Dual Power Operational Amplifier

Description

The NCx5652 is a dual power operational amplifier with a versatile output stage configuration that allows conventional op–amp biasing or user tuning of efficiency, isolation, or current monitoring. Integrated flyback diodes protect the amplifiers during inductive load transients. Operating at supply voltages as low as 3.3 V, the NCx5652 is capable of delivering 500 mA of current while maintaining an excellent output swing. The integrated thermal shutdown circuit protects the NCx5652 from excessive power dissipation. A thermal warning flag is provided for external monitoring of the device, providing a flexible interface to a system's microcontroller. This open–collector thermal flag output doubles as a DISABLE input that can be used to tri–state both amplifier outputs under user control. The 12–pin UDFN 3x3 mm package provides thermal robustness while achieving space savings on high density PCBs.

Features

- Operating Supply Voltage Range: 3.3 V to 13.2 V
- Output Supply Voltage Range: 3.3 V to 13.2 V
- High Current Drive: 500 mA Operating
- Thermal Flag: Open-collector for Flexible Interface
- Thermal Shutdown/ Disable Function
- Output Short Circuit Tolerable (1 A to Source or Ground)
- No Power Sequencing Required (V_{CC}, VC1, VC2)
- UDFN-12 Package Features Wettable Flank for Improved Solderability
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

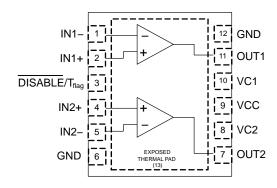
Typical Applications

- Telecom
- Vcom Driver
- Small DC Brush Motors
- LED String Driver
- Electrochromic Driver

ON Semiconductor®

www.onsemi.com

UDFN12 MU SUFFIX CASE 517AM


MARKING DIAGRAM

N5652 = Specific Device Code A = Assembly Location

L = Wafer Lot
Y = Year
W = Work Week
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

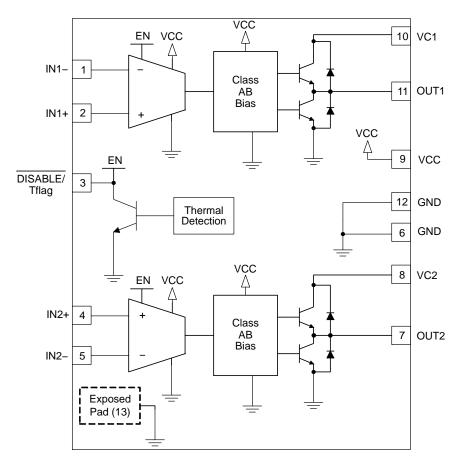


Figure 1. Block Diagram

Table 1. PIN DESCRIPTION

Pin	Name	Туре	Description
1	IN1-	Input	Negative input of amplifier 1.
2	IN1+	Input	Positive input of amplifier 1.
3	DISABLE/Tflag	Input/Output	Dual use pin –Thermal flag– an open collector output requiring an external pull–up resistor. The output is pulled low when the thermal limit is reached. It is high–impedance in normal operation. Disable – Must use an open collector/drain for input with pull–up resistor to Vcc. Pulling pin low disables the amplifiers. If pin is not used, a pull–up resistor to Vcc is still required (10 KΩ recommended)
4	IN2+	Input	Positive input of amplifier 2.
5	IN2-	Input	Negative input of amplifier 2.
6	GND	Power	Power ground.
7	OUT2	Output	Output of amplifier 2.
8	VC2	Power	Positive supply of output stage 2.
9	VCC	Power	Positive supply of core circuitry.
10	VC1	Power	Positive supply of output stage 1.
11	OUT1	Output	Output of amplifier 1.
12	GND	Power	Power ground.
13	EXPOSED PAD	Power	The Exposed Pad must be attached to a heat-sinking conduit and connected to GND .

Table 2. ABSOLUTE MAXIMUM RATINGS Over operating free-air temperature, unless otherwise stated

Parameter	Symbol	Limit	Unit
Supply Voltage (V _{CC} – GND)	V _{CC}	16	V
Output Supply Voltage	VC1, VC2	16	V
INPUT AND OUTPUT PINS	·		
Differential Input Voltage	V_{id}	±V _{CC}	V
Input Common Mode Voltage Range	V _{ICR}	-0.3 to V _{CC} +0.3	V
Output Current (Note 1)	Гоит	±1000	mA
DISABLE/Tflag Pin Voltage (Note 2)	V _{DISABLE/Tflag}	7	V
TEMPERATURE			
Storage Temperature	T _{STG}	-65 to 165	°C
Junction Temperature	$T_{J(MAX)}$	150	°C
ESD RATINGS (Note 3)			
Human Body Model	НВМ	±1500 (IN-, Tflag pins). ±2000 (All other pins)	V
Machine Model	MM	±150(IN-, Tflag pins). ±200 (All other pins)	V
Charge Device Model	CDM	±2500	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Continuous short-to-ground or source; power dissipation must be taken into consideration.
- 2. Connected to voltage source via a pull-up resistor.
- This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC-Q100-002 (JEDEC standard: JESD22-A114)
 - ESD Machine Model tested per AEC-Q100-003 (JEDEC standard: JESD22-A115)
 - ESD Charged Device Model tested per ANSI/ESD S5.3.1–2009 (AEC–Q100–011)

Table 3. THERMAL INFORMATION (Note 4)

Thermal Metric	Symbol	Limit	Unit
Junction to Ambient – UDFN12 (Exposed pad connected to 50 mm ² one ounce copper.)	θ_{JA}	147	°C/W
Junction to Ambient – UDFN12 (Exposed pad connected to 1200 mm ² one ounce copper.)	$\theta_{\sf JA}$	52	°C/W

^{4.} Based on JEDEC.

Table 4. RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Limit	Unit
Operating Supply Voltage	V _{CC}	3.3 to 13.2	V
Output Supply Voltage	VC1, VC2	3.3 to 13.2	V
Output Current (Note 5)	IC1, IC2	±500	mA
Operating Temperature Range	T _A	-40 to +125	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{5.} Power dissipation must be taken into consideration to avoid thermal shutdown.

Table 5. ELECTRICAL CHARACTERISTICS: $V_{CC} = VC1 = VC2 = 5 V$ Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to +125°C. At $T_A = +25^{\circ}C$, $R_L = 1$ kΩ connected to midsupply, $V_{OUT} =$ midsupply, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS				•	•	.1
Offset Voltage	Vos			1	15	mV
Offset Voltage Drift	δV/δΤ			2		μV/°C
Input Bias Current	I _{IB}			550	1000	nA
Input Offset Current	I _{OS}			10	100	nA
Input Common Mode Range (Note 6)	V _{CM}		0		3.8	V
Common Mode Rejection Ratio	CMRR		90	100		dB
OUTPUT CHARACTERISTICS (OUT1	, OUT2)					
Output Voltage High (Note 7)	V _{OH}	$V_{id} = 1 \text{ V, } I_{O} = +250 \text{ mA}$	4.0	4.15		V
Output Voltage Low	V _{OL}	$V_{id} = -1 \text{ V, I}_{O} = -250 \text{ mA}$		200	350	mV
DYNAMIC PERFORMANCE						
Open Loop Voltage Gain	A _{VOL}		90	105		dB
Gain Bandwidth Product	GBWP	$R_L = 47 \ \Omega, \ C_L = 100 \ nF$		350		kHz
Gain Margin	A _M	$R_L = 47 \ \Omega, \ C_L = 100 \ nF$		6		dB
Phase Margin	Ψм	$R_L = 47 \ \Omega, \ C_L = 100 \ nF$		45		0
Slew Rate	SR			1.5		V/μs
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	V _{CC} = VC1 = VC2 = 3.3 V to 13.2 V	65	75		dB
Quiescent Current (Operating)	Icc	No R _L , C _L = 100 nF		3	4	mA
Quiescent Current (Output)	I _{C1,} I _{C2}	(Per op amp) No R_L , $C_L = 100 \text{ nF}$		4	6	mA
THERMAL CHARACTERISTICS	•					
Thermal Shutdown (Note 8)	T _{SHUTDOWN}			160		°C
LOGIC CHARACTERISTICS (DISABL	E/Tflag)		•	-	•	
Output Voltage Low (Note 6)	V _{OL}	I _{OL} = 1 mA			0.7	V
Input Voltage High (Note 9)	V _{IH}		1.5			V
Input Voltage Low (Note 10)	V _{IL}				1.1	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions.

6. V_{CM} is a function of V_{CC} (V_{CC} – 1.2 V).

7. V_{OH} is a function of V_{CC} (V_{CC} – 0.8 V).

8. Guaranteed by design/characterization.

9. DISABLE/Tflag pin with a pull-up resistor for sourcing.

^{10.} DISABLE/Tflag pin with an open collector/drain for sinking.

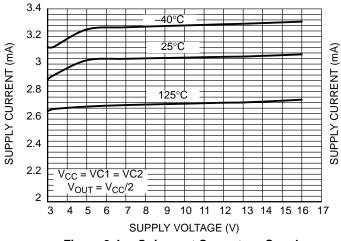


Figure 2. I_{CC} Quiescent Current vs. Supply Voltage over Temperature

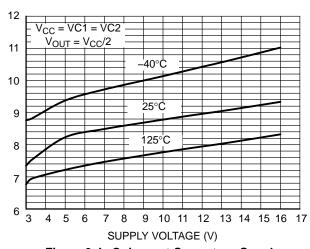


Figure 3. Ic Quiescent Current vs. Supply Voltage over Temperature (Ic1, Ic2 combined)

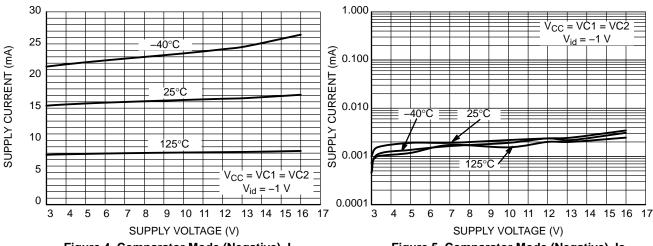


Figure 4. Comparator Mode (Negative), I_{CC} Quiescent Current vs Supply Voltage

Figure 5. Comparator Mode (Negative), Ic Quiescent Current vs Supply Voltage (Ic1,Ic2 Combined)

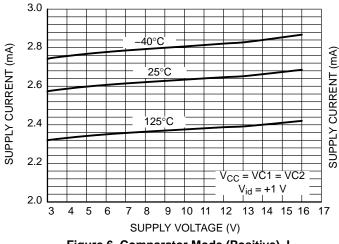
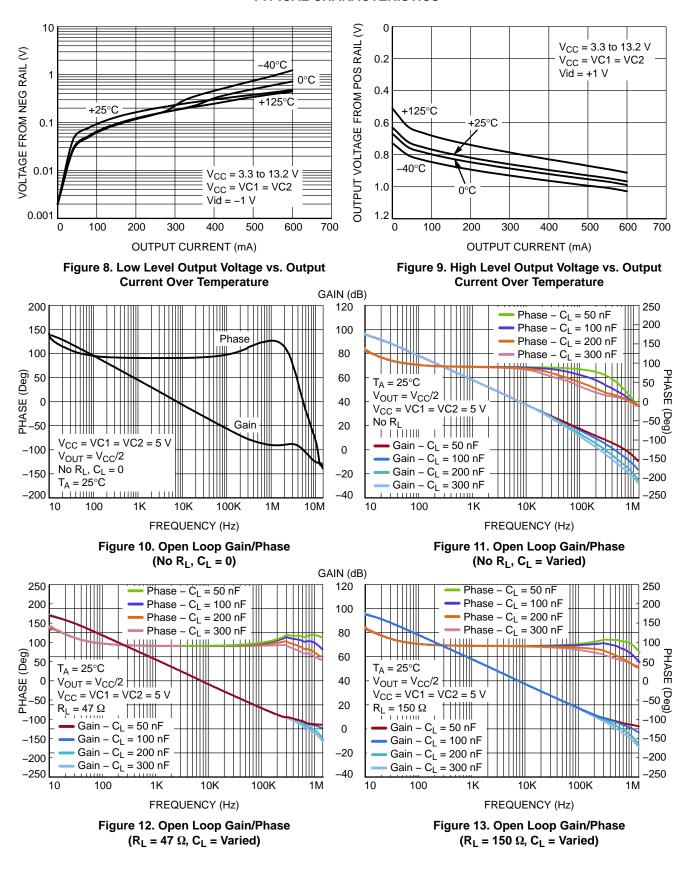



Figure 6. Comparator Mode (Positive), I_{CC} Quiescent Current vs Supply Voltage

Figure 7. Comparator Mode (Positive), Ic Quiescent Current vs Supply Voltage (Ic1,Ic2 Combined)

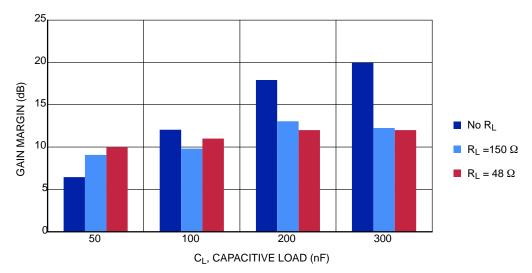


Figure 14. Gain Margin vs. Load

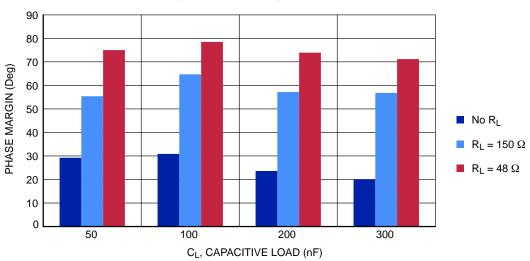


Figure 15. Phase Margin vs. Load

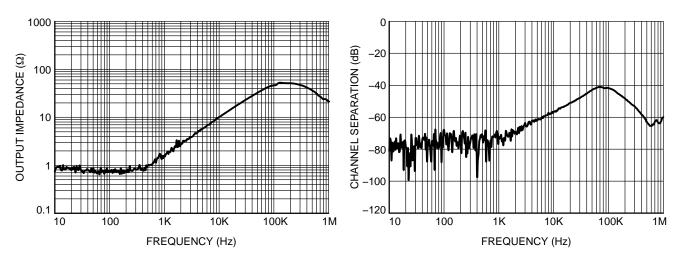


Figure 16. Open Loop Output Impedance vs. Frequency

Figure 17. Channel Separation vs. Frequency

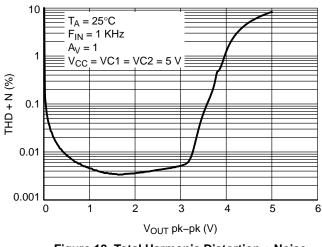


Figure 18. Total Harmonic Distortion + Noise vs. Vout

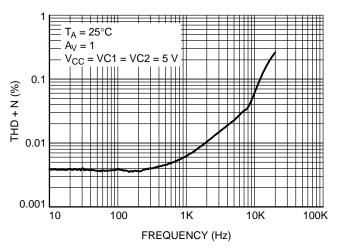


Figure 19. Total Harmonic Distortion + Noise vs. Frequency

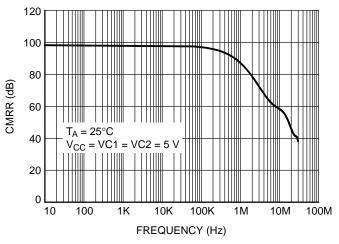


Figure 20. CMRR vs. Frequency

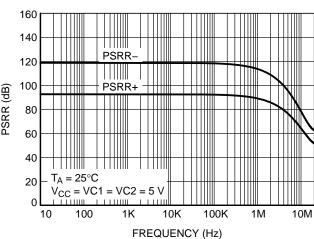


Figure 21. PSRR vs. Frequency

APPLICATIONS INFORMATION

Figure 22 shows a typical application on how to connect the NCx5652 pins where the V_{CC} is supplied by 5 V and the output stages are supplied with 12 V. In this configuration the inputs can be driven up to 3.8 V. The outputs can be as high as 4 V and able to go near ground due to the excellent V_{OL} parameters. The loads can be up to 500 mA continuous.

Power Supply

The supply pins should be properly bypassed with ceramic $0.1~\mu F$ to $1~\mu F$ capacitors. The different supply pins for the input stage (V_{CC}) and the output stage (V_{C1},V_{C2}) provide a flexible power option. In many applications there is often a digital supply and different supply for driving motors or elements. The output stage can be optimized for the voltage requirements of the load. There are no requirements on the voltage levels (as long as they are within specification) and sequencing of the V_{CC} , V_{C1} , and V_{C2} pins. It should be noted that the input and output swings are a function of V_{CC} . The common mode voltage range and output swings are specified in the electrical section according to the V_{CC} voltage.

Shutdown Feature

The NCx5652 provides a thermal shutdown feature to protect the device during fault conditions. Pin 3 is an open collector output that can be connected to a microcontroller to alert the system that a thermal shutdown has occurred. When the device is in a thermal shutdown condition, the outputs are tri–stated. The same pin can be used for an input as well. It can be open collector OR'd so that the microcontroller can disable the device by driving this pin low. This pin must always be pulled high via a $10 \text{ k}\Omega$ resistor

(recommended value). It should always be driven with an open collector/drain device. Some microcontrollers have open drain configurable outputs.

Stability

The NCx5652 is designed to drive large capacitive loads and not oscillate even at unity gain. It is recommended that a minimum of 0.1 μ F capacitor be placed on the outputs to ensure stability. This is mainly required for no load or light load conditions. If configuring the device as an emitter follower, it is also recommended to use a 10 k Ω feedback resistor as shown in **Figure 22**.

Thermal Considerations

As power in the NCx5652 increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. When the NCS5652 has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power applications. The maximum dissipation the NCx5652 can handle is given by:

$$P_{D(MAX)} = \frac{\left[T_{J(MAX)} - T_{A}\right]}{R_{\theta,IA}}$$
 (eq. 1)

Since T_J is not recommended to exceed 150°C, then the NCx5652 soldered on 1200 mm², 1 oz copper area, FR4 can dissipate up to 2.5 W when the ambient temperature (T_A) is 25°C.

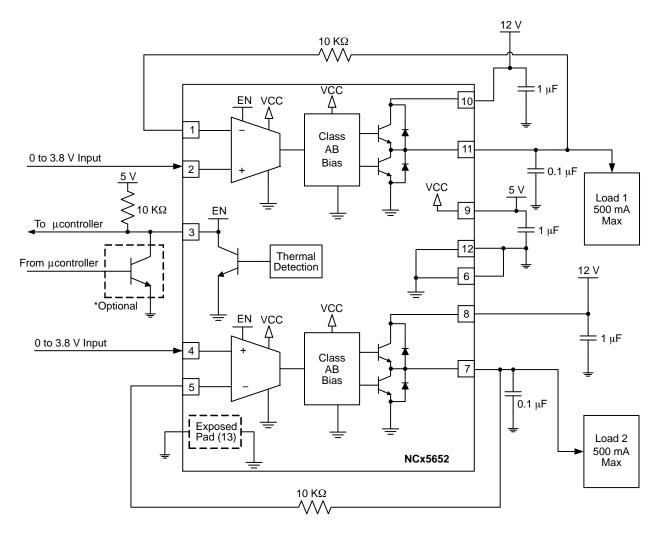
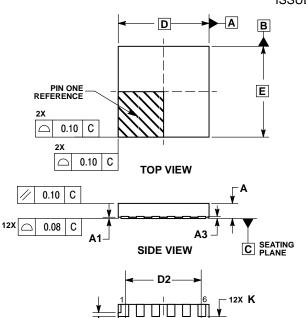


Figure 22. NCx5652 Application Diagram


ORDERING INFORMATION

Device	Automotive	Marking	Package	Shipping †
NCS5652MUTWG	No	N5652	UDFN12, 3x3 mm Pb-Free	3000 / Tape & Reel
NCV5652MUTWG	Yes	N5652	UDFN12, 3x3 mm Pb-Free	3000 / Tape & Neel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

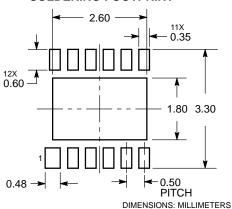
UDFN12 3x3, 0.5PCASE 517AM-01 ISSUE O

E₂

CAB

C NOTE 3

①.10 0.05


12X

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED
 TERMINAL AND IS MEASURED BETWEEN
 0.15 AND 0.30 MM FROM TERMINAL TIP.
- 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.45	0.55	
A1	0.00	0.05	
A3	0.07 REF		
b	0.20	0.30	
D	3.00 BSC		
D2	2.40	2.60	
E	3.00 BSC		
E2	1.60	1.80	
е	0.50 BSC		
K	0.20		
LI	0.30	0.50	

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

(0.15)

е

BOTTOM VIEW

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2175 or 800-344-3860 1011 Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative