Silicon Carbide (SiC) Schottky Diode - EliteSiC, 6 A, 650 V, D2, DPAK
 FFSD0665B-F085

Silicon Carbide (SiC) Schottky Diodes use a completely new technology that provides superior switching performance and higher reliability compared to Silicon. No reverse recovery current, temperature independent switching characteristics, and excellent thermal performance sets Silicon Carbide as the next generation of power semiconductor. System benefits include highest efficiency, faster operating frequency, increased power density, reduced EMI, and reduced system size and cost.

Features

- Max Junction Temperature $175^{\circ} \mathrm{C}$
- Avalanche Rated 24.5 mJ
- High Surge Current Capacity
- Positive Temperature Coefficient
- Ease of Paralleling
- No Reverse Recovery / No Forward Recovery
- AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Automotive HEV-EV Onboard Chargers
- Automotive HEV-EV DC-DC Converters

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter		Symbol	Value	Unit
Peak Repetitive Reverse Voltage		$\mathrm{V}_{\text {RRM }}$	650	V
Single Pulse Avalanche Energy $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$, $\left.\mathrm{L}_{\mathrm{L}(\mathrm{pk})}=9.9 \mathrm{~A}, \mathrm{~L}=0.5 \mathrm{mH}, \mathrm{V}=50 \mathrm{~V}\right)$		$\mathrm{E}_{\text {AS }}$	24.5	mJ
Continuous Rectified Forward Current	$\mathrm{T}_{\mathrm{C}}<154$	I_{F}	6.0	A
	$\mathrm{T}_{\mathrm{C}}<135$		9.1	
Non-Repetitive Peak Forward Surge Current	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \\ & \mathrm{t}_{\mathrm{P}}=10 \mu \mathrm{~s} \end{aligned}$	$\mathrm{I}_{\text {FM }}$	493	A
	$\begin{aligned} \mathrm{T}_{\mathrm{C}} & =150^{\circ} \mathrm{C}, \\ \mathrm{t}_{\mathrm{p}} & =10 \mu \mathrm{~s} \end{aligned}$		442	
Non-Repetitive Forward Surge Current (Half-Sine Pulse)	$\begin{gathered} \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ \mathrm{t}_{\mathrm{P}}=8.3 \mathrm{~ms} \end{gathered}$	$\mathrm{I}_{\text {FSM }}$	28	A
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	75	W
	$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$		12.5	
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{gathered} -55 \text { to } \\ +175 \end{gathered}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

$\mathbf{V}_{\mathbf{R R M}}$	$\mathbf{I}_{\mathbf{F}}$
650 V	6.0 A

Schottky Diode

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {өJC }}$	Thermal Resistance, Junction-to-Case	2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
ON CHARACTERISTICS						
V_{F}	Forward Voltage	$\mathrm{I}_{\mathrm{F}}=6.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	1.38	1.7	V
		$\mathrm{I}_{\mathrm{F}}=6.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	1.53	2.0	
		$\mathrm{I}_{\mathrm{F}}=6.0 \mathrm{~A}, \mathrm{~T}_{J}=175^{\circ} \mathrm{C}$	-	1.67	2.4	
I_{R}	Reverse Current	$\mathrm{V}_{\mathrm{R}}=650 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	0.5	40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=650 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	1.0	80	
		$\mathrm{V}_{\mathrm{R}}=650 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C}$	-	2.0	160	

CHARGES, CAPACITANCES \& GATE RESISTANCE

Q_{C}	Total Capacitive Charge	$\mathrm{V}_{\mathrm{C}}=400 \mathrm{~V}$	-	16	-	nC
$\mathrm{C}_{\text {tot }}$		$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	259	-	pF
		$\mathrm{V}_{\mathrm{R}}=200 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	29	-	
		$\mathrm{V}_{\mathrm{R}}=400 \mathrm{~V}, \mathrm{f}=100 \mathrm{kHz}$	-	22	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PART MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method †	Reel Size	Tape Width	Quantity
FFSD0665B-F085	FFSD0665B	DPAK	Tape \& Reel	330 mm	16 mm	2500 units

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

Figure 1. Forward Characteristics

Figure 3. Current Derating

Figure 5. Capacitive Charge vs. Reverse Voltage

Figure 2. Reverse Characteristics

Figure 4. Power Derating

Figure 6. Capacitance vs. Reverse Voltage

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Stored Energy

Figure 8. Junction-to-Case Transient Thermal Response

DPAK3 (TO-252 3 LD)

CASE 369AS
ISSUE A
DATE 28 SEP 2022

IODE PRODUCTS VERSION

GENERIC
MARKING DIAGRAM*

XXXXXX
XXXXXX
AYWWZZ

XXXX = Specific Device Code A = Assembly Location Y = Year
WW = Work Week
ZZ = Assembly Lot Code

DETAIL A
(ROTATED -90\%)
sCALE: 12X

	4.572 BSC		
e 1			
H	9.40	9.91	10.41
L	1.40	1.59	1.78
L1	2.90 REF		
L2	0.51 BSC		
L3	0.89	1.08	1.27
L4	---	---	1.02
θ	0°	---	10°

LAND PATTERN RECOMMENDATION
*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON13810G | Eleccronic versions are uncontrolled except when accessed diriectly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK3 (TO-252 3 LD) | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

