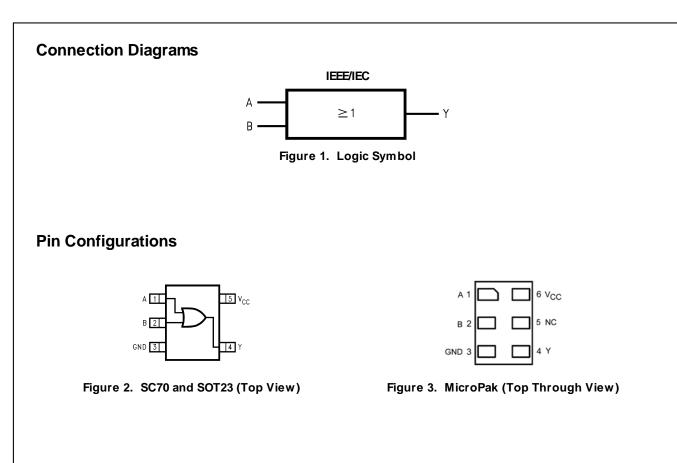


ON Semiconductor®

NC7SZ32 TinyLogic[®] UHS Two-Input OR Gate

Features


- Ultra-High Speed: t_{PD} 2.4ns (Typical) into 50pF at 5V V_{CC}
- High Output Drive: ±24mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Matches Performance of LCX Operated at 3.3V V_{CC}
- Pow er Dow n High-Impedance Inputs/Outputs
- Over-Voltage Tolerance inputs facilitate 5V to 3V Translation
- Proprietary Noise/EMI Reduction Circuitry
- Ultra-Small MicroPak[™] Packages
- Space-Saving SOT23 and SC70 Packages

Description

The NC7SZ32 is a single two-input OR gate from Fairchild's Ultra-High Speed (UHS) series of TinyLogic[®]. The device is fabricated with advanced CMOS technology to achieve ultra-high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 6V, independent of V_{CC} operating voltage.

Part Number	r Top Mark 🖉 Eco Status		op Mark 🖉 Eco Status 🛛 Package		
NC7SZ32M5X	7Z32	RoHS	5-Lead SOT23, JEDEC MO-178 1.6mm	3000 Units on Tape & Reel	
NC7SZ32P5X	Z32	RoHS	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3000 Units on Tape & Reel	
NC7SZ32L6X	HH	RoHS	6-Lead MicroPak™, 1.00mm Wide	5000 Units on Tape & Reel	
NC7SZ32FHX	'SZ32FHX HH Green		6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch	5000 Units on Tape & Reel	

Ordering Information

Pin Definitions

Pin # SC70 / SOT23	Pin # MicroPak	Name	Description
1	1	А	Input
2	2	В	Input
3	3	GND	Ground
4	4	Y	Output
5	6	V _{cc}	Supply Voltage
	5	NC	No Connect

Function Table

Y=A + B

Inpu	uts	Output
Α	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	Н

H = HIGH Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Par	Min.	Max.	Unit	
V _{CC}	Supply Voltage	-0.5	6.0	V	
V _{IN}	DC Input Voltage		-0.5	6.0	V
V _{OUT}	DC Output Voltage		-0.5	6.0	V
1	DC Input Diado Current	V _{IN} < -0.5V		-50	
l _{ικ}	DC Input Diode Current	V _{IN} > 6.0V		+20	mA
I	DC Output Diada Outpat	V _{OUT} < -0.5V		-50	
I _{OK}	DC Output Diode Current	$V_{OUT} > 6V, V_{CC}=GND$		+20	mA
lout	DC Output Current		±50	mA	
I_{CC} or I_{GND}	DC V_{CC} or Ground Current		±50	mA	
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Junction Temperature Under Bia	as		+150	°C
TL	Junction Lead Temperature (So	ldering, 10 Seconds)		+260	°C
		SOT-23		200	
D	Dow or Discipation at 195%	SC70-5		150	~~\^/
P _D	Pow er Dissipation at +85°C	MicroPak-6		130	mW
		MicroPak2-6		120	
ESD	Human Body Model, JEDEC:JES	D22-A114		4000	v
EOD	Charge Device Model: JEDEC:JE	SD22-C101		2000	v

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Conditions	Min.	Max.	Unit	
M	Supply Voltage Operating		1.65	5.50	v	
V _{cc}	Supply Voltage Data Retention	1.50	5.50	V		
V _{IN}	Input Voltage		0	5.5	V	
V _{OUT}	Output Voltage		0	V _{cc}	V	
T _A	Operating Temperature		-40	+85	°C	
	Insut Disc and Fall Times	V_{CC} =1.8V, 2.5V ± 0.2V	0	20	no //	
t _r , t _f	Input Rise and Fall Times	V_{CC} =3.3V ± 0.3V	0	10	ns/V	

			V_{CC} =5.0V ± 0.5V	0	5	
	θ_{JA} Thermal Resistance		SOT-23		300	
		Thormal Decistance	SC70-5		425	°C/W
		mermar Resistance	MicroPak-6		500	C/ VV
			MicroPak2-6		560	

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

0	Demonstration			T _A =+25°C			T _A =-40 to +85°C		1 10 140	
Symbol	Parameter	V _{cc}	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	
	HIGH Level	1.65 to 1.95		$0.75V_{\text{CC}}$			$0.75V_{\text{CC}}$			
VIH	Input Voltage	2.30 to 5.50		$0.70V_{\text{CC}}$			$0.70V_{\text{CC}}$		V	
M	LOW Level Input	1.65 to 1.95				$0.25V_{\text{CC}}$		$0.25V_{\text{CC}}$	N	
VIL	Voltage	2.30 to 5.50				$0.30V_{\text{CC}}$		$0.30V_{\text{CC}}$	V	
		1.65		1.55	1.65		1.55			
		1.80		1.70	1.80		1.70			
		2.30	V _{IN} =V _{IH} , I _{OH} =-100µА	2.20	2.30		2.20			
		3.00		2.90	3.00		2.90			
V _{он}	HIGH Level	4.50		4.40	4.50		4.40			
	Output Voltage	1.65	I _{он} =-4mA	1.29	1.52		1.29		V	
		2.30	I _{он} =-8mA	1.90	2.15		1.90			
		3.00	I _{он} =-16mA	2.40	2.80		2.40			
		3.00	I _{OH} =-24mA	2.30	2.68		2.30			
		4.50	I _{он} =-32mA	3.80	4.20		3.80			
		1.65			0.00	0.10		0.10		
		1.80			0.00	0.10		0.10		
		2.30	V _{IN} =V _{IL} , I _{OL} =100µA		0.00	0.10		0.10		
		3.00			0.00	0.10		0.10		
	LOW Level	4.50			0.00	0.10		0.10		
V _{OL}	Output Voltage	1.65	I _{o∟} =4mA		0.80	0.24		0.24	V	
		2.30	I _{o∟} =8mA		0.10	0.30		0.30		
		3.00	I _{o∟} =16mA		0.15	0.40		0.40		
		3.00	I _{OL} =24mA		0.22	0.55		0.55		
		4.50	I _{o∟} =32mA		0.22	0.55		0.55		
I _{IN}	Input Leakage Current	0 to 5.5	V _{IN} =5.5V, GND			±1		±10	μA	
I _{OFF}	Power Off Leakage Current	0	V _{IN} or V _{OUT} =5.5V			1		10	μA	
Icc	Quiescent Supply Current	1.65 to 5.50	V _{IN} =5.5V, GND			2.0		20	μA	

Symbol	Symbol Parameter		V _{cc} Conditions	T _A =25°C		T _A =-40 to +85°C		Units	Figure	
Symbol	Farameter	Parameter V _{cc} Cond	Conditions	Min.	Тур.	Max.	Min.	Max.	onits	Figure
		1.65		2.0	5.5	12.0	2.0	12.7		
		1.80		2.0	4.6	10.0	2.0	10.5	ns	Figure 4 Figure 5
	Propagation Delay	2.50 ± 0.30	R ^r =1M73	0.8	3.0	7.0	0.8	7.5		
$t_{\text{PLH}}, t_{\text{PHL}}$		3.30 ± 0.30		0.5	2.4	4.7	0.5	5.0		
		5.00 ± 0.50		0.5	1.9	4.1	0.5	4.4		
		3.30 ± 0.30	C∟=50pF, R∟=500Ω	1.5	3.0	5.2	1.5	5.5		
		5.00 ± 0.50		0.8	2.4	4.5	0.8	4.8		
C _{IN}	Input Capacitance	0.00			4				pF	
6	Power Dissipation Capacitance ⁽²⁾	3.30			20				~ F	Figure 6
C _{PD}		5.00			26				pF	

Note:

Note:

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD}=(C_{PD})(V_{CC})(f_{IN})+(I_{CC}static)$.

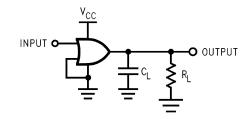
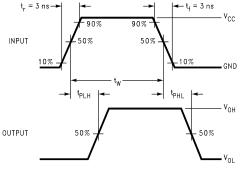
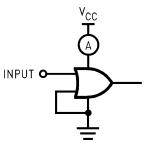
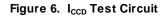
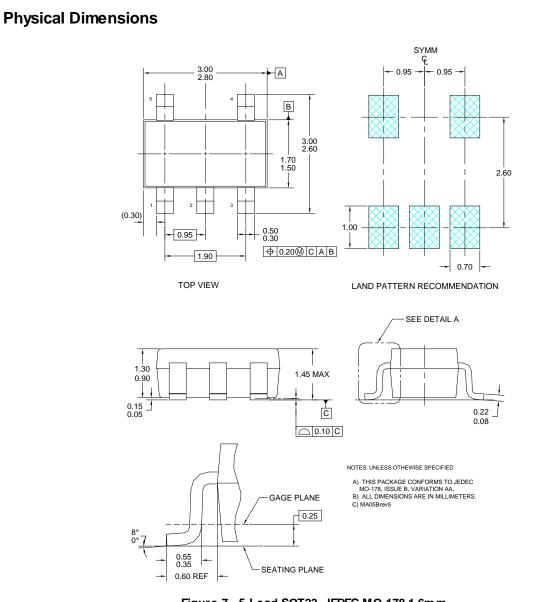


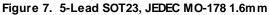
Figure 4. AC Test Circuit

3. C_L includes load and stray capacitance.

Input PRR=10MHz tw=500ns.

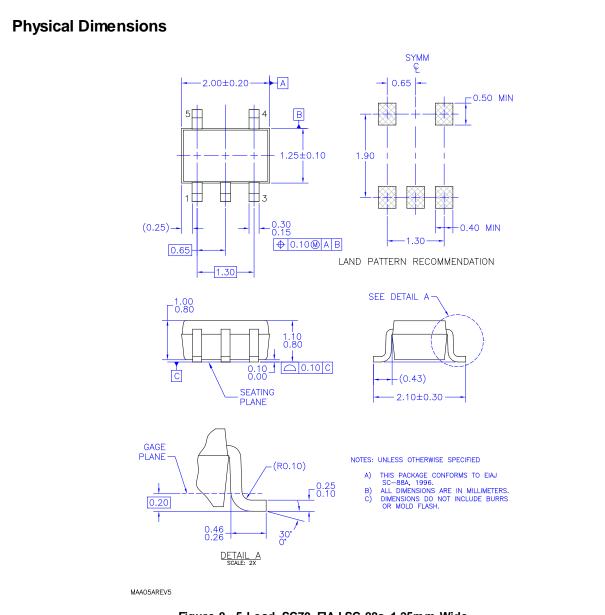





Figure 5. AC Waveforms



Note:

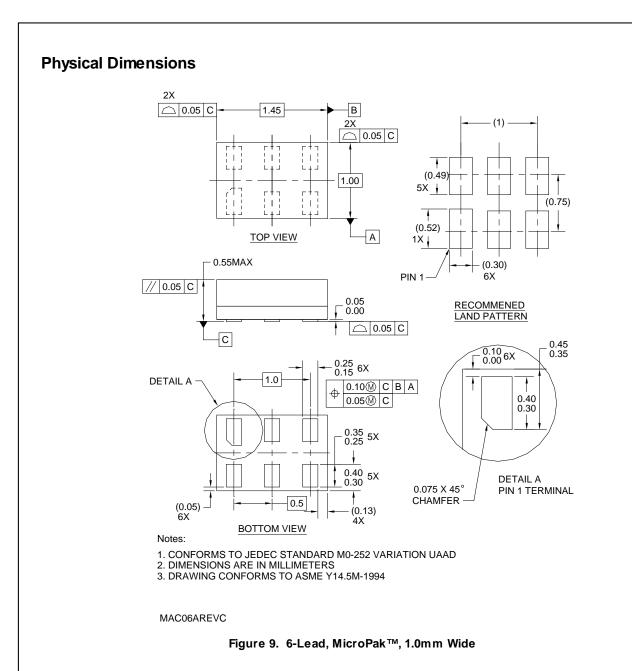
4. Input=AC Waveform; t_r=t_f=1.8ns; PRR=10MHz; Duty Cycle=50%



Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

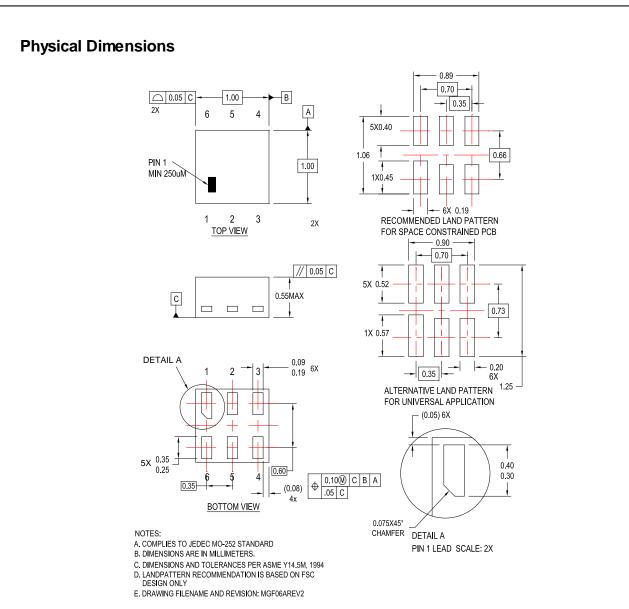
Tape and Reel Specifications

Package Designator Tape Section		Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
M5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed



Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Tape and Ree	el Specifications
--------------	-------------------


Package Designator	Designator Tape Section		Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
	Leader (Start End)	125 (Typical)	Empty	Sealed
L6X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

Figure 10.6-Lead, MicroPak2, 1x1mm Body, .35mm Pitch

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Tape and Reel Specifications

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Type Status
FHX	Leader (Start End)	125 (Typical)	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (Typical)	Empty	Sealed

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make no warranty, representation or guarantee regarding the suitability of its products for any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any products, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights no the rights of others. ON Semiconductor products for any such unintended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction application, Buyer shall indemnify and hold ON Semiconductor was negligent regarding to even sy subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor	N. American Technical Support: 800-282-9855 Toll	ON Semiconductor Website: www.onsemi.com
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA	Free	
Phone: 303-675-2175 or 800-344-3860 Toll Free	USA/Canada.	Order Literature: http://www.onsemi.com/orderlit
USA/Canada	Europe, Middle East and Africa Technical Support:	
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada	Phone: 421 33 790 2910	For additional information, please contact your local
Email: orderlit@onsemi.com	Japan Customer Focus Center	Sales Representative
	Phone: 81-3-5817-1050	