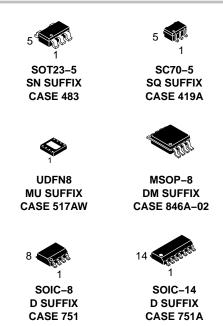
10 μV Offset, 0.07 μV/°C, Zero-Drift Operational Amplifier

The NCS333/2333/4333 family of zero–drift op amps feature offset voltage as low as 10 μ V over the 1.8 V to 5.5 V supply voltage range. The zero–drift architecture reduces the offset drift to as low as 0.07 μ V/°C and enables high precision measurements over both time and temperature. This family has low power consumption over a wide dynamic range and is available in space saving packages. These features make it well suited for signal conditioning circuits in portable, industrial, automotive, medical and consumer markets.

Features

- Gain–Bandwidth Product:
 - 270 kHz (NCx2333)
 - ◆ 350 kHz (NCx333/A, NCx4333)
- Low Supply Current: 17 µA (typ., at 3.3 V)
- Low Offset Voltage:
 - 10 μV max for NCS333/A
 - 30 μV max for NCV333A, NCx2333 and NCx4333
- Low Offset Drift: 0.07 $\mu V/^{\circ}C$ max for NCS333/A
- Wide Supply Range: 1.8 V to 5.5 V
- Wide Temperature Range: -40° C to $+125^{\circ}$ C
- Rail-to-Rail Input and Output
- Available in Single, Dual and Quad Packages
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable


Applications

- Automotive
- Battery Powered/ Portable Application
- Sensor Signal Conditioning
- Low Voltage Current Sensing
- Filter Circuits
- Bridge Circuits
- Medical Instrumentation

ON Semiconductor®

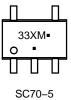
www.onsemi.com

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.


This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.

DEVICE MARKING INFORMATION

Single Channel Configuration NCS333, NCS333A, NCV333A

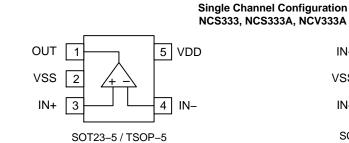
TSOP-5/SOT23-5 CASE 483

SC70-5 CASE 419A

Dual Channel Configuration NCS2333, NCV2333

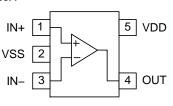
UDFN8, 2x2, 0.5P CASE 517AW

Micro8/MSOP8 CASE 846A-02

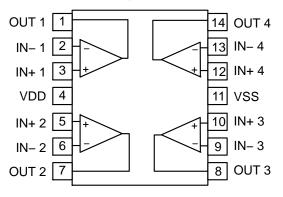

SOIC-8 CASE 751

Quad Channel Configuration NCS4333, NCV4333


11004000, 11014000					
14 R R R R R R R NCS4333G O AWLYWW					
┧ぜぜぜぜぜぜぜ					
SOIC-14 CASE 751A					
X = Specific Device Code E = NCS333 (SOT23-5) H = NCS333 (SC70-5) G = NCS333A (SOT23-5) K = NCS333A (SC70-5) M = NCV333A (SOT23-5) N = NCV333A (SC70-5)					
A = Assembly Location					
Y = Year					
W = Work Week					
M = Date Code					
G or • = Pb–Free Package					


(Note: Microdot may be in either location)

PIN CONNECTIONS


Dual Channel Configuration NCS2333, NCV2333

SC70-5 / SC-88-5 / SOT-353-5

Quad Channel Configuration NCS4333, NCV4333

Configuration	Automotive	Device	Package	Shipping [†]
Single	No	NCS333SN2T1G	SOT23-5 / TSOP-5	3000 / Tape & Reel
		NCS333ASN2T1G		3000 / Tape & Reel
		NCS333SQ3T2G	SC70-5 / SC-88-5 / SOT-353-5	3000 / Tape & Reel
		NCS333ASQ3T2G* (In Development)		3000 / Tape & Reel
	Yes	NCV333ASQ3T2G* (In Development)		3000 / Tape & Reel
		NCV333ASN2T1G	SOT23-5 / TSOP-5	3000 / Tape & Reel
Dual	No	NCS2333MUTBG* (In Development)	UDFN8	3000 / Tape & Reel
		NCS2333DR2G	SOIC-8	3000 / Tape & Reel
		NCS2333DMR2G	MICRO-8	4000 / Tape & Reel
	Yes	NCV2333DR2G	SOIC-8	3000 / Tape & Reel
		NCV2333DMR2G* (In Development)	MICRO-8	4000 / Tape & Reel
Quad	No	NCS4333DR2G	SOIC-14	2500 / Tape & Reel
	Yes	NCV4333DR2G	SOIC-14	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*Contact local sales office for more information

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature, unless otherwise stated.

Parameter	Rating	Unit
Supply Voltage	7	V
INPUT AND OUTPUT PINS		
Input Voltage (Note 1)	(VSS) – 0.3 to (VDD) + 0.3	V
Input Current (Note 1)	±10	mA
Output Short Circuit Current (Note 2)	Continuous	
TEMPERATURE		
Operating Temperature Range	-40 to +125	°C
Storage Temperature Range	-65 to +150	°C
Junction Temperature	+150	°C
ESD RATINGS (Note 3)		
Human Body Model (HBM)	4000	V
Machine Model (MM)	200	V
Charged Device Model (CDM)	2000	V
OTHER RATINGS		
Latch-up Current (Note 4)	100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Level 1

1. Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3 V beyond the supply rails should be current limited to 10 mA or less

2. Short-circuit to ground.

MSL

 This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard JS-001 (AEC-Q100-002) ESD Machine Model tested per JEDEC standard JESD22-A115 (AEC-Q100-003)
 ESD Charged Device Model tested per JEDEC standard JESD202-C101 (AEC-Q100-003)

- ESD Charged Device Model tested per JEDEC standard JESD22[C101 (AEC-Q100-011)
- 4. Latch-up Current tested per JEDEC standard: JESD78.

THERMAL INFORMATION (Note 5)

Parameter	Symbol	Package	Value	Unit
Thermal Resistance, θ_{JA}		SOT23–5 / TSOP5	290	°C/W
Junction to Ambient		SC70-5 / SC-88-5 / SOT-353-5	425	
		Micro8 / MSOP8	298	1
		SOIC-8	250	1
		UDFN8		
		SOIC-14	216	

5. As mounted on an 80x80x1.5 mm FR4 PCB with 650 mm² and 2 oz (0.034 mm) thick copper heat spreader. Following JEDEC JESD/EIA 51.1, 51.2, 51.3 test guidelines

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Range	Unit	
Supply Voltage (V _{DD} – V _{SS})		VS	1.8 to 5.5	V
Specified Operating Temperature Range NCS333			-40 to 105	°C
	NCx333A, NCx2333, NCx4333		-40 to 125	
Input Common Mode Voltage Range		VICMR	V _{SS} -0.1 to V _{DD} +0.1	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS: $V_S = 1.8 V$ to 5.5 V At $T_A = +25^{\circ}C$, $R_L = 10 k\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted. **Boldface** limits apply over the specified temperature range, guaranteed by characterization and/or design.

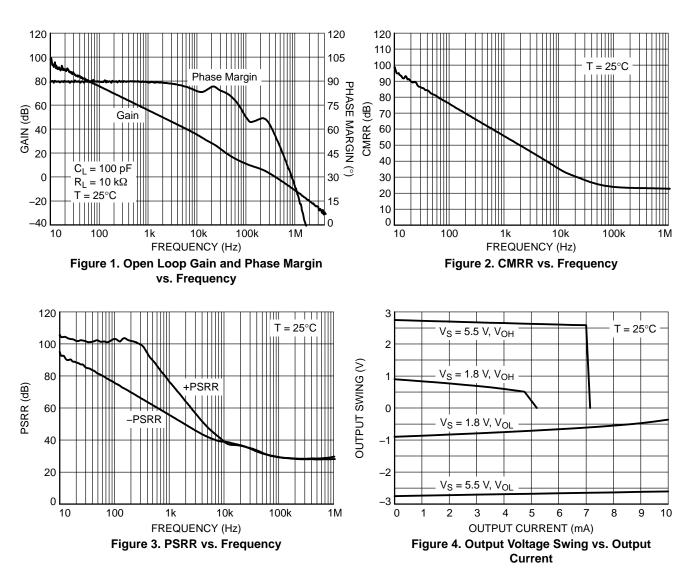
Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS	•						
Offset Voltage	V _{OS}	V _S = +5 V	NCS333, NCS333A		3.5	10	μV
			NCV333A, NCx2333, NCx4333		6.0	30	
Offset Voltage Drift vs Temp	$\Delta V_{OS} / \Delta T$	NCS333,	NCS333A		0.03	0.07	μV/°C
		NCV333A	a, V _S = 5 V		0.03	0.14	
		NCx2333	, V _S = 5 V		0.04	0.07	
		NCx4333	, V _S = 5 V		0.095	0.19	
Offset Voltage Drift vs Supply	$\Delta V_{OS} / \Delta V_{S}$	NCS333, NCS333A	Full temperature range		0.32	5	μV/V
		NCV333A	T _A = +25°C		0.40	5	
			Full temperature range			8	
		NCx2333, NCx4333	T _A = +25°C		0.32	5	1
			Full temperature range			12.6	
Input Bias Current	I _{IB}	T _A = +25°C	NCS333, NCx333A		±60	±200	pА
(Note 6)			NCx2333, NCx4333		±60	±400	
		Full temper	ature range		±400		
Input Offset Current	I _{OS}	T _A = +25°C	NCS333, NCx333A		±50	±400	pА
(Note 6)			NCx2333, NCx4333		±50	±800	
Common Mode Rejection Ratio	CMRR	V _S =	1.8 V		111		dB
(Note 7)		V _S =	3.3 V		118		
		V _S = 5.0 V	NCS333, NCS333A, NCx2333, NCx4333	106	123		
			NCV333A	103	123		
		V _S =	5.5 V		127		
Input Resistance	R _{IN}	Differ	rential		180		GΩ
		Common Mode			90		1
Input Capacitance	C _{IN}	NCS333	Differential		2.3		pF
			Common Mode		4.6		1
		NCx2333, NCx4333,	Differential		4.1		1
		NCx333A	Common Mode		7.9		1

OUTPUT CHARACTERISTICS

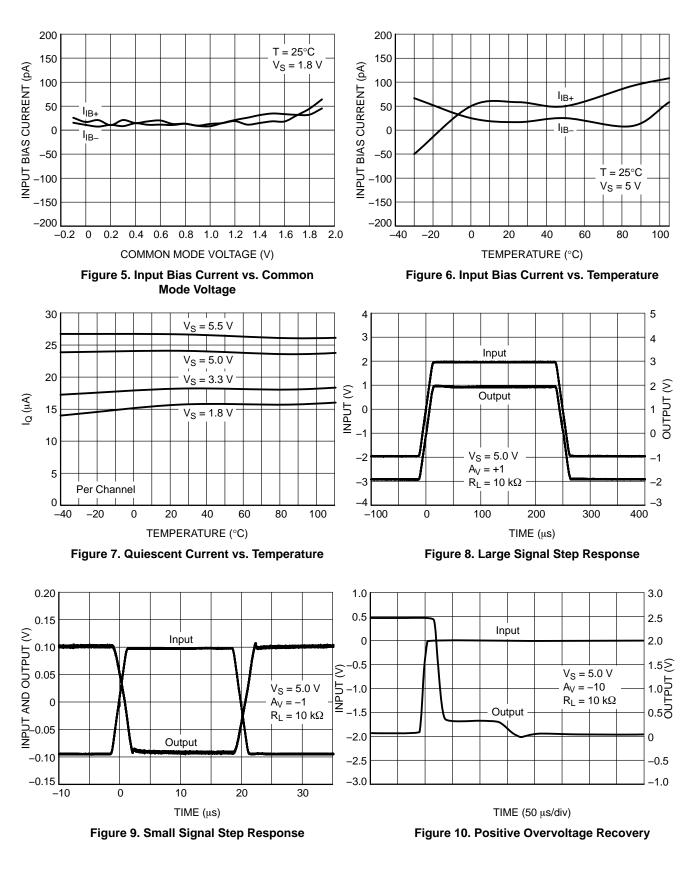
Open Loop Voltage Gain	A _{VOL}	V_{SS} + 100 mV < V_O < V_{DD} – 100 mV	106	145		dB
Open Loop Output Impedance	Z _{out-OL}	$f = UGBW, I_O = 0 mA$		300		Ω
Output Voltage High,	V _{OH}	T _A = +25°C		10	50	mV
Referenced to V _{DD}		Full temperature range			70	
Output Voltage Low,	V _{OL}	T _A = +25°C		10	50	mV
Referenced to V _{SS}		Full temperature range			70	

6. Guaranteed by characterization and/or design 7. Specified over the full common mode range: $V_{SS} - 0.1 < V_{CM} < V_{DD} + 0.1$

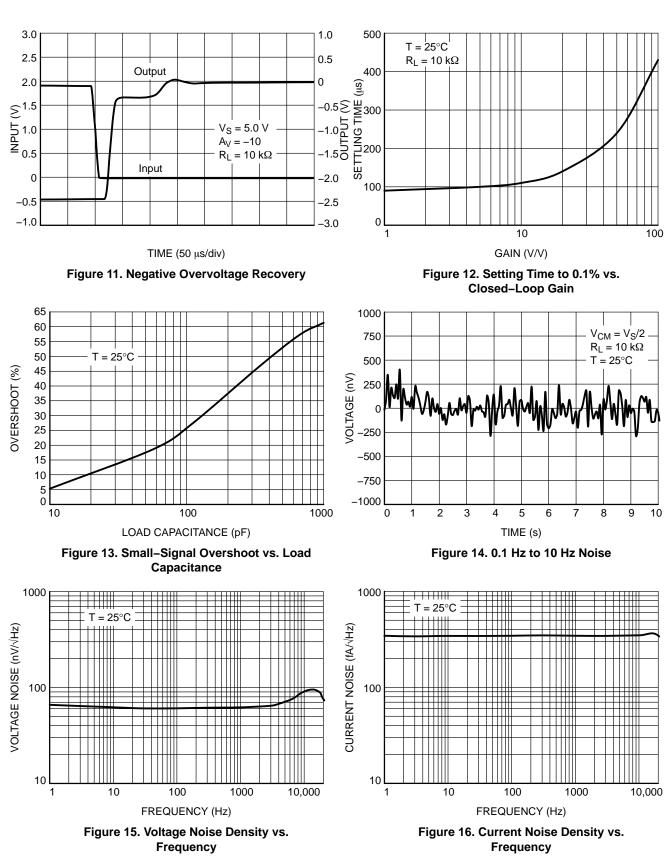
ELECTRICAL CHARACTERISTICS: $V_S = 1.8 V$ to 5.5 V


At $T_A = +25^{\circ}$ C, $R_L = 10 \text{ k}\Omega$ connected to midsupply, $V_{CM} = V_{OUT} =$ midsupply, unless otherwise noted.

Boldface limits apply over the specified temperature range, guaranteed by characterization and/or design.


Parameter	Symbol	Cond	litions	Min	Тур	Max	Unit	
OUTPUT CHARACTERISTICS	-	-			-	-	-	
Output Current Capability	Ι _Ο	Sinking Current	NCS333		25		mA	
			NCx333A, NCx2333, NCx4333		11			
		Sourcing	g Current		5.0			
Capacitive Load Drive	CL			S	ee Figure	13		
NOISE PERFORMANCE								
Voltage Noise Density	e _N	f _{IN} = 1 kHz			62		nV / √ Hz	
Voltage Noise	e _{P-P}	f _{IN} = 0.1 Hz to 10 Hz			1.1		μV_{PP}	
		f _{IN} = 0.01	Hz to 1 Hz		0.5		1	
Current Noise Density	i _N	f _{IN} =	10 Hz		350		fA / \sqrt{Hz}	
Channel Separation	1	NCx2333	NCx4333		135		dB	
DYNAMIC PERFORMANCE		•				•		
Gain Bandwidth Product	GBWP	C _L = 100 pF	NCS333, NCx333A, NCx4333		350		kHz	
			NCx2333		270		1	
Gain Margin	A _M	C _L = 1	100 pF		18		dB	
Phase Margin	ϕ_{M}	C _L = 1	100 pF		55		0	
Slew Rate	SR	G =	= +1		0.15		V/μs	
POWER SUPPLY								
Power Supply Rejection Ratio	PSRR	NCS333, NCS333A	Full temperature range	106	130		dB	
		NCx2333, NCx4333,	T _A = +25°C	106	130			
		NCV333A	Full temperature range	98			1	
Turn–on Time	t _{ON}	V _S =	= 5 V		100		μs	
Quiescent Current	Ι _Q	NCS333, NCS333A,	$1.8~\text{V} \leq \text{V}_{\text{S}} \leq 3.3~\text{V}$		17	25	μΑ	
(Note 8)		NCx2333, NCx4333				27		
			$3.3 \text{ V} < \text{V}_{\text{S}} \le 5.5 \text{ V}$		21	33	}	
						35	1	
		NCV333A	$1.8~V \leq V_S \leq 3.3~V$		20	30	1	
						35	1	
			$3.3 \text{ V} < \text{V}_{\text{S}} \le 5.5 \text{ V}$		28	40	1	
						45	1	

8. No load, per channel


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

APPLICATIONS INFORMATION

APPLICATION CIRCUITS

Low-Side Current Sensing

The goal of low-side current sensing is to detect over-current conditions or as a method of feedback control. A sense resistor is placed in series with the load to ground. Typically, the value of the sense resistor is less than $100 \text{ m}\Omega$ to reduce power loss across the resistor. The op amp amplifies the voltage drop across the sense resistor with a gain set by external resistors R1, R2, R3, and R4 (where R1 = R2, R3 = R4). Precision resistors are required for high accuracy, and the gain is set to utilize the full scale of the ADC for the highest resolution.

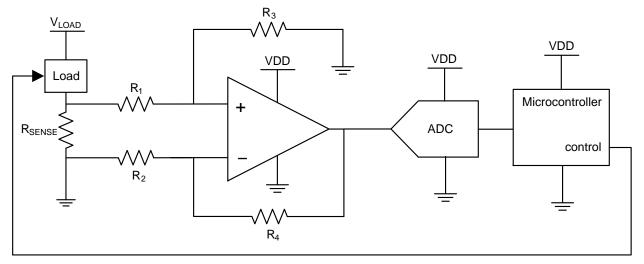


Figure 17. Low–Side Current Sensing

Differential Amplifier for Bridged Circuits

Sensors to measure strain, pressure, and temperature are often configured in a Wheatstone bridge circuit as shown in Figure 18. In the measurement, the voltage change that is produced is relatively small and needs to be amplified before going into an ADC. Precision amplifiers are recommended in these types of applications due to their high gain, low noise, and low offset voltage.

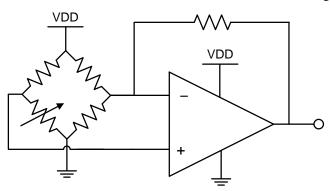
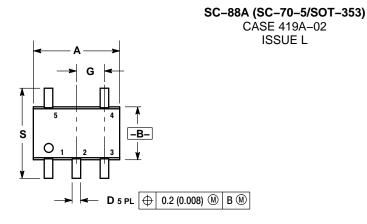
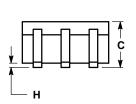
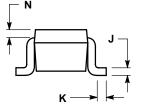


Figure 18. Bridge Circuit Amplification

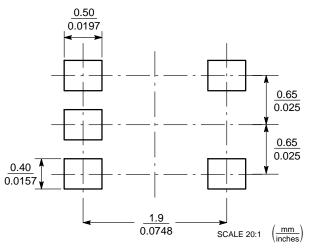

EMI Susceptibility and Input Filtering


Op amps have varying amounts of EMI susceptibility. Semiconductor junctions can pick up and rectify EMI signals, creating an EMI-induced voltage offset at the output, adding another component to the total error. Input pins are the most sensitive to EMI. The NCS333 op amp family integrates low-pass filters to decrease sensitivity to EMI.

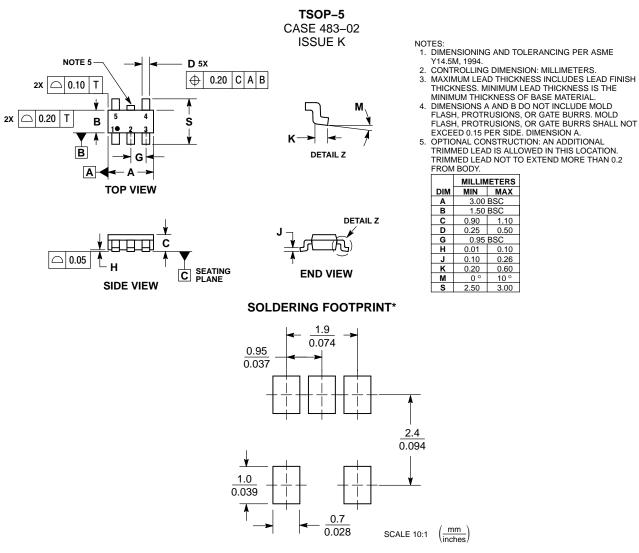

General Layout Guidelines

To ensure optimum device performance, it is important to follow good PCB design practices. Place 0.1 μ F decoupling capacitors as close as possible to the supply pins. Keep traces short, utilize a ground plane, choose surface-mount components, and place components as close as possible to the device pins. These techniques will reduce susceptibility to electromagnetic interference (EMI). Thermoelectric effects can create an additional temperature dependent offset voltage at the input pins. To reduce these effects, use metals with low thermoelectric-coefficients and prevent temperature gradients from heat sources or cooling fans.

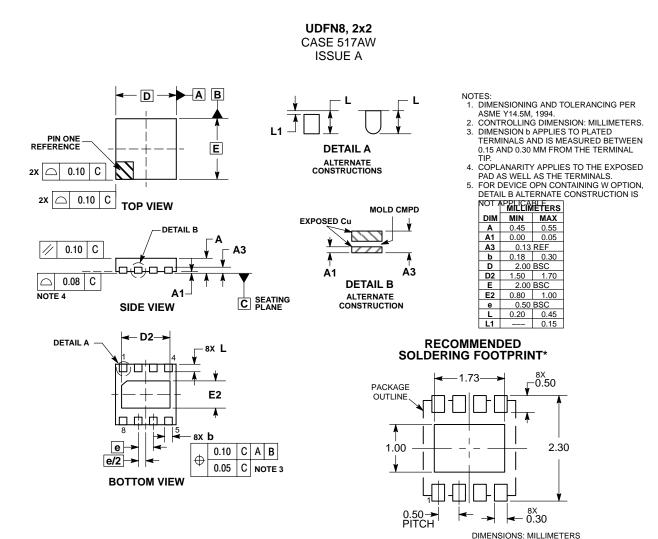
PACKAGE DIMENSIONS



- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 419A-01 OBSOLETE. NEW STANDARD 419A-02.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURDS
 - BURRS.

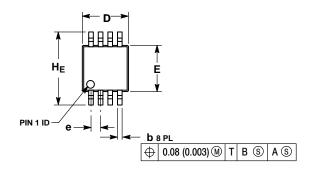

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
С	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
Ν	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

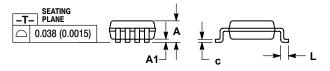
SOLDER FOOTPRINT


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

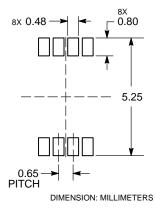

PACKAGE DIMENSIONS



*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

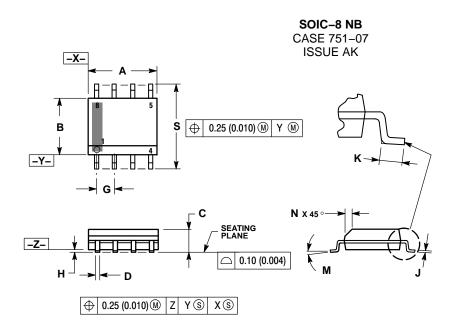
PACKAGE DIMENSIONS

Micro8[™] CASE 846A-02 **ISSUE J**



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 1. 2.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE 3.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS ON GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 846A-01 OBSOLETE, NEW STANDARD 846A-02.

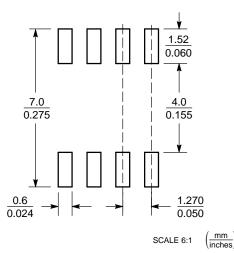

	м	ILLIMETE	RS			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.05	0.08	0.15	0.002	0.003	0.006
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.13	0.18	0.23	0.005	0.007	0.009
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	2.90	3.00	3.10	0.114	0.118	0.122
е		0.65 BSC			0.026 BSC	;
L	0.40	0.55	0.70	0.016	0.021	0.028
HE	4.75	4.90	5.05	0.187	0.193	0.199

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

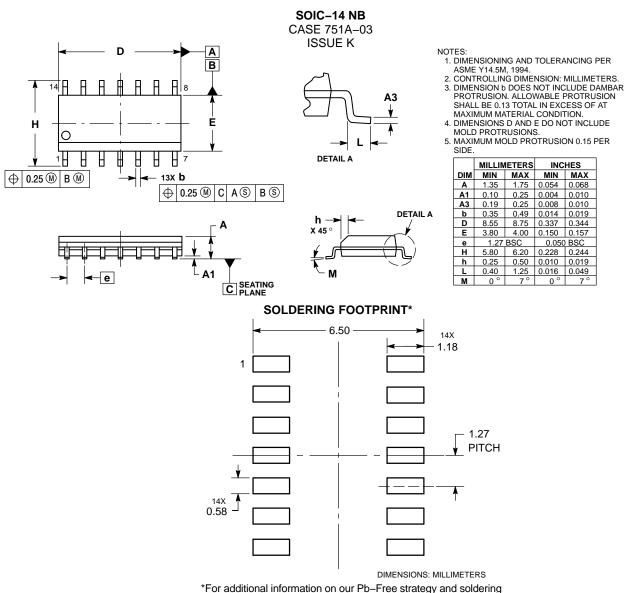
PACKAGE DIMENSIONS

NOTES: 1.


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION
- MAXIMUM MATERIAL CONDITION. 751–01 THRU 751–06 ARE OBSOLETE. NEW

	DARD IS 751–07.	ARE OBSOLETE. IN


	MILLIN	IETERS	INC	HES
DIM	MIN MAX		MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	' BSC	0.05	0 BSC
н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
κ	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdl/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardus, cass, admages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unin

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative