagation Delay Temperature Coefficient -40°C to +85°C		30		fs/°C
t _{DC}	Output Clock Duty Cycle		50	52	%
t _{SKEW}	Duty Cycle Skew (Note 11) Within Device Skew (Note 12) Device to Device Skew (Note 13)		0.15 10 20	1 25 40	ps
t _{JITTER}	Clock Jitter RMS, 1000 cycles (Note 14) EQEN = 1 $f_{in} \le 5.0 \text{ GHz}$ 5 GHz $\le f_{in} \le 7.5 \text{ GHz}$		0.2 0.2	0.7 1.2	ps
	Data Dependent Jitter (DDJ) (Note 15) EQEN = 1, \leq 10 Gbps V_{CC} = 2.5 V V_{CC} = 1.8 V		3 3	40 20	
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 16) (Figure 6)			1200	mV
t _r , t _f	Output Rise/Fall Times Q, Q, (20% - 80%)		30	65	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 8. Measured using a 400 mV source, 50% duty cycle 1GHz clock source. All outputs must be loaded with external 50 Ω to V_{CC}. Input edge rates 40 ps (20% 80%).
- 9. Output voltage swing is a single-ended measurement operating in differential mode.
- 10. V_{CMR} min varies 1:1 with GND, V_{CMR} max varies 1:1 with V_{CC}. The V_{CMR} range is referenced to the most positive side of the differential input signal.
- 11. Duty cycle skew is measured between differential outputs using the deviations of the sum of T_{pw} and T_{pw} + @ 5 GHz.
- 12. Within device skew compares coincident edges.
- 13. Device to device skew is measured between outputs under identical transition
- 14. Additive CLOCK jitter with 50% duty cycle clock signal.
- 15. Additive Peak-to-Peak jitter with input NRZ data at PRBS23.
- 16. Input voltage swing is a single-ended measurement operating in differential mode, with minimum propagation change of 25 ps.

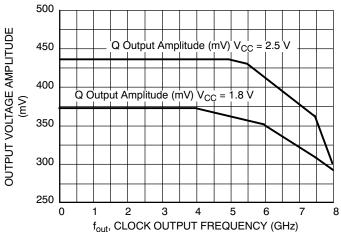


Figure 3. Output Voltage Amplitude (V_{OUTPP}) vs. Input Frequency (f_{in}) at Ambient Temperature (Typ), EQEN = 0 or 1

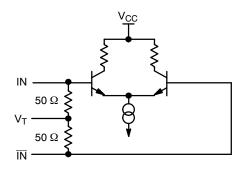
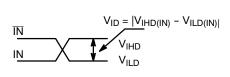



Figure 4. Input Structure

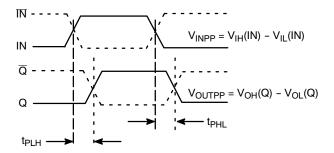


Figure 5. Differential Inputs Driven Differentially

Figure 6. AC Reference Measurement

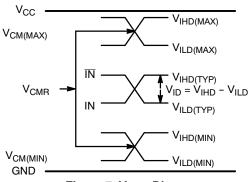


Figure 7. V_{CMR} Diagram

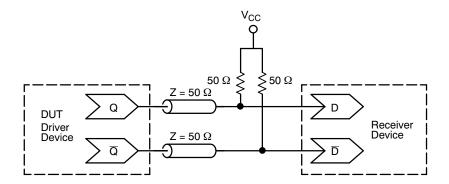


Figure 8. Typical Termination for CML Output Driver and Device Evaluation

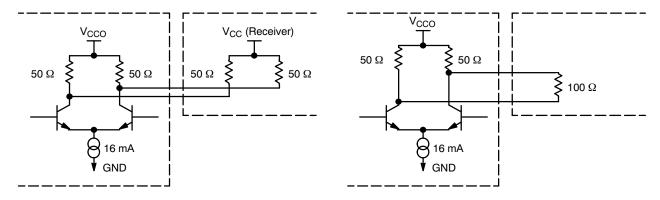


Figure 9. Typical CML Output Structure and Termination

Figure 10. Alternative Output Termination

APPLICATION INFORMATION

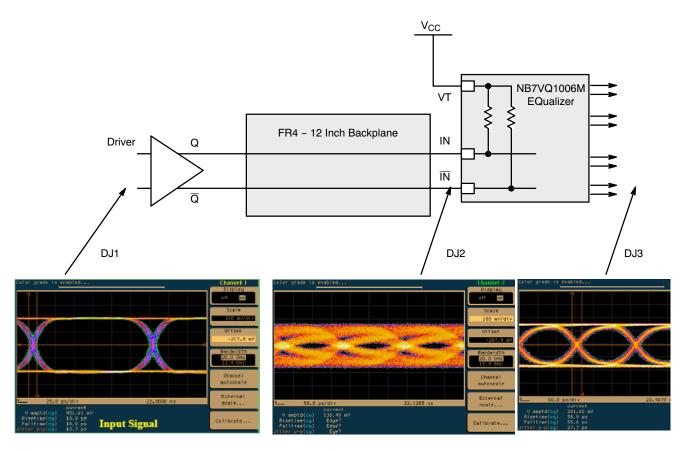
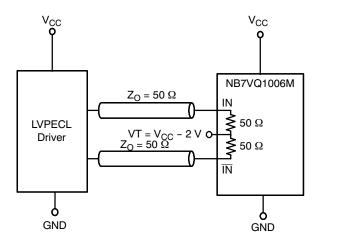



Figure 11. Typical NB7VQ1006 Equalizer Application and Interconnect with PRBS23 pattern at 6.5 Gbps

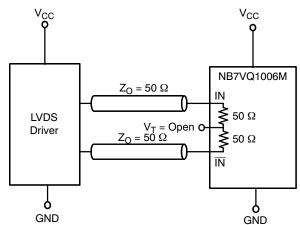


Figure 13. LVDS Interface

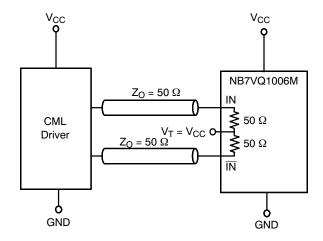


Figure 14. Standard 50 Ω Load CML Interface

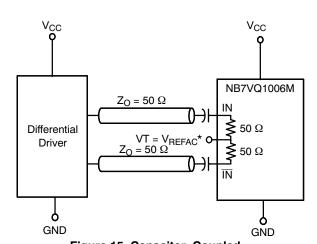
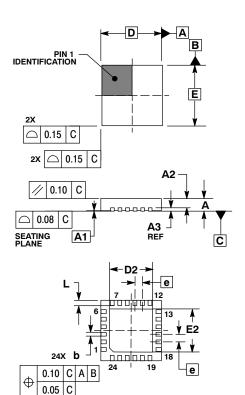


Figure 15. Capacitor-Coupled
Differential Interface
(VT Connected to External V_{REFAC})

ORDERING INFORMATION


Device	Package	Shipping [†]
NB7VQ1006MMNG	QFN-24 (Pb-Free)	92 Units / Rail
NB7VQ1006MMNHTBG	QFN-24 (Pb-Free)	100 / Tape & Reel
NB7VQ1006MMNTXG	QFN-24 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}V_{REFAC} bypassed to ground with a 0.01 μF capacitor

PACKAGE DIMENSIONS

QFN 24 MN SUFFIX 24 PIN QFN, 4x4 CASE 485L-01 **ISSUE O**

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION b APPLIES TO PLATED TERMINAL
 AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED PAD
- AS WELL AS THE TERMINALS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.80	1.00		
A1	0.00	0.05		
A2	0.60	0.80		
A3	0.20 REF			
b	0.23	0.28		
D	4.00 BSC			
D2	2.70	2.90		
E	4.00 BSC			
E2	2.70	2.90		
е	0.50 BSC			
L	0.35	0.45		

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered radiations of semiconduction Components industries, LC (SCILLC) and see the registered radiations of semiconductor components industries, the products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative