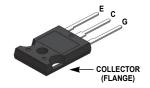


ON Semiconductor®

FGH40T65SQD 650 V, 40 A Field Stop Trench IGBT

Features


- Maximum Junction Temperature: T_J = 175°C
- · Positive Temperature Co-efficient for Easy Parallel Operating
- · High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.6 \text{ V (Typ.)} \otimes I_C = 40 \text{ A}$
- 100% of the Parts tested for I_{LM}(1)
- · High Input Impedance
- · Fast Switching
- · Tighten Parameter Distribution
- · RoHS Compliant

General Description

Using novel field stop IGBT technology, ON semiconductor's new series of field stop 4th generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Applications

· Solar Inverter, UPS, Welder, Telecom, ESS, PFC

Absolute Maximum Ratings

Symbol	Description		FGH40T65SQD-F155 (1)	Unit
V _{CES}	Collector to Emitter Voltage		650	V
V _{GES}	Gate to Emitter Voltage		± 20	V
	Transient Gate to Emitter Voltage		± 30	V
I _C	Collector Current	@ T _C = 25°C	80	Α
iC	Collector Current	@ T _C = 100°C	40	Α
I _{LM} (2)	Pulsed Collector Current	@ T _C = 25°C	160	Α
I _{CM} (3)	Pulsed Collector Current		160	Α
l _F	Diode Forward Current	@ T _C = 25°C	40	Α
'r	Diode Forward Current	@ T _C = 100°C	20	Α
I _{FM} (3)	Pulsed Diode Maximum Forward Current		160	Α
P _D	Maximum Power Dissipation	@ T _C = 25°C	238	W
ט י	Maximum Power Dissipation	@ T _C = 100°C	119	W
T _J	Operating Junction Temperature		-55 to +175	οС
T _{stg}	Storage Temperature Range		-55 to +175	οС
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

- 1. Due to system integration constraints between Fairchild and ON semiconductor, as of November 1, 2017 any product part number with a underscore will be replaced with a dash. This is a notification. 2. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 160 A, R_{G} = 22 Ω , Inductive Load 3. Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	FGH40T65SQD-F155	Unit
R _{θJC} (IGBT)	Thermal Resistance, Junction to Case, Max.	0.63	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case, Max.	1.71	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

Package Marking and Ordering Information

Device Marking Device		Package Reel Size		Tape Width	Qty per Tube	
FGH40T65SQD	FGH40T65SQD_F155	TO-247 G03	-	-	30	

Electrical Characteristics of the IGBT $T_C = 25^{\circ}$ C unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	650	-	-	V
ΔBV _{CES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	-	0.6	-	V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μΑ
I _{GES}	G-E Leakage Current	V _{GE} = V _{GES} , V _{CE} = 0 V	-	-	± 400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I _C = 40 mA, V _{CE} = V _{GE}	2.6	4.5	6.4	V
()		I _C = 40 A, V _{GE} = 15 V	-	1.6	2.1	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 40 A, V _{GE} = 15 V, T _C = 175°C	-	1.92	-	V
Dynamic C	haracteristics		-	1		
C _{ies}	Input Capacitance		-	2620	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$ f = 1 MHz	-	60	-	pF
C _{res}	Reverse Transfer Capacitance	- 1 - 1 IVIDZ	-	9	-	pF
Switching	Characteristics					
T _{d(on)}	Turn-On Delay Time		-	16.4	-	ns
T _r	Rise Time		-	4.8	-	ns
T _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 10 A,	-	86.4	-	ns
T _f	Fall Time	$R_G = 6 \Omega, V_{GE} = 15 V,$	-	8.8	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C	-	138	-	μJ
E _{off}	Turn-Off Switching Loss		-	52	-	μJ
E _{ts}	Total Switching Loss		-	190	-	μJ
T _{d(on)}	Turn-On Delay Time		-	17.6	-	ns
T _r	Rise Time	V_{CC} = 400 V, I_{C} = 20 A, R_{G} = 6 Ω , V_{GE} = 15 V, Inductive Load, T_{C} = 25°C	-	9.6	-	ns
T _{d(off)}	Turn-Off Delay Time		-	80	-	ns
T _f	Fall Time		-	8.8	-	ns
E _{on}	Turn-On Switching Loss		-	329	-	μJ
E _{off}	Turn-Off Switching Loss		-	84	-	μJ
E _{ts}	Total Switching Loss		-	413	-	μJ

Electrical Characteristics of the IGBT (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
T _{d(on)}	Turn-On Delay Time		-	14.4	-	ns
T _r	Rise Time		-	6.4	-	ns
T _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 10 A,	-	99.2	-	ns
T _f	Fall Time	$R_G = 6 \Omega, V_{GE} = 15 V,$	-	8	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 175°C	-	269	-	μЈ
E _{off}	Turn-Off Switching Loss		-	132	-	μЈ
E _{ts}	Total Switching Loss		-	401	-	μJ
T _{d(on)}	Turn-On Delay Time		-	16	-	ns
T _r	Rise Time		-	11.2	-	ns
T _{d(off)}	Turn-Off Delay Time	V _{CC} = 400 V, I _C = 20 A,	-	91.2	-	ns
T _f	Fall Time	$R_G = 6 \Omega, V_{GE} = 15 V,$	-	8	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 175°C	-	581	-	μJ
E _{off}	Turn-Off Switching Loss		-	237	-	μЈ
E _{ts}	Total Switching Loss		-	818	-	μJ
Qg	Total Gate Charge		-	80	-	nC
Q _{ge}	Gate to Emitter Charge	$V_{CE} = 400 \text{ V}, I_{C} = 40 \text{ A},$	-	15	-	nC
Q _{gc}	Gate to Collector Charge	V _{GE} = 15 V	-	20	-	nC

Electrical Characteristics of the Diode $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I _E = 20 A	T _C = 25°C	-	2.2	2.8	V
Prode Forward Voltage	2.000 : 0.11010 : 0.100g0	- 20 A	T _C = 175°C	-	1.94	-	'
E _{rec}	Reverse Recovery Energy		T _C = 175°C	-	50	-	μJ
T _{rr}	Diode Reverse Recovery Time	 I _F = 20 A, dI _F /dt = 200 A/μs	T _C = 25°C	-	31.8	-	ns
Diode Neverse Nessovery Time	- 20 A, αιρ/αι - 200 A/μ3	T _C = 175°C	-	192	-	"	
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	-	50.6	-	nC
~11	2.535 No. 5.55 No. 50 No. 19		T _C = 175°C	-	699	-]

Figure 1. Typical Output Characteristics

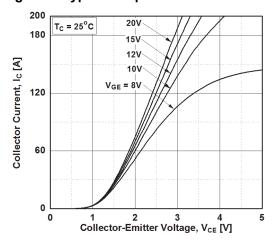


Figure 3. Typical Saturation Voltage Characteristics

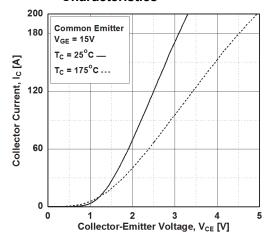
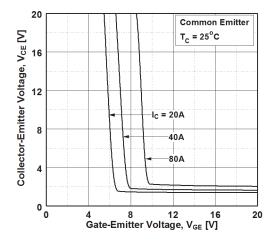



Figure 5. Saturation Voltage vs. V_{GE}

Figure 2. Typical Output Characteristics

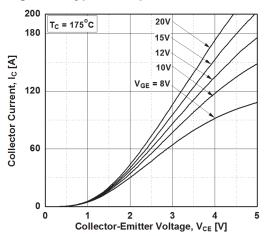


Figure 4. Saturation Voltage vs. Case
Temperature at Variant Current Level

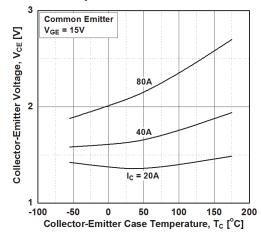
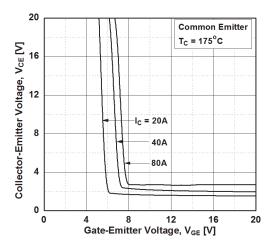



Figure 6. Saturation Voltage vs. V_{GE}

Figure 7. Capacitance Characteristics

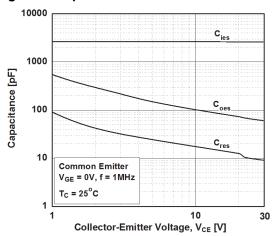


Figure 9. Turn-on Characteristics vs.
Gate Resistance

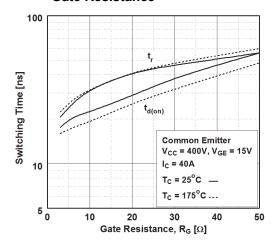


Figure 11. Switching Loss vs.
Gate Resistance

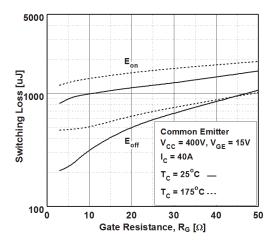


Figure 8. Gate charge Characteristics

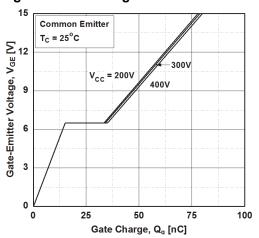


Figure 10. Turn-off Characteristics vs. Gate Resistance

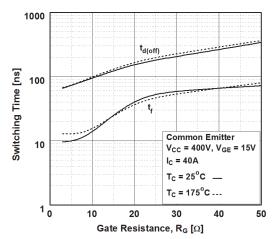


Figure 12. Turn-on Characteristics vs. Collector Current

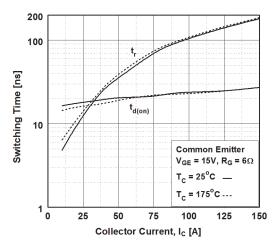


Figure 13. Turn-off Characteristics vs. Collector Current

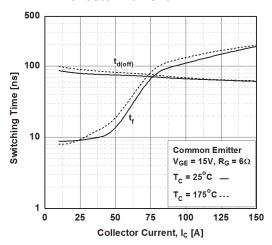


Figure 15. Load Current Vs. Frequency

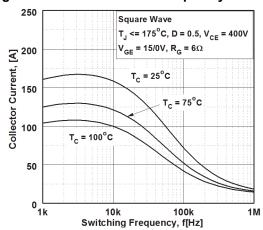


Figure 17. Forward Characteristics

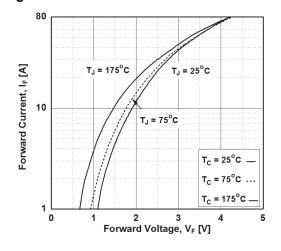


Figure 14. Switching Loss vs. Collector Current

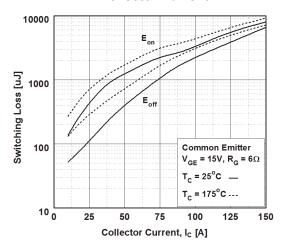


Figure 16. SOA Characteristics

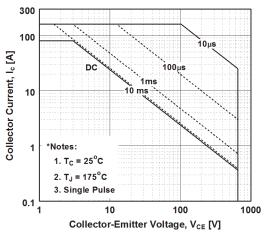


Figure 18. Reverse Recovery Current

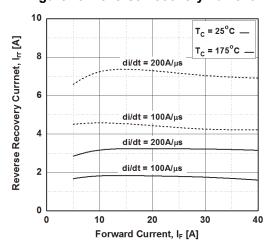


Figure 19. Reverse Recovery Time

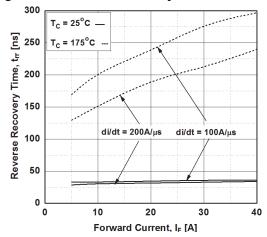


Figure 20. Stored Charge

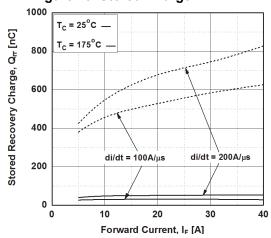


Figure 21.Transient Thermal Impedance of IGBT

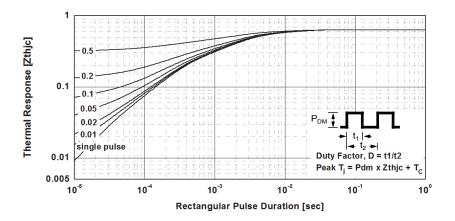
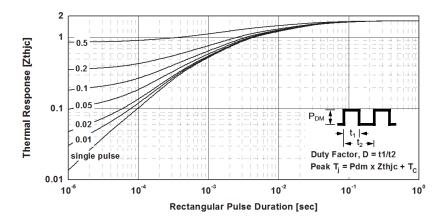
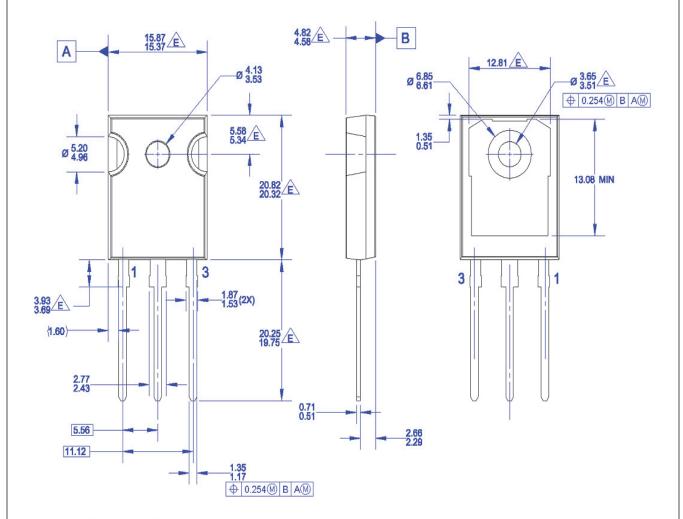




Figure 22. Transient Thermal Impedance of Diode

Mechanical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED.

- PACKAGE REFERENCE: JEDEC TO-247,
 ISSUE E, VARIATION AB, DATED JUNE, 2004.
 DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
- FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5 1994
- E DOES NOT COMPLY JEDEC STANDARD VALUE
 F. DRAWING FILENAME: MKT-TO247G03_REV02

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative