MOSFET – Power, N-Channel, Silicon Carbide, TO-247-4L 1200 V, 80 mΩ

NVH4L080N120SC1

Description

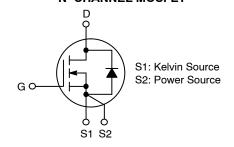
Silicon Carbide (SiC) MOSFET uses a completely new technology that provide superior switching performance and higher reliability compared to Silicon. In addition, the low ON resistance and compact chip size ensure low capacitance and gate charge. Consequently, system benefits include highest efficiency, faster operation frequency, increased power density, reduced EMI, and reduced system size.

Features

- 1200 V @ $T_J = 175$ °C
- Max $R_{DS(on)} = 110 \text{ m}\Omega$ at $V_{GS} = 20 \text{ V}$, $I_D = 20 \text{ A}$
- High Speed Switching with Low Capacitance
- 100% Avalanche Tested
- Qualified for Automotive According to AEC-Q101
- RoHS Compliant

Applications

- Automotive Auxiliary Motor Drive
- Automotive On Board Charger
- Automotive DC/DC Converter for EV/HEV



ON Semiconductor®

www.onsemi.com

V _{DSS}	R _{DS(ON)} TYP	I _D MAX
1200 V	80 mΩ	29 A

N-CHANNEL MOSFET

MARKING DIAGRAM

A = Assembly Location
Y = Year
WW = Work Week
ZZ = Lot Traceability
NVH4L080N120SC1 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted)

Symbol	Parameter		Ratings	Unit
V _{DSmax}	Drain-to-Source Voltage		1200	V
V_{GSmax}	Max. Gate-to-Source Voltage	@ T _C < 150°C	-15 / +25	V
V _{GSop} (DC)	Recommended operation Values of Gate – Source Voltage	@ T _C < 150°C	-5 / +20	V
V _{GSop} (AC)	Recommended operation Values of Gate – Source Voltage (f > 1 Hz)	@ T _C < 150°C	-5 / +20	V
I _D	Continuous Drain Current	V _{GS} = 20 V, T _C = 25°C	29	Α
		V _{GS} = 20 V, T _C = 100°C	21	
I _{D(Pulse)}	Pulse Drain Current	Pulse width tp limited by Tj max	125	Α
E _{AS}	Single Pulse Avalanche Energy (Note 1)		171	mJ
P _{tot}	Power Dissipation	T _C = 25°C	170	W
		T _C = 150°C	28	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. E_{AS} of 171 mJ is based on starting Tj = 25°C, L = 1 mH, I_{AS} = 18.5 A, , V_{DD} = 50 V, R_{G} = 25 Ω .

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case	0.88	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	40	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Packing Method	Reel Size	Tape Width	Quantity
NVH4L080N120SC1	NVH4L080N120SC1	TO-247-4L	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Condit	ions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS				ı	1	
BV _{DSS}	Drain-to-Source Breakdown Voltage	I _D = 100 μA, V _{GS} = 0 V	1	1200	_	-	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 5 mA, Referenced	to 25°C	-	0.3	_	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 1200 V, V _{GS} = 0	$V T_C = 25^{\circ}C$ $T_C = 150^{\circ}C$	- -	- -	100 1.0	μA mA
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = 25 V, V _{DS} = 0 V		-	-	1	μΑ
I _{GSSR}	Gate-to-Source Leakage Current, Reverse	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$	/	=	-	-1	μΑ
ON CHARACTE	ERISTICS						
V _{GS(th)}	Gate-to-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 5 \text{ mA}$		1.8	2.75	4.3	V
R _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 20 V, I _D = 20 A		-	80	110	mΩ
		V _{GS} = 20 V, I _D = 20 A,	T _C = 150°C	-	127	162	
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 20 A		-	11.3	_	S
		V _{DS} = 20 V, I _D = 20 A,	T _C = 150°C	-	9.8	_	
DYNAMIC CHA	RACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = 800 V, V _{GS} = 0 \	/, f = 1 MHz	-	1112	1670	pF
C _{oss}	Output Capacitance	- -		-	80	120	pF
C _{rss}	Reverse Transfer Capacitance			-	6.5	10	pF
E _{oss}	C _{oss} Stored Energy			_	32	-	μJ
SWITCHING CH	IARACTERISTICS					·	
t _{d(on)}	Turn-On Delay Time	V _{CC} = 800 V, I _C = 20 A	,	-	9	18	ns
t _r	Rise Time	$V_{GS} = -5/20 \text{ V}, R_G = 4.7 \Omega$ Inductive Load, $T_C = 25^{\circ}C$		-	4.2	10	ns
t _{d(off)}	Turn-Off Delay Time			-	26.8	43	ns
t _f	Fall Time			-	5.4	11	ns
E _{on}	Turn-on Switching Loss			-	314	-	μJ
E _{off}	Turn-off Switching Loss			_	32	-	μJ
E _{ts}	Total Switching Loss			-	346	-	μJ
Qg	Total Gate Charge	V _{DD} = 600 V, I _D = 20 A		-	56	-	nC
Q _{gs}	Gate-to-Source Charge	$V_{GS} = -5/20 \text{ V}$		-	11	-	nC
Q _{gd}	Gate-to-Drain Charge			-	12	-	nC
R _G	Gate input resistance	f = 1 MHz, D-S short		_	1.7	-	Ω
DIODE CHARA	CTERISTICS					I.	Į
V _{SD}	Source-to-Drain Diode Forward	$V_{GS} = -5 \text{ V},$ $T_C = 25^{\circ}\text{C}$		_	3.7	_	V
	Voltage	I _{SD} = 10 A	T _C = 150°C	_	3.3	-	1
E _{rec}	Reverse Recovery Energy	I _{SD} = 20 A,	T _C = 150°C	-	29	-	μJ
t _{rr}	Diode Reverse Recovery Time	$V_{GS} = -5 \text{ V},$ $V_{R} = 600 \text{ V},$	T _C = 25°C	_	18	_	ns
		dl _{SD} /dt = 1000 A/μs	T _C = 150°C	_	31	-	1
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C	_	80	-	nC
			T _C = 150°C	_	212	_	1
I _{rrm}	Peak Reverse Recovery Current		T _C = 25°C	_	9	_	Α
	<u> </u>	T _C = 150°C		_	14		†

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

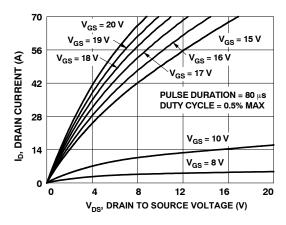


Figure 1. On Region Characteristics

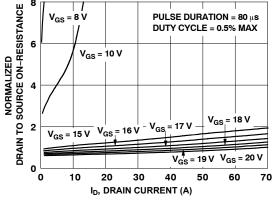


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

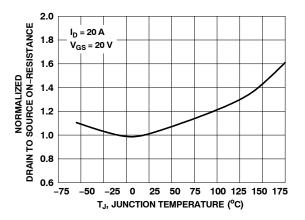


Figure 3. Normalized On Resistance vs. Junction Temperature

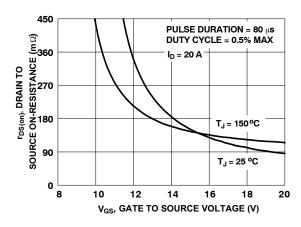


Figure 4. On-Resistance vs. Gate-to-Source Voltage

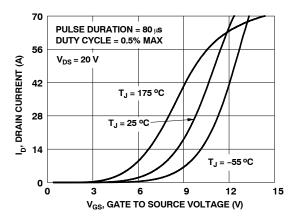


Figure 5. Transfer Characteristics

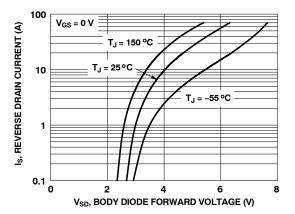


Figure 6. Source-to-Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

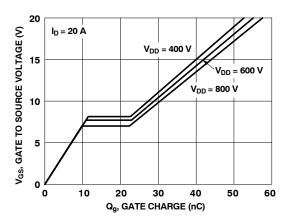


Figure 7. Gate Charge Characteristics

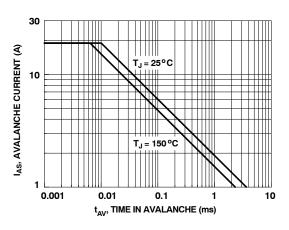


Figure 9. Unclamped Inductive Switching Capability

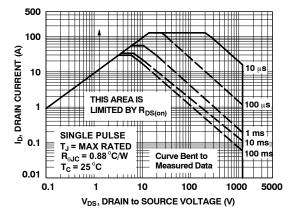


Figure 11. Forward Bias Safe Operating Area

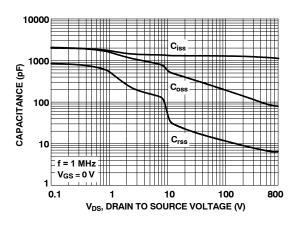


Figure 8. Capacitance vs. Drain-to-Source Voltage

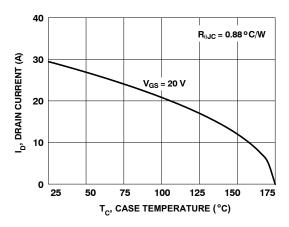


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

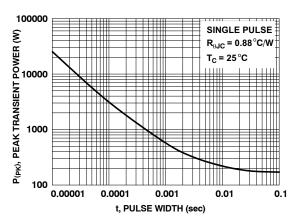


Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

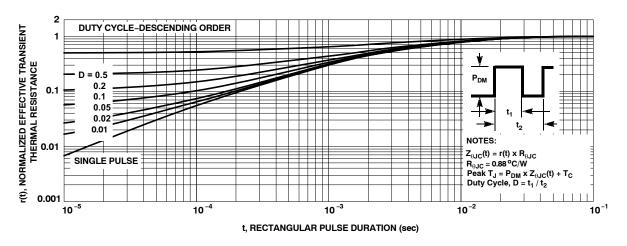
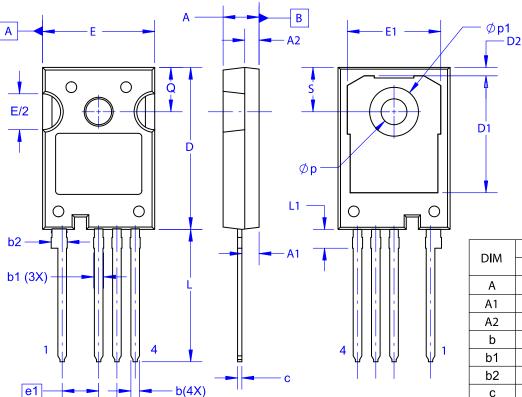



Figure 13. Junction-to-Case Transient Thermal Response Curve

TO-247-4LD CASE 340CJ **ISSUE A**

DATE 16 SEP 2019

NOTES:

e 2X-0.254 M

e1

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5-2009.

DIM	MIN	NOM	MAX
A	4.80	5.00	5.20
A1	2.10	2.40	2.70
A2	1.80	2.00	2.20
b	1.07	1.20	1.33
b1	1.20	1.40	1.60
b2	2.02	2.22	2.42
С	0.50	0.60	0.70
D	22.34	22.54	22.74
D1	16.00	16.25	16.50
D2	0.97	1.17	1.37
е	2.54 BSC		
e1	5.08 BSC		
E	15.40	15.60	15.80
E1	12.80	13.00	13.20
E/2	4.80	5.00	5.20
L	18.22	18.42	18.62
L1	2.42	2.62	2.82
р	3.40	3.60	3.80
p1	6.60	6.80	7.00
Q	5.97	6.17	6.37
S	5.97	6.17	6.37

MILLIMETERS

DOCUMENT NUMBER:	98AON13852G	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-247-4LD		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative