Ordering number : ENA2056

LV8771VH

Bi-CMOS LSI

PWM Constant-Current Control Stepping Motor Driver

http://onsemi.com

Overview

The LV8771VH is a PWM current control stepping motor driver. It is ideally suited for driving stepping motors used in office equipment and amusement applications.

Features

- 1 channel PWM current control stepping motor driver.
- I_{O} max = 1.5A
- Output on-resistance (High side : 0.6Ω ; Low side : 0.4Ω ; total : 1.0Ω ; Ta = 25° C, IO = 1.5A).
- Micro step mode can be set to full-step, half-step (full torque), half-step, and quarter-step mode.
- Built-in thermal shutdown circuit.
- No control power supply necessary.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _M max		36	٧
Output peak current	I _O peak	$t \le 10 ms$, ON-duty $\le 20\%$	1.75	Α
Output current	I _O max		1.5	Α
Allowable power dissipation	Pd max	*	3.0	W
Logic input voltage	V _{IN} max		-0.3 to +6	V
VREF input voltage	VREF max		-0.3 to +6	V
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

^{*} Specified circuit board : 90.0mm×90.0mm×1.6mm, glass epoxy board.

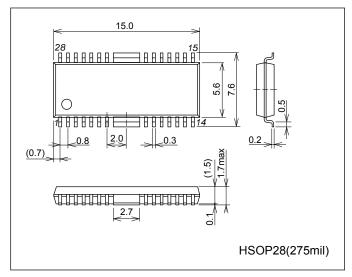
Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

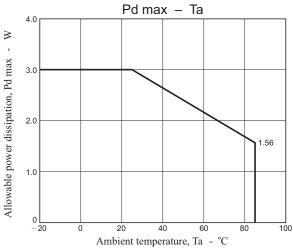
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

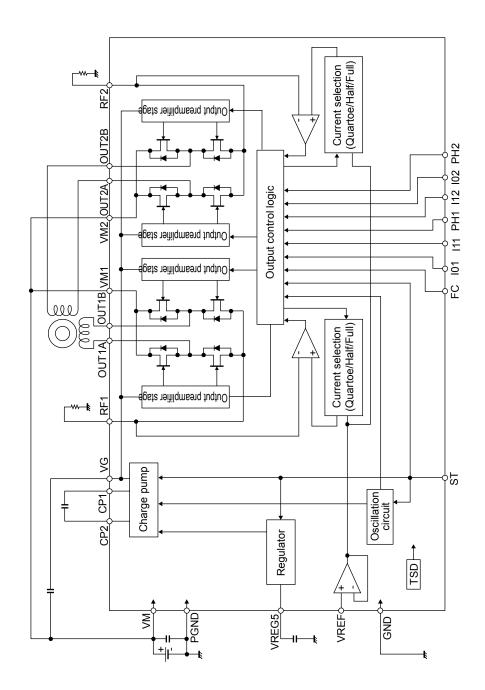
LV8771VH

Recommendation Operating Conditions at $Ta = 25^{\circ}C$

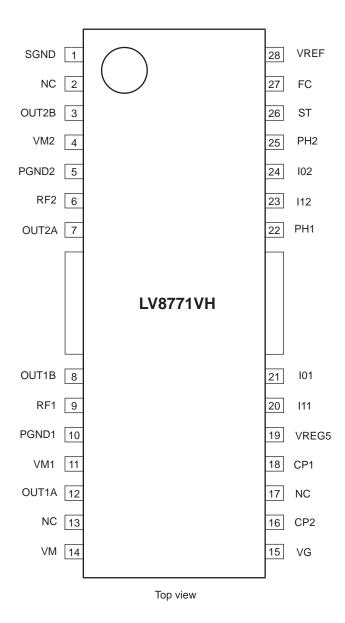

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VM		9 to 32	V
Logic input voltage	V _{IN}		0 to 5.5	V
VREF input voltage range	VREF		0 to 3	V


Electrical Characteristics at Ta = 25°C, VM = 24V, VREF = 1.5V

Description	Complete al	Conditions	Ratings			Unit	
Parameter	Symbol	Conditions	min	typ	max	Unit	
Standby mode current drain	IMstn	ST = "L"		100	150	μΑ	
Current drain	IM	ST = "H", I01 = I11 = I02 = I12 = "L", with no		2	3	mA	
VREG5 output voltage	Vreg5	load Ireq5 = -1mA	4.7	5	5.3	V	
Thermal shutdown temperature	TSD	Design guarantee	150	180	210	°C	
Thermal hysteresis width	ΔTSD	Design guarantee Design guarantee	130	40	210		
Motor driver	ΔΙΟ	Design guarantee		40			
Output on resistance	Ronu	I _O = 1.5A, Upper-side on resistance		0.6	0.78	Ω	
o alpat on rootstanoo	Rond	I _O = 1.5A, Lower-side on resistance		0.4	0.52	Ω	
Output leakage current	l _O leak	V _M = 36V			50	μА	
Diode forward voltage	VD	IVI		1.1	1.4	V	
Logic high-level input voltage	V _{IN} H		2.0			V	
Logic low-level input voltage	V _{IN} L				0.8	V	
Logic pin input current	I _{IN} L	V _{IN} = 0.8V	4	8	12	μΑ	
	I _{IN} H	V _{IN} = 5V	30	50	70	μА	
Current setting comparator	Vtdac11	I01(02) = "H", I11(12) = "H"	0.29	0.30	0.31	V	
threshold voltage	Vtdac01	I01(02) = "L", I11(12) = "H"	0.20	0.21	0.22	V	
	Vtdac10	I01(02) = "H", I11(12) = "L"	0.11	0.12	0.13	V	
Chopping frequency	Fchop1	FC = "L"	24.8	31.0	37.2	kHz	
Fchop2		FC = "H"	49.6	62.0	74.4	kHz	
VREF pin input current	Iref	VREF = 1.5V	-0.5			μΑ	
Charge pump	•		<u>'</u>	.			
VG output voltage	VG		28	28.7	29.8	V	
Rise time	tONG	VG = 0.1μF		200	500	μS	
Oscillator frequency	Fosc		100	125	150	kHz	


Package Dimensions

unit : mm (typ) 3222A



Block Diagram

Pin Assignment

LV8771VH

Pin Functions

PIN FU	unctions		
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
22	PH1	Channel 1 forward/reverse rotation pin.	VREG5 O
21	101	Channel 1 output control input pin .	VKEG5O
20	I11	Channel 1 output control input pin .	↓
25	PH2	Channel 2 forward/reverse rotation pin.	Ĭ Ĭ <u>+</u>
24	102	Channel 2 output control input pin .	│
23	I12	Channel 2 output control input pin .	10.0
27	FC	Chopping frequency switching pin.	10kΩ
			Δ §100kΩ
			GND O
			G.1.5 4
26	ST	Chip enable pin.	VREG5 ○ •
			<u> </u>
			<u>↑</u>
			*
			§20kΩ
			<u> </u>
			<u>↑</u>
			\$80kΩ
			GND O + +
8	OUT1B	Channel 1 OUTB output pin.	000
9	RF1	Channel 1 current-sense resistor connection pin.	114
10	PGND1	Power system ground pin 1.	
11	VM1	Channel 1 motor power supply connection pin.	
12	OUT1A	Channel 1 OUTA output pin.	
3	OUT2B	Channel 2 OUTB output pin.	
4	VM2	Channel 2 current-sense resistor connection pin.	
5	PGND2	Power system ground pin 2.	127 + 83
6	RF2	Channel 2 motor power supply connection pin.	
7	OUT2A	Channel 2 OUTA output pin.	
			500Ω
			10(5)) 500Ω
			9(6)
			GND O-
2, 13	NC	No Connection	
, 17	-	(No internal connection to the IC)	
<u> </u>		1 ,	

Continued on next page.

Continued from preceding page.

	nom preceding p		For the John Market Company
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
15 14 16 18	VG VM CP2 CP1	Charge pump capacitor connection pin. Motor power supply connection pin. Charge pump capacitor connection pin. Charge pump capacitor connection pin.	VREG5 0 GND 0
19	VREG5	Internal power supply capacitor connection pin.	VM Φ 2kΩ 80kΩ \$26kΩ
28	VREF	Constant current control reference voltage input pin.	VREG5 O 50000

Description of operation

Input Pin Function

The function to prevent including the turn from the input to the power supply is built into each logic pin. Therefore, the current turns to the power supply even if power supply (VM) is turned off with the voltage impressed to the input pin and there is not crowding.

(1) Chip enable function

This IC is switched between standby and operating mode by setting the ST pin. In standby mode, the IC is set to power-save mode and all logic is reset. In addition, the internal regulator circuit and charge pump circuit do not operate in standby mode.

ST	Mode	Internal regulator	Charge pump	
Low or Open	Standby mode	Standby	Standby	
High	Operating mode	Operating	Operating	

(2) Output control logic

1		
101(02)	I11(12)	Output current (I _O)
Low	Low	0
High	Low	I _O = ((VREF / 5) / RF) × 40%
Low	High	I _O = ((VREF / 5) / RF) × 70%
High	High	I _O = (VREF / 5) / RF

PH1(2)	Current direction
Low	OUTB → OUTA
High	OUTA → OUTB

(3) Setting constant-current control reference current

This IC is designed to automatically exercise PWM constant-current chopping control for the motor current by setting the output current. Based on the voltage input to the VREF pin and the resistance connected between RF and GND, the output current that is subject to the constant-current control is set using the calculation formula below:

$$I_{OUT} = (VREF / 5) / RF resistance$$

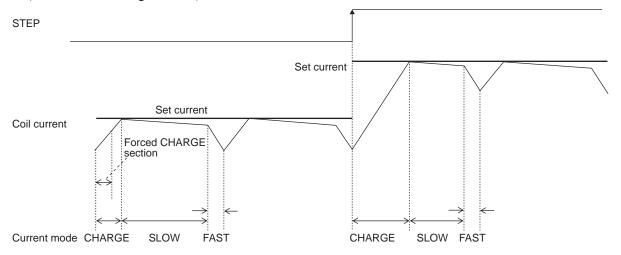
(Example) When VREF = 1.5V, I01(02) = High, I11(12) = Low and RF1(2) resistance is 0.5 Ω , the setting current is shown below.

$$I_{OUT} = (1.5 V / 5) / 0.5 \Omega = 0.6 A$$

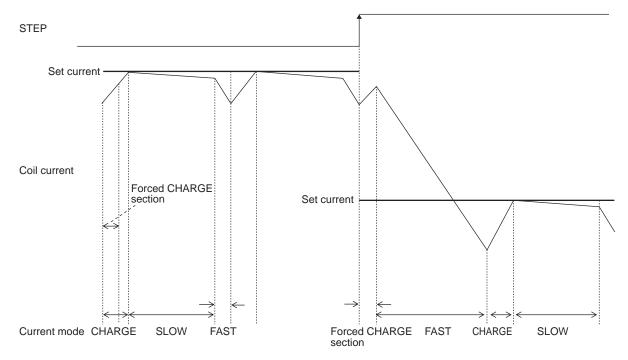
(4) Chopping frequency control logic

FC Chopping frequency	
Low	31kHz
High	62kHz

(5) Blanking period


If, when exercising PWM constant-current chopping control over the motor current, the mode is switched from decay to charge, the recovery current of the parasitic diode may flow to the current sensing resistance, causing noise to be carried on the current sensing resistance pin, and this may result in erroneous detection. To prevent this erroneous detection, a blanking period is provided to prevent the noise occurring during mode switching from being received. During this period, the mode is not switched from charge to decay even if noise is carried on the current sensing resistance pin.

The blanking time is fixed at approximately 1µs.


^{*} The above setting is the output current at I01(02) = High, I11(12) = Low.

(6) Current control operation specification

(Sine wave increasing direction)

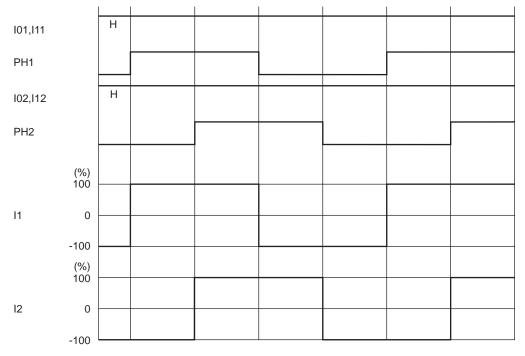
(Sine wave decreasing direction)

In each current mode, the operation sequence is as described below:

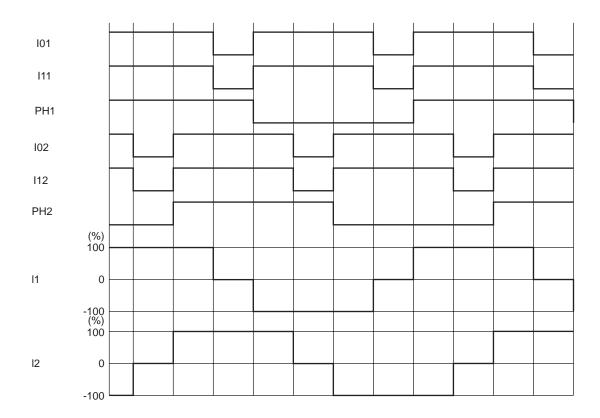
- At rise of chopping frequency, the CHARGE mode begins. (In the time defined as the "blanking time," the CHARGE mode is forced regardless of the magnitude of the coil current (ICOIL) and set current (IREF).)
- The coil current (ICOIL) and set current (IREF) are compared in this blanking time.

When (ICOIL < IREF) state exists;

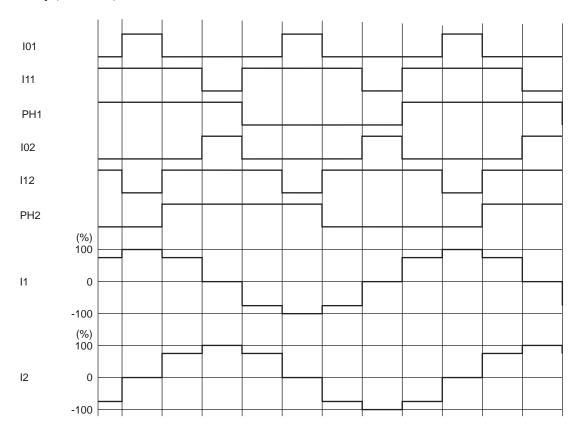
The CHARGE mode up to ICOIL \geq IREF, then followed by changeover to the SLOW DECAY mode, and finally by the FAST DECAY mode for approximately 1 μ s.

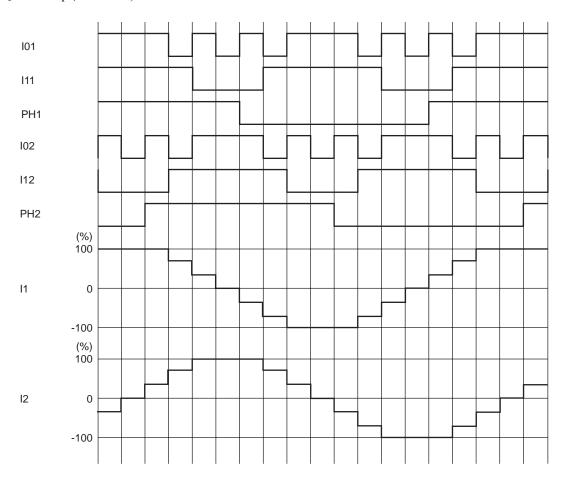

When (ICOIL < IREF) state does not exist;

The FAST DECAY mode begins. The coil current is attenuated in the FAST DECAY mode till one cycle of chopping is over.

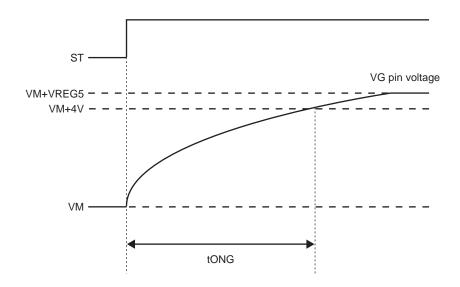

Above operations are repeated. Normally, the SLOW (+FAST) DECAY mode continues in the sine wave increasing direction, then entering the FAST DECAY mode till the current is attenuated to the set level and followed by the SLOW DECAY mode.

(7) Typical current waveform in each excitation mode

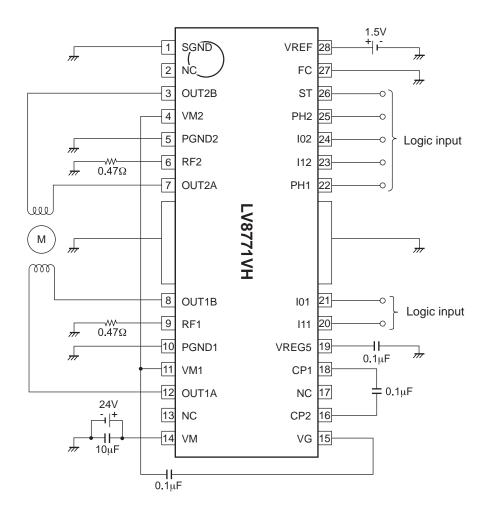

Full step (CW mode)


Half step full torque (CW mode)

Half step (CW mode)



Quarter step (CW mode)


(8) Charge Pump Circuit

When the ST pin is set High, the charge pump circuit operates and the V_G pin voltage is boosted from the V_M voltage to the V_M + VREG5 voltage. Because the output is not turned on if V_M +4V or more is not pressured, the voltage of the V_G pin recommends the drive of the motor to put the time of t_{ONG} or more, and to begin.

V_G Pin Voltage Schematic View

Application Circuit Example

Each constant setting formula of above circuit example is as below.

Setting of chopping frequency: 31kHz (FC = Low)

The setting constant-current level becomes like a list.

(Example) I01(02) = High, I11(12) = High
When VREF = 1.5V, RF = 0.47
$$\Omega$$

IOUT = VREF/5/RF resistance
= (1.5V/5) / 0.47 Ω = 0.64A

I01(02)	I11(12)	Output current (I _O)
Low	Low	0
High	Low	I _O = ((VREF / 5) / RF) × 40%
Low	High	$I_{O} = ((VREF / 5) / RF) \times 70\%$
High	High	I _O = (VREF / 5) / RF

PH1(2)	Current direction
Low	$OUTB \to OUTA$
High	$OUTA \to OUTB$

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa