

8A,600V Hyperfast Diodes

The RHRP860-F085 is hyperfast diodes with soft recovery characteristics (t_{rr} < 30ns). It has half the recovery time of ultrafast diodes and is silicon nitride passivated ionimplanted epitaxial planar construction.

This device is intended for use as freewheeling/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Its low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Formerly developmental type TA49059.

Ordering Information

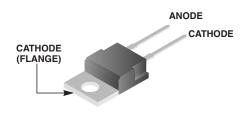
PART NUMBER	PACKAGE	BRAND
RHRP860-F085	TO-220AC	RHRP860-F085

NOTE: When ordering, use the entire part number.

Symbol

Features

•	Hyperfast with Soft Recovery<30ns
•	Operating Temperature175°C
•	Reverse Voltage Up To


- · Avalanche Energy Rated
- Planar Construction

Applications

- · Switching Power Supplies
- · Power Switching Circuits
- · General Purpose

Packaging

JEDEC TO-220AC

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	RHRP860-F085	UNITS
Peak Repetitive Reverse Voltage	600	V
Working Peak Reverse Voltage	600	V
DC Blocking Voltage	600	V
Average Rectified Forward Current $I_{F(AV)}$ ($T_C = 150^{\circ}C$)	8	Α
Repetitive Peak Surge CurrentI _{FRM} (Square Wave, 20kHz)	16	Α
Nonrepetitive Peak Surge Current	100	Α
Maximum Power Dissipation	75	W
Avalanche Energy (See Figures 10 and 11)	20	mJ
Operating and Storage Temperature	-65 to 175	°C

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNITS
V _F	I _F = 8A	-	-	2.1	V
	I _F = 8A, T _C = 150°C	-	-	1.7	V
I _R	V _R = 400V	-	-	-	μА
	V _R = 600V	-	-	100	μΑ
	$V_R = 400V, T_C = 150^{\circ}C$	-	-	-	μΑ
	$V_R = 600V, T_C = 150^{\circ}C$	-	-	500	μΑ
t _{rr}	$I_F = 1A$, $dI_F/dt = 200A/\mu s$	-	-	30	ns
	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	-	-	35	ns
t _a	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	-	18	-	ns
t _b	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	-	10	-	ns
Q _{RR}	$I_F = 8A$, $dI_F/dt = 200A/\mu s$	-	56	-	nC
CJ	V _R = 10V, I _F = 0A	-	25	-	pF
$R_{ heta JC}$		-	-	2	°C/W

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

 I_R = Instantaneous reverse current.

 t_{rr} = Reverse recovery time (See Figure 9), summation of t_a + t_b .

 t_a = Time to reach peak reverse current (See Figure 9).

 t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 9).

 Q_{RR} = Reverse recovery charge.

CJ = Junction capacitance.

 $R_{\theta JC}$ = Thermal resistance junction to case.

pw = Pulse width.

D = Duty cycle.

Typical Performance Curves

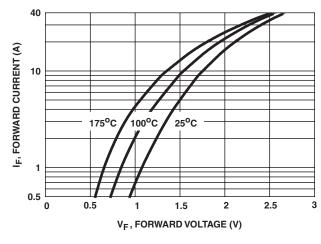


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

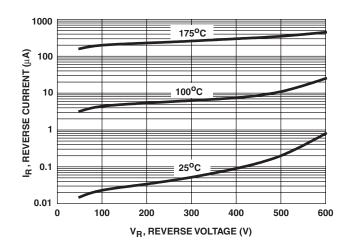


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

Typical Performance Curves (Continued)

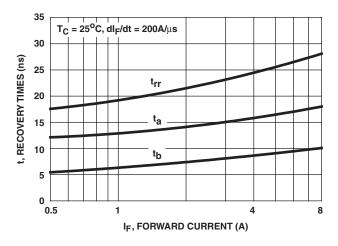


FIGURE 3. t_{rr} , t_a and t_b curves vs forward current

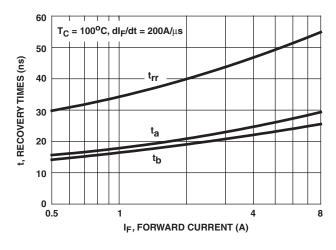


FIGURE 4. t_{rr}, t_a AND t_b CURVES vs FORWARD CURRENT

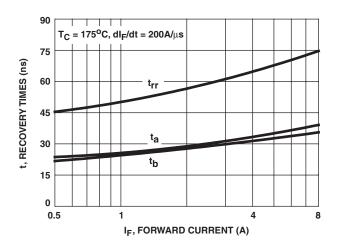


FIGURE 5. t_{rr} , t_a and t_b curves vs forward current

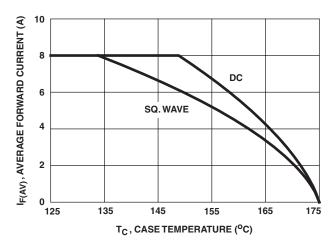


FIGURE 6. CURRENT DERATING CURVE

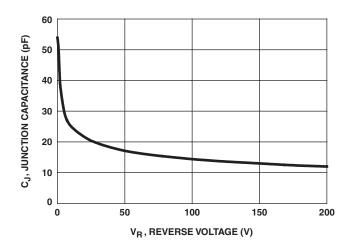


FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

Test Circuits and Waveforms

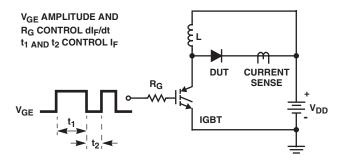


FIGURE 8. t_{rr} TEST CIRCUIT

FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT

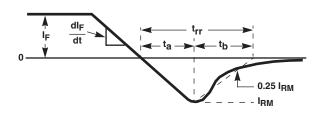


FIGURE 9. t_{rr} WAVEFORMS AND DEFINITIONS

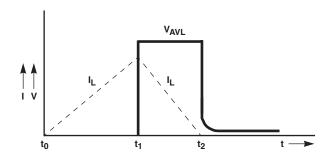


FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns are rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification designed, intended of authorized for large as a clinical consponent in the support systems of any PDA class 3 inetuated evices with a same of similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT N. American Technical Support: 800-282-9855 Toll Free ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Sales Representative

For additional information, please contact your local

www.onsemi.com

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

USA/Canada

Japan Customer Focus Center

Phone: 81-3-5817-1050

Literature Distribution Center for ON Semiconductor

Email: orderlit@onsemi.com

19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

© Semiconductor Components Industries, LLC