SGM2268
 0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

GENERAL DESCRIPTION

The SGM2268 is a dual single-pole/double-throw (SPDT) analog switch that is designed to operate from a single +1.8 V to +4.2 V power supply. Targeted applications include battery powered equipment that benefit from ultra low on-resistance (0.4Ω) and fast switching speeds.

SGM2268 features guaranteed on-resistance matching (0.04Ω TYP) between switches and guaranteed onresistance flatness over the signal range (0.08Ω TYP), as well as high off-isolation and low crosstalk. This ensures excellent linearity and low distortion when switching audio signals.

The SGM2268 is a committed dual single-pole/double -throw (SPDT) that consist of two normally open (NO) and two normally close (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

SGM2268 is available in Pb-free WQFN-10 package.

APPLICATIONS

Portable Instrumentation
Battery-Operated Equipment
Computer Peripherals
Speaker and Earphone Switching
Medical Equipment
Audio and Video Switching

FEATURES

- Voltage Operation: +1.8 V to +4.2 V
- Ultra Low On-Resistance: 0.4Ω (TYP) at +4.2V
- On-Resistance Matching : 0.04』 (TYP)
- On-Resistance Flatness: 0.08Ω (TYP)
- -3dB Bandwidth: 40MHz
- High Off-Isolation: -78dB at 100kHz
- Low Crosstalk: -103dB at 100kHz
- Rail-to-Rail Input and Output Operation
- TTL/CMOS Compatible
- Break-Before-Make Switching
- Extended Industrial Temperature Range:
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Lead (Pb) Free WQFN-10 Package

PIN CONFIGURATION (TOP VIEW)

FUNCTION TABLE

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

Switches Shown For Logic "0" Input.

0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM2268	WQFN-10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SGM2268YWQ10/TR	2268	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

Note1: Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN DESCRIPTION

WQFN-10	NAME	FUNCTION
9	V $_{+}$	Power supply
4	GND	Ground
7,6	IN1, IN2	Digital control pin to connect the COM terminal to the NO or NC terminals
8,5	COM1, COM2	Common terminal
1,3	NO1, NO2	Normally-open terminal
10,2	NC1, NC2	Normally-closed terminal

Note: NO, NC and COM terminals may be an input or output.

0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{+}=+4.2 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{+}=+4.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH								
Analog Signal Range	$\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\text {NC }}, \mathrm{V}_{\text {com }}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0		V_{+}	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V}, \\ & \mathrm{I}_{\text {com }}=-100 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$		$+25^{\circ} \mathrm{C}$		0.4	0.65	Ω
				$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			0.75	Ω
On-Resistance Match Between Channels	$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} \text {, }$$I_{\text {сом }}=-100 \mathrm{~mA} \text {, Test Circuit } 1$		$+25^{\circ} \mathrm{C}$		0.04	0.15	Ω
				$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			0.2	Ω
On-Resistance Flatness	$\mathrm{R}_{\text {FLAt(ON) }}$	$\begin{aligned} & \mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{Com}}=1 \mathrm{~V}, 2.5 \mathrm{~V}, \\ & \mathrm{I}_{\text {com }}=-100 \mathrm{~mA} \text {, Test Circuit } 1 \end{aligned}$		$+25^{\circ} \mathrm{C}$		0.08	0.12	Ω
				$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			0.2	Ω
Source OFF Leakage Current	$\mathrm{I}_{\mathrm{NC}(\text { OFF) }}, \mathrm{I}_{\text {NO(OFF) }}$	$\begin{aligned} & \mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.3 \mathrm{~V} / \\ & \mathrm{V}_{\text {COM }}=0.3 \mathrm{~V} / 3.3 \mathrm{~V} \end{aligned}$	$0.3 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
Channel ON Leakage Current	$I_{\mathrm{NC}(\mathrm{ON}),} \mathrm{I}_{\mathrm{NO}(\mathrm{ON}),}$ Ісом(ON)	$\mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {COM }}=0.3 \mathrm{~V} / 3.3 \mathrm{~V} \text {, }$ $\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3.3 \mathrm{~V} \text {, or flo }$	ating	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
DIGITAL INPUTS								
Input High Voltage	$\mathrm{V}_{\text {INH }}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.6			V
Input Low Voltage	$\mathrm{V}_{\text {INL }}$			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			0.5	V
Input Leakage Current	I_{N}	$\mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 4.2 V		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
DYNAMIC CHARACTERISTICS								
Turn-On Time	ton	$\mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V} \text { to } 0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}$ $\mathrm{V}_{\mathrm{NO} 1}$ or $\mathrm{V}_{\mathrm{NC} 1}=\mathrm{V}_{\mathrm{NO} 2}$ or $\mathrm{V}_{\mathrm{NC} 2}=$ Test Circuit2	$\begin{aligned} & \mathrm{L}=35 \mathrm{pF}, \\ & 2.1 \mathrm{~V}, \end{aligned}$	$+25^{\circ} \mathrm{C}$		88		ns
Turn-Off Time	toff	$\mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}$ $\mathrm{V}_{\mathrm{NO} 1}$ or $\mathrm{V}_{\mathrm{NC} 1}=\mathrm{V}_{\mathrm{NO} 2}$ or $\mathrm{V}_{\mathrm{NC} 2}=$ Test Circuit2	$\begin{aligned} & \mathrm{L}=35 \mathrm{pF}, \\ & =2.1 \mathrm{~V}, \end{aligned}$	$+25^{\circ} \mathrm{C}$		16		ns
Break-Before-Make Time Delay	$t_{\text {D }}$	$\mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, C $\mathrm{V}_{\mathrm{NO} 1}$ or $\mathrm{V}_{\mathrm{NC} 1}=\mathrm{V}_{\mathrm{NO} 2}$ or $\mathrm{V}_{\mathrm{NC} 2}=$ Test Circuit3	$\begin{aligned} & \angle=35 \mathrm{pF}, \\ & =2.1 \mathrm{~V}, \end{aligned}$	$+25^{\circ} \mathrm{C}$		6.0		ns
Off Isolation	Oiso	$\mathrm{V}_{\mathrm{BIAS}}=2.1 \mathrm{~V}$, Signal $=0 \mathrm{dBm}$, Test Circuit4	100 kHz	$+25^{\circ} \mathrm{C}$		-78		dB
			1MHz	$+25^{\circ} \mathrm{C}$		-58		dB
Channel-to-Channel Crosstalk	$\mathrm{X}_{\text {talk }}$	$V_{\text {BIAS }}=2.1 \mathrm{~V}$, Signal $=0 \mathrm{dBm}$, Test Circuit5	100 kHz	$+25^{\circ} \mathrm{C}$		-103		dB
			1MHz	$+25^{\circ} \mathrm{C}$		-90		dB
-3dB Bandwidth	BW	$\mathrm{V}_{\text {BIAS }}=2.1 \mathrm{~V}$, Signal $=0 \mathrm{dBm}$, Test Circuit6		$+25^{\circ} \mathrm{C}$		40.0		MHz
Charge Injection Select Input to Common I/O	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{Rs}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \\ & \text { Test Circuit7 } \end{aligned}$		$+25^{\circ} \mathrm{C}$		4.0		pC
Channel ON Capacitance	$\mathrm{C}_{\text {ON }}$			$+25^{\circ} \mathrm{C}$		106		pF
POWER REQUIREMENTS								
Power Supply Range	V_{+}			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	1.8		4.2	V
Power Supply Current	I_{+}	$\mathrm{V}_{+}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or V_{+}		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$

Specifications subject to changes without notice.

0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{+}=+2.7 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{+}=+3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Specifications subject to changes without notice.

SG Micro Limited

TYPICAL PERFORMANCE CHARACTERISTICS

TEST CIRCUITS

Test Circuit 1. On Resistance

Test Circuit 2. Switching Times ($\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\mathrm{OFF}}$)

Test Circuit 3. Break-Before-Make Time (t_{D})

TEST CIRCUITS (Cont.)

Test Circuit 4. Off Isolation

Test Circuit 5. Channel-to-Channel Crosstalk

TEST CIRCUITS (Cont.)

Test Circuit 6. -3dB Bandwidth

0.4Ω Ultra Low ON-Resistance,

SGM2268

PACKAGE OUTLINE DIMENSIONS

WQFN-10

Note: All linear dimensions are in millimeters.

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For information regarding SGMICRO Corporation and its products, see www.sg-micro.com

