1200 V, 80 mΩ, 31 A

NTHL080N120SC1

Features

- Typ. $R_{DS(on)} = 80 \text{ m}\Omega$
- Ultra Low Gate Charge (typ. $Q_{G(tot)} = 56 \text{ nC}$)
- Low Effective Output Capacitance (typ. C_{oss} = 80 pF)
- 100% UIL Tested
- These Devices are RoHS Compliant

Typical Applications

- UPS
- DC/DC Converter
- Boost Inverter

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

, , , , , , , , , , , , , , , , , , , ,						
Parameter			Symbol	Value	Unit	
Drain-to-Source Voltage	Voltage		V _{DSS}	1200	V	
Gate-to-Source Voltage			V _{GS}	-15/+25	V	
Recommended Opera- tion Values of Gate-to- Source Voltage	T _C < 175°C		V _{GSop}	-5/+20	V	
Continuous Drain Current $R_{\theta JC}$	Steady State	$T_C = 25^{\circ}C$	Ι _D	31	A	
Power Dissipation $R_{\theta JC}$			PD	178	W	
Continuous Drain Current $R_{\theta JC}$	Steady State	T _C = 100°C	۱ _D	22	A	
Power Dissipation $R_{\theta JC}$			PD	89	W	
Pulsed Drain Current (Note 2)	T _A = 25°C		I _{DM}	132	A	
Single Pulse Surge Drain Current Capability	$\begin{array}{l} T_{A} = 25^\circC, t_{p} = 10 \; \mu s, \\ R_{G} = 4.7 \; \Omega \end{array}$		I _{DSC}	132	A	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	–55 to +175	°C	
Source Current (Body Diode)			۱ _S	18	А	
Single Pulse Drain–to–Source Avalanche Energy ($I_{L(pk)}$ = 18.5 A, L = 1 mH) (Note 3)			E _{AS}	171	mJ	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

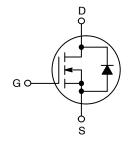
THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Note 1)	$R_{\theta JC}$	0.84	°C/W
Junction-to-Ambient (Note 1)	$R_{\theta JA}$	40	°C/W

1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

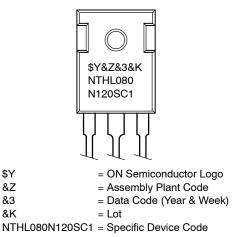
2. Repetitive rating, limited by max junction temperature. 3. E_{AS} of 171 mJ is based on starting $T_J = 25^{\circ}$ C; L = 1 mH, $I_{AS} = 18.5$ A,

 $V_{DD} = 120 \text{ V}, \text{ V}_{GS} = 18 \text{ V}.$



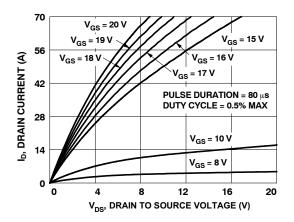
ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
1200 V	110 mΩ @ 20 V	31 A

MARKING DIAGRAM

ORDERING INFORMATION


See detailed ordering and shipping information on page 2 of this data sheet.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 1 mA	1200	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = 1$ mA, referenced to $25^{\circ}C$	_	700	_	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = 1200 V, T_{J} = 25°C	-	-	100	μA
		V_{GS} = 0 V, V_{DS} = 1200 V, T_{J} = 175°C	-	-	1	mA
Gate-to-Source Leakage Current	I _{GSS}	V_{GS} = +25/-15 V, V_{DS} = 0 V	-	-	±1	μA
ON CHARACTERISTICS	•			•		
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_D = 5 \text{ mA}$	1.8	2.7	4.3	V
Recommended Gate Voltage	V _{GOP}		-5	-	+20	V
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 20 V, I _D = 20 A, T _J = 25°C	-	80	110	mΩ
		V_{GS} = 20 V, I _D = 20 A, T _J = 150°C	-	114	-	
Forward Transconductance	9 _{FS}	V _{DS} = 20 V, I _D = 20 A	-	13	-	S
CHARGES, CAPACITANCES & GATE	RESISTANCE			•		
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 800 V	-	1112	-	pF
Output Capacitance	C _{OSS}		-	80	-	
Reverse Transfer Capacitance	C _{RSS}		-	6.5	-	
Total Gate Charge	Q _{G(tot)}	$V_{GS} = -5/20$ V, $V_{DS} = 600$ V, $I_{D} = 20$ A	-	56	-	nC
Gate-to-Source Charge	Q _{GS}		-	11	-	
Gate-to-Drain Charge	Q _{GD}		-	12	-	
Gate Resistance	R _G	f = 1 MHz	-	1.7	-	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	$V_{GS} = -5/20 \text{ V}, \text{ V}_{DS} = 800 \text{ V},$	-	13	-	ns
Rise Time	t _r	I _D = 20 A, R _G = 4.7 Ω, Inductive Load	-	20	-	
Turn-Off Delay Time	t _{d(off)}		-	22	-	
Fall Time	t _f		-	10	-	
Turn-On Switching Loss	E _{ON}		-	258	-	μJ
Turn-Off Switching Loss	E _{OFF}		-	52	-	
Total Switching Loss	E _{TOT}		-	311	-	
DRAIN-SOURCE DIODE CHARACTEI	RISTICS					
Continuous Drain-to-Source Diode Forward Current	I _{SD}	V_{GS} = -5 V, T_{J} = 25°C	-	-	18	A
Pulsed Drain-to-Source Diode For- ward Current (Note 2)	I _{SDM}	V_{GS} = -5 V, T_{J} = 25°C	-	-	132	A
Forward Diode Voltage	V _{SD}	V_{GS} = -5 V, I_{SD} = 10 A, T_{J} = 25°C	-	4	-	V
Reverse Recovery Time	t _{RR}	V _{GS} = -5/20 V, I _{SD} = 20 A,	-	16	-	ns
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 1000 A/μs	-	62	-	nC
Reverse Recovery Energy	E _{REC}	1	-	5	-	μJ
Peak Reverse Recovery Current	I _{RRM}	1	-	8	_	А

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

Figure 1. On Region Characteristics

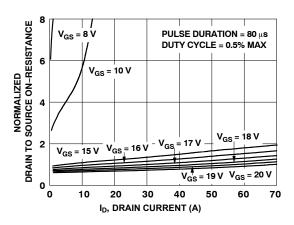
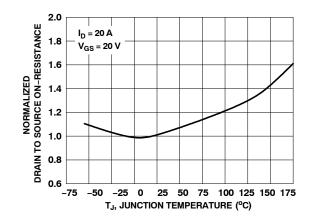
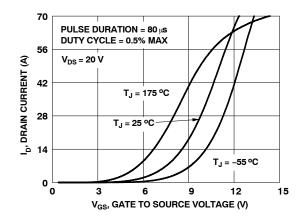
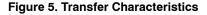





Figure 2. Normalized On–Resistance vs. Drain Current and Gate Voltage

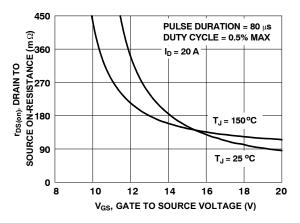


Figure 4. On-Resistance vs. Gate-to-Source Voltage

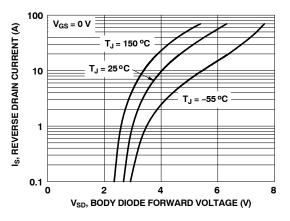


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

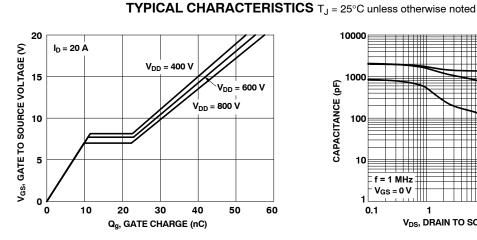


Figure 7. Gate Charge Characteristics

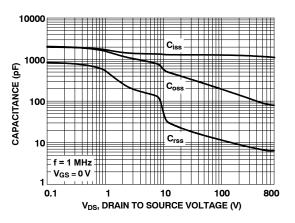
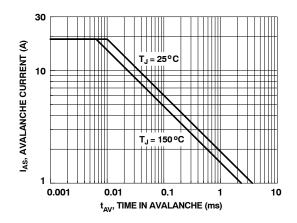
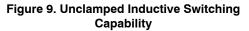




Figure 8. Capacitance vs. Drain-to-Source Voltage

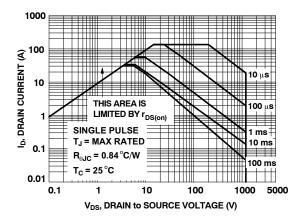


Figure 11. Forward Bias Safe Operating Area

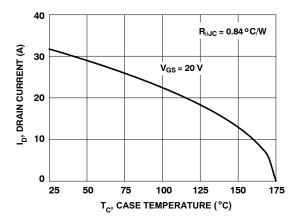


Figure 10. Maximum Continuous Drain **Current vs. Case Temperature**

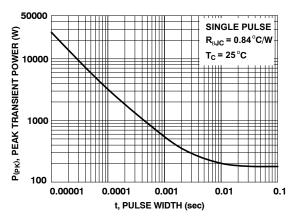
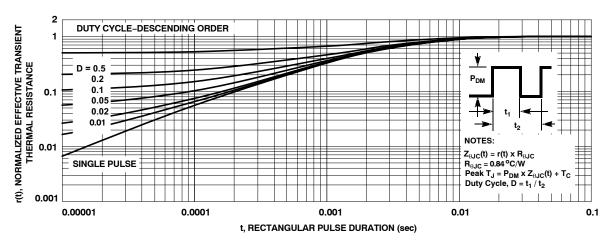
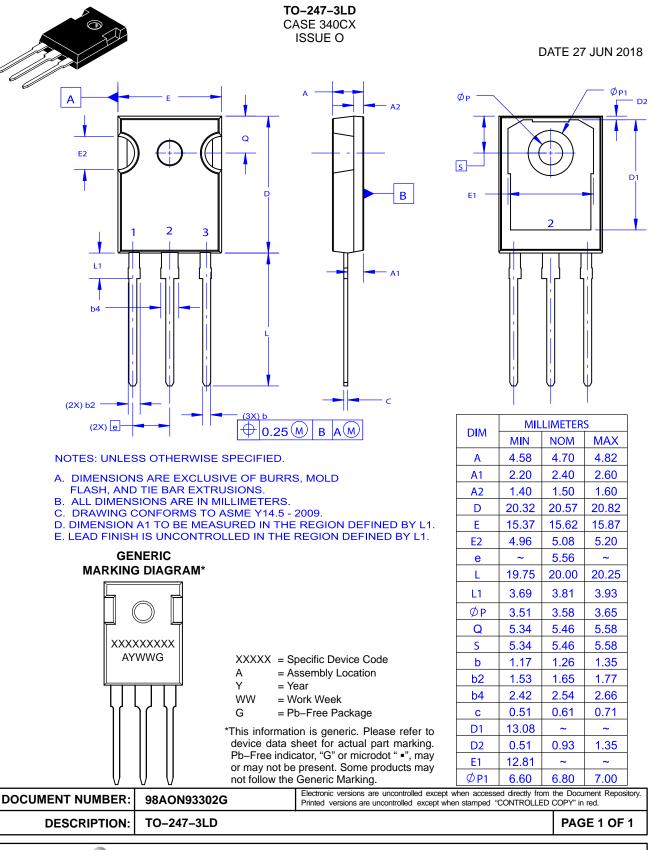



Figure 12. Single Pulse Maximum Power Dissipation


TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NTHL080N120SC1	NTHL080N120SC1	TO-247 Long Lead	Tube	N/A	N/A	30 Units

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative