MOSFET – Single N-Channel

150 V, 4.4 mΩ, **187 A**

NVBLS4D0N15MC

Features

- Low RDS(on) to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Lowers Switching Noise/EMI
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Symbol	Paran	neter		Value	Unit		
V _{DSS}	Drain-to-Source Voltag	je		150	V		
V _{GS}	Gate-to-Source Voltage			±20	V		
I _D	Continuous Drain	Steady	$T_C = 25^{\circ}C$	187	А		
	Current $R_{\theta JC}$ (Note 2)	State	T _C = 100°C	132			
PD	Power Dissipation	Steady	$T_{C} = 25^{\circ}C$	316	W		
	R _{θJC} (Note 2)	State	T _C = 100°C	158			
Ι _D	Continuous Drain	Steady State	$T_A = 25^{\circ}C$	22	А		
	Current R _{θJA} (Notes 1, 2)	Sidle	T _A = 100°C	15			
PD	Power Dissipation	Steady T _A = 25°C		4	W		
	R _{θJA} (Notes 1, 2)	State	T _A = 100°C	2			
I _{DM}	Pulsed Drain Current	T _A = 25°C	C, t _p = 10 μs	900	А		
T _J , T _{stg}	Operating Junction and Storage Temperature Range			–55 to +175	°C		
۱ _S	Source Current (Body Diode)			263	Α		
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy (I _{LPEAK} = 15.9 A)			2300	mJ		
ΤL	Lead Temperature Sold Soldering Purposes (1/			260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface-mounted on FR4 board using 1 in² pad size, 2 oz Cu pad.

2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

THERMAL RESISTANCE RATINGS

Symbol	Parameter		Unit
$R_{\theta JC}$	Junction-to-Case - Steady State (Note 2)	0.5	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Note 2)	35.8	

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
150 V	4.4 mΩ @ 10 V	187 A

ORDERING INFORMATION

	Device	Package	Shipping [†]
NVE	BLS4D0N15MC	MO–299A (Pb–Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

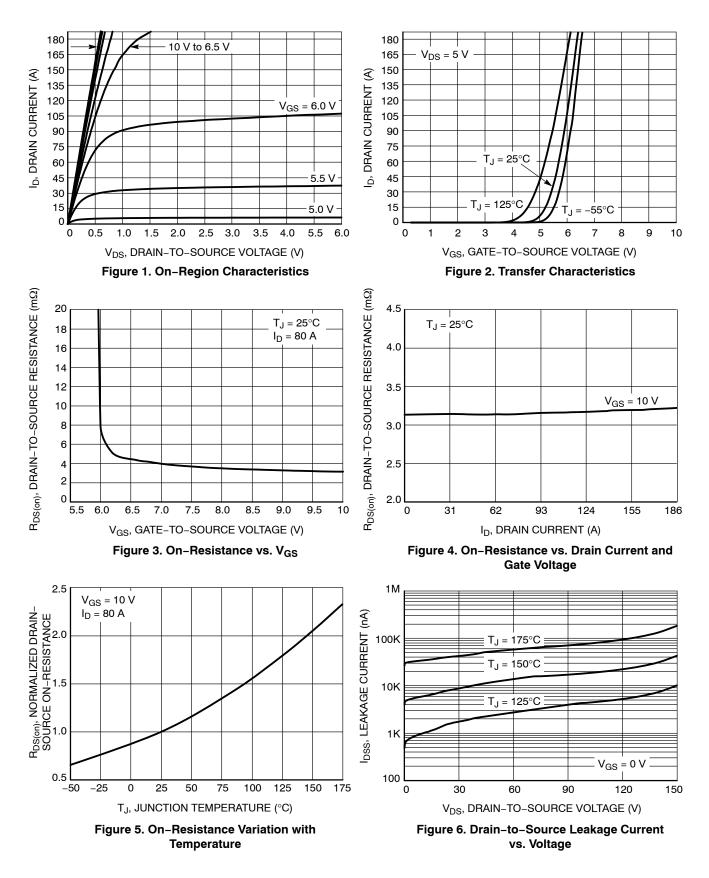
Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
OFF CHARACT	TERISTICS	-				-	-
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	V_{GS} = 0 V, I _D =	250 μΑ	150	-	-	V
V _{(BR)DSS} / T _J	Drain-to-Source Breakdown Voltage Temperature Coefficient	I _D = 250 μA, ret	$I_D = 250 \ \mu\text{A}$, ref to 25°C		30.23	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 120 V	$T_J = 25^{\circ}C$	-	-	1	μΑ
			$V_{DS} = 120 V$ $T_{J} = 125^{\circ}C$	-	-	10	μA
I _{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 V, V_{GS}$	$V_{DS} = 0 V, V_{GS} = \pm 20 V$		-	±100	nA
N CHARACTI	ERISTICS						
			-	1	1		1

V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D = 584 \ \mu A$	2.5	3.7	4.5	V
$V_{GS(TH)}$ / T_J	Negative Threshold Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, ref to 25°C	-	-10.12	-	mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V_{GS} = 10 V, I _D = 80 A	-	3.1	4.4	mΩ
9fs	Forward Transconductance	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 80 \text{ A}$	-	174	-	S
R_{G}	Gate-Resistance	$T_A = 25^{\circ}C$	-	1.3	-	Ω

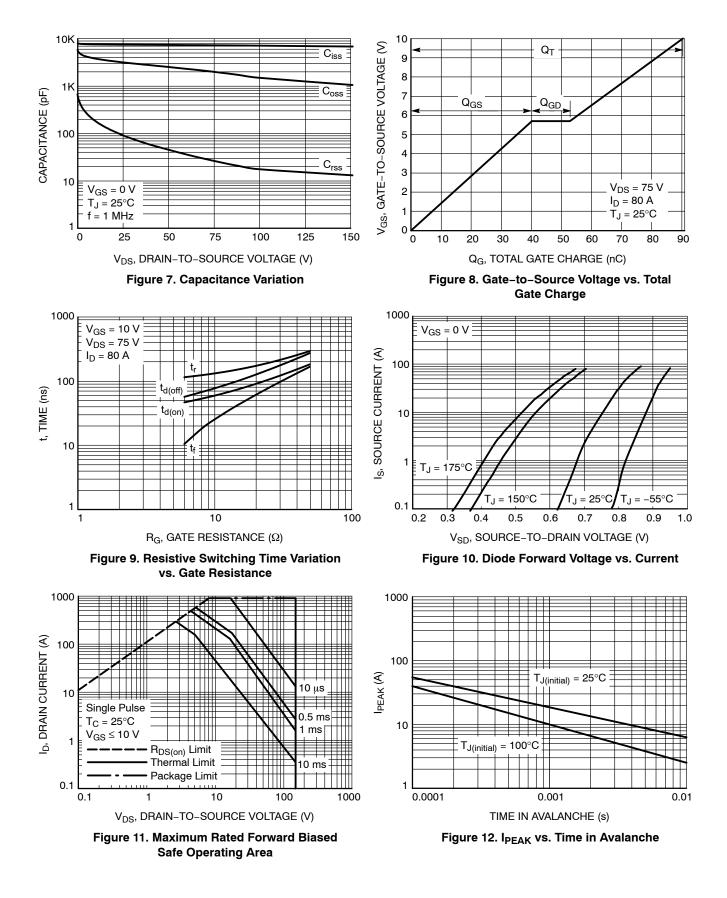
CHARGES & CAPACITANCES

C _{ISS}	Input Capacitance	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 75 V	-	7490	-	pF
C _{OSS}	Output Capacitance	$v_{\rm DS} = 75 v$	-	2055	-	
C _{RSS}	Reverse Transfer Capacitance		-	27.2	-	
Q _{G(TOT)}	Total Gate Charge	V _{GS} = 10 V, V _{DS} = 75 V, I _D = 80 A	-	90.4	-	nC
Q _{G(TH)}	Threshold Gate Charge		-	24.7	-	
Q _{GS}	Gate-to-Source Charge		-	40.2	-	
Q _{GD}	Gate-to-Drain Charge		-	12.6	-	
V _{GP}	Plateau Voltage]	_	5.7	-	V

SWITCHING CHARACTERISTICS, V_{GS} = 10 V (Note 3)


t _{d(ON)}	Turn–On Delay Time	$V_{GS} = 10 \text{ V}, V_{DS} = 75 \text{ V},$	-	47	-	ns
t _r	Rise Time	I_D = 80 A, R_G = 6 Ω	-	115	-	
t _{d(OFF)}	Turn-Off Delay Time		-	58	-	
t _f	Fall Time		-	11	-	

DRAIN-SOURCE DIODE CHARACTERISTICS


V _{SD}	Forward Diode Voltage	V _{GS} = 0 V, I _S = 80 A	$T_J = 25^{\circ}C$	-	0.86	1.2	V
		IS = 80 A	$T_{\rm J} = 125^{\circ}{\rm C}$	-	0.75	-	
t _{RR}	Reverse Recovery Time	V _{GS} = 0 V, dI _S /dt = 100 A/μs, I _S = 80 A		-	84	-	ns
t _a	Charge Time			-	55	-	
t _b	Discharge Time			-	29	-	
Q _{RR}	Reverse Recovery Charge			-	180	_	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

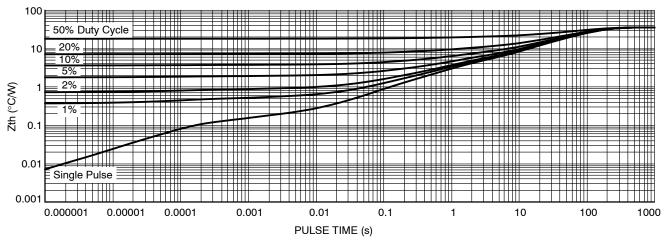
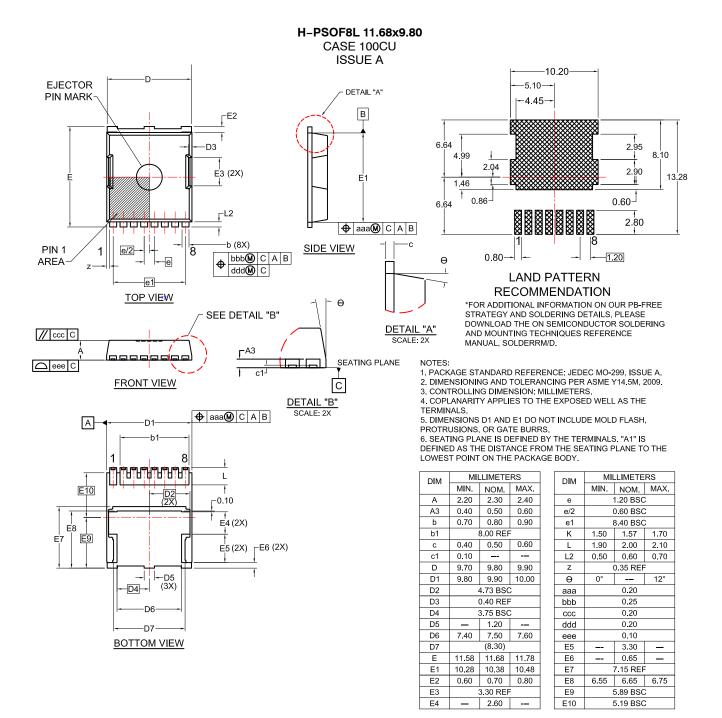



Figure 13. Thermal Characteristics (Junction-to-Ambient)

PACKAGE DIMENSIONS

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor are or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of th

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative