

SGM2268 0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

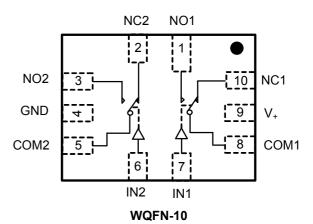
GENERAL DESCRIPTION

The SGM2268 is a dual single-pole/double-throw (SPDT) analog switch that is designed to operate from a single +1.8V to +4.2V power supply. Targeted applications include battery powered equipment that benefit from ultra low on-resistance (0.4Ω) and fast switching speeds.

SGM2268 features guaranteed on-resistance matching (0.04 Ω TYP) between switches and guaranteed onresistance flatness over the signal range (0.08 Ω TYP), as well as high off-isolation and low crosstalk. This ensures excellent linearity and low distortion when switching audio signals.

The SGM2268 is a committed dual single-pole/double -throw (SPDT) that consist of two normally open (NO) and two normally close (NC) switches. This configuration can be used as a dual 2-to-1 multiplexer.

SGM2268 is available in Pb-free WQFN-10 package.


APPLICATIONS

Portable Instrumentation Battery-Operated Equipment Computer Peripherals Speaker and Earphone Switching Medical Equipment Audio and Video Switching

FEATURES

- Voltage Operation: +1.8V to +4.2V
- Ultra Low On-Resistance: 0.4Ω (TYP) at +4.2V
- On-Resistance Matching : 0.04Ω (TYP)
- On-Resistance Flatness: 0.08Ω (TYP)
- -3dB Bandwidth: 40MHz
- High Off-Isolation: -78dB at 100kHz
- Low Crosstalk: -103dB at 100kHz
- Rail-to-Rail Input and Output Operation
- TTL/CMOS Compatible
- Break-Before-Make Switching
- Extended Industrial Temperature Range: -40°C to +85°C
- Lead (Pb) Free WQFN-10 Package

PIN CONFIGURATION (TOP VIEW)

FUNCTION TABLE

LOGIC	NO	NC
0	OFF	ON
1	ON	OFF

Switches Shown For Logic "0" Input.

SGM2268

0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

ORDERING INFORMATION

MODEL	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM2268	WQFN-10	-40°C to +85°C	SGM2268YWQ10/TR	2268	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

0V to 4.6V
0.3V to (V ₊) + 0.3V
±250mA
±350mA
40°C to +85°C
150°C

Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	260°C
ESD Susceptibility	
НВМ	4000V
MM	400V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note1: Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN DESCRIPTION

WQFN-10	NAME	FUNCTION
9	V+	Power supply
4	GND	Ground
7,6	IN1, IN2	Digital control pin to connect the COM terminal to the NO or NC terminals
8,5	COM1, COM2	Common terminal
1,3	NO1, NO2	Normally-open terminal
10,2	NC1, NC2	Normally-closed terminal

Note: NO, NC and COM terminals may be an input or output.

0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

ELECTRICAL CHARACTERISTICS

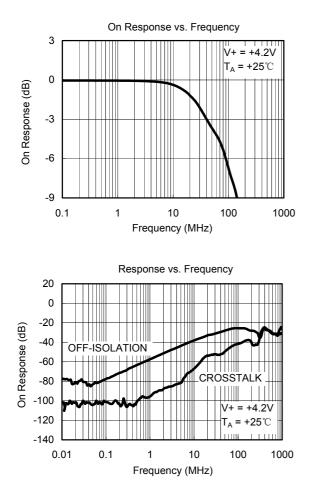
 $(V_+ = +4.2V, \text{ GND} = 0V, V_{IH} = +1.6V, V_{IL} = +0.6V, T_A = -40^{\circ}\text{C}$ to $+ 85^{\circ}\text{C}$. Typical values are at $V_+ = +4.2V, T_A = +25^{\circ}\text{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH	•			•		•		
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			-40°C to +85°C	0		V+	V
On Desistance	5	$V_{+} = 4.2V, V_{NO}, V_{NC} \text{ or } V_{COM} = 1V,$ $I_{COM} = -100 \text{mA}, \text{ Test Circuit 1}$		+25°C		0.4	0.65	Ω
On-Resistance	R _{ON}			-40°C to +85°C			0.75	Ω
On-Resistance Match		$V_{+} = 4.2V, V_{NO}, V_{NC} \text{ or } V_{COM}$	= 1V,	+25°C		0.04	0.15	Ω
Between Channels	ΔR_{ON}			-40°C to +85°C			0.2	Ω
On-Resistance	5	V ₊ = 4.2V, V _{NO} , V _{NC} or V _{COM} = 1V, 2.5V,		+25°C		0.08	0.12	Ω
Flatness	R _{FLAT(ON)}	I _{COM} = -100mA, Test Circuit 1		-40°C to +85°C			0.2	Ω
Source OFF Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	$V_{+} = 4.2V, V_{NO} \text{ or } V_{NC} = 3.3V/$ $V_{COM} = 0.3V/ 3.3V$	0.3V,	-40°C to +85°C			1	μA
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	$V_{+} = 4.2V, V_{COM} = 0.3V/3.3V \\ V_{NO} \text{ or } V_{NC} = 0.3V/3.3V, \text{ or fl}$		-40°C to +85°C			1	μA
DIGITAL INPUTS	L			1				
Input High Voltage	VINH			-40°C to +85°C	1.6			V
Input Low Voltage	V _{INL}			-40°C to +85°C			0.5	V
Input Leakage Current	I _{IN}	$V_{+} = 4.2V, V_{IN} = 0V \text{ or } 4.2V$		-40°C to +85°C			1	μA
DYNAMIC CHARACTE	RISTICS							
Turn-On Time	t _{on}	V_{IN} = 2.1V to 0V, R_L = 50 Ω , C_L = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 2.1V, Test Circuit2		+25°C		88		ns
Turn-Off Time	toff	V_{IN} = 2.1V to 0V, R_L = 50 Ω , C_L = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 2.1V, Test Circuit2		+25°C		16		ns
Break-Before-Make Time Delay	t _D	V_{IN} = 2.1V to 0V, R_L = 50 Ω , C_L = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 2.1V, Test Circuit3		+25°C		6.0		ns
Off Isolation	0	V _{BIAS} = 2.1V, Signal = 0dBm,	100kHz	+25°C		-78		dB
	O _{ISO}	Test Circuit4	1MHz	+25°C		-58		dB
Channel-to-Channel	V	V _{BIAS} = 2.1V, Signal = 0dBm,	100kHz	+25°C		-103		dB
Crosstalk	X _{TALK}	Test Circuit5	1MHz	+25°C		-90		dB
-3dB Bandwidth	BW	V _{BIAS} = 2.1V, Signal = 0dBm, Test Circuit6		+25°C		40.0		MHz
Charge Injection Select Input to Common I/O	Q	V_G = 0V, Rs = 0 Ω , C _L =1.0nF, Test Circuit7		+25°C		4.0		рС
Channel ON Capacitance	C _{ON}			+25°C		106		pF
POWER REQUIREMEN	TS	1				1		
Power Supply Range	V+			-40°C to +85°C	1.8		4.2	V
Power Supply Current	I+	$V_{+} = 4.2V, V_{IN} = 0V \text{ or } V_{+}$		-40°C to +85°C			1	μA

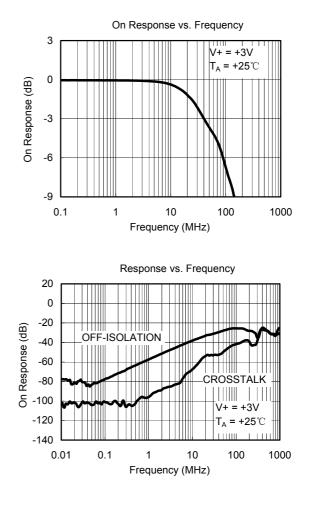
Specifications subject to changes without notice.

SGM2268

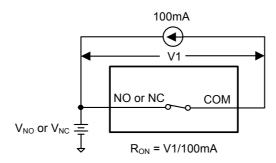
0.4Ω Ultra Low ON-Resistance, **Dual, SPDT Analog Switch**

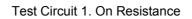

ELECTRICAL CHARACTERISTICS

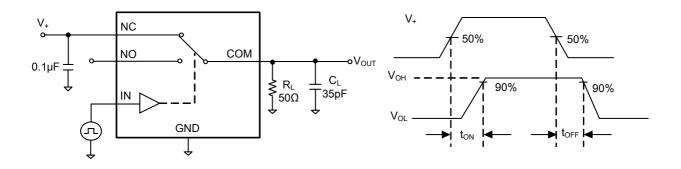
 $(V_+ = +2.7V \text{ to } +3.6V, \text{GND} = 0V, V_{IH} = +1.6V, V_{IL} = +0.4V, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$. Typical values are at $V_+ = +3.0V, T_A = +25^{\circ}\text{C}$, unless otherwise noted.)

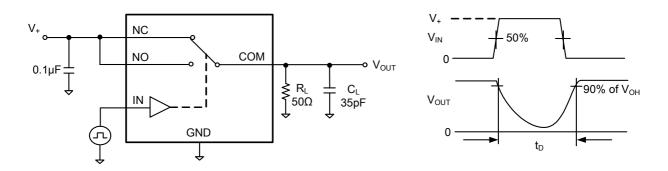

PARAMETER	SYMBOL	CONDITIONS		TEMP	MIN	TYP	MAX	UNITS
ANALOG SWITCH								<u></u>
Analog Signal Range	V_{NO},V_{NC},V_{COM}			-40°C to +85°C	0		V+	V
On Desistance	D	$V_{+} = 2.7V, V_{NO}, V_{NC} \text{ or } V_{COM} = 1V,$ $I_{COM} = -100mA, \text{ Test Circuit 1}$		+25°C		0.5	0.7	Ω
On-Resistance	R _{ON}			-40°C to +85°C			0.8	Ω
On-Resistance Match		$V_{+} = 2.7V, V_{NO}, V_{NC} \text{ or } V_{COM} = 1V,$		+25°C		0.03	0.15	Ω
Between Channels	ΔR_{ON}	I _{COM} = -100mA, Test Circuit 1		-40°C to +85°C			0.2	Ω
On-Resistance	D	V_{+} = 2.7V, V_{NO} , V_{NC} or V_{COM} =	1V, 2.5V,	+25°C		0.1	0.18	Ω
Flatness	R _{FLAT(ON)}	I _{COM} = -100mA, Test Circuit 1		-40°C to +85°C			0.2	Ω
Source OFF Leakage Current	INC(OFF), INO(OFF)	$V_{+} = 3.6V, V_{NO} \text{ or } V_{NC} = 3.3V / V_{COM} = 0.3V / 3.3V$	0.3V,	-40°C to +85°C			1	μA
Channel ON Leakage Current	I _{NC(ON)} , I _{NO(ON)} , I _{COM(ON)}	$V_{+} = 3.6V, V_{COM} = 0.3V/3.3V, V_{NO} \text{ or } V_{NC} = 0.3V/3.3V, or flo$	ating	-40°C to +85°C			1	μA
DIGITAL INPUTS								
Input High Voltage	V _{INH}			-40°C to +85°C	1.5			V
Input Low Voltage	V _{INL}			-40°C to +85°C			0.4	V
Input Leakage Current	l _{in}	V_{+} = 2.7V, V_{IN} = 0V or 2.7V	V ₊ = 2.7V, V _{IN} = 0V or 2.7V				1	μA
DYNAMIC CHARACTE	RISTICS							
Turn-On Time	t _{on}	V_{IN} =1.5V to 0V, R_L = 50 Ω , C_L = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 1.5V, Test Circuit2		+25°C		100		ns
Turn-Off Time	t _{OFF}	V_{IN} = 1.5V to 0V, R_L = 50 Ω , C_L = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} = 1.5V, Test Circuit2		+25°C		20		ns
Break-Before-Make Time Delay	t _D	V_{IN} = 1.5V to 0V, R_L = 50 Ω , C_L = 35pF, V_{NO1} or V_{NC1} = V_{NO2} or V_{NC2} =1.5V, Test Circuit3		+25°C		9.2		ns
Off Isolation	0	V _{BIAS} = 2.1V, Signal = 0dBm,	100kHz	+25°C		-78		dB
On Isolation	O _{ISO}	Test Circuit4	1MHz	+25°C		-58		dB
Channel-to-Channel	~	V _{BIAS} = 2.1V, Signal = 0dBm,	100kHz	+25°C		-103		dB
Crosstalk	X _{TALK}	Test Circuit5	1MHz	+25°C		-90		dB
–3dB Bandwidth	BW	V _{BIAS} = 2.1V, Signal = 0dBm, Test Circuit6		+25°C		40		MHz
Charge Injection Select Input to Common I/O	Q	V_G = 0V, Rs = 0 Ω , C _L = 1.0nF, Test Circuit7		+25°C		3.0		рС
Channel ON Capacitance	C _{ON}			+25°C		106		pF

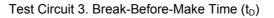
Specifications subject to changes without notice.

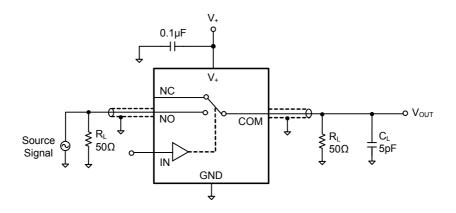


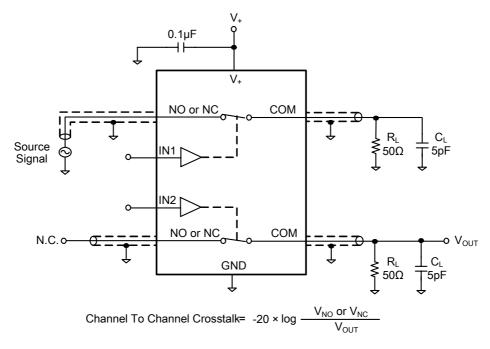

TYPICAL PERFORMANCE CHARACTERISTICS



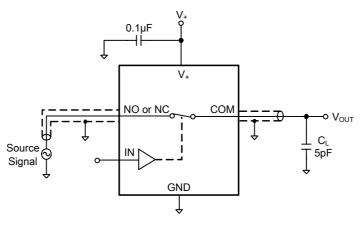

TEST CIRCUITS



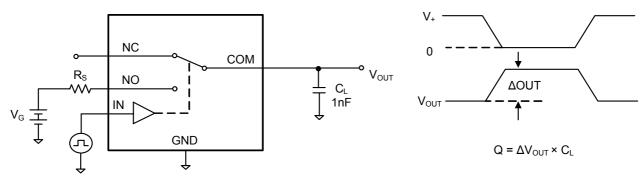

Test Circuit 2. Switching Times (t_{ON} , t_{OFF})



TEST CIRCUITS (Cont.)



Test Circuit 4. Off Isolation

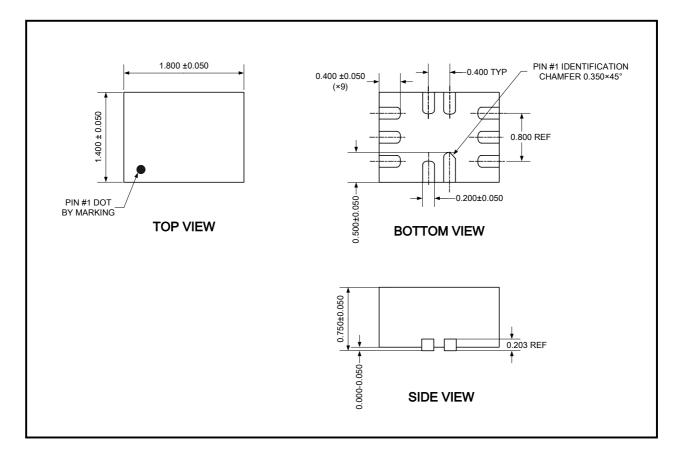


Test Circuit 5. Channel-to-Channel Crosstalk

TEST CIRCUITS (Cont.)

Test Circuit 6. -3dB Bandwidth

Test Circuit 7. Charge Injection (Q)



SGM2268

0.4Ω Ultra Low ON-Resistance, Dual, SPDT Analog Switch

PACKAGE OUTLINE DIMENSIONS

WQFN-10

Note: All linear dimensions are in millimeters.

12/2008 REV. A. 1

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For information regarding SGMICRO Corporation and its products, see <u>www.sg-micro.com</u>

