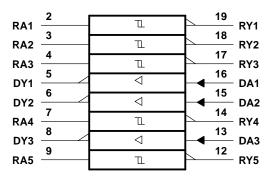
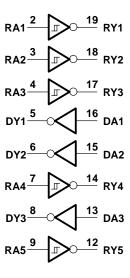

- Single Chip With Easy Interface Between UART and Serial Port Connector of IBM PC/AT™ and Compatibles
- Meets or Exceeds the Requirements of ANSI Standard EIA/TIA-232-E and ITU Recommendation V.28
- Designed to Support Data Rates Up To 120 kbps
- Pinout Compatible With the SN75C185 and SN75185
- ESD Protection to 2 kV on Bus Terminals

description


The GD75232 combines three drivers and five receivers from TI trade-standard SN75188 and SN75189 bipolar quadruple drivers and receivers, respectively. The pinout matches the flow-through design of the SN75C185 to decrease the part count, reduce the board space required, and allow easy interconnection of the UART and serial-port connector of an IBM PC/AT™ and compatibles. The bipolar circuits and processing of the GD75232 provides a rugged, low-cost solution for this function at the expense of quiescent power and external passive components relative to the SN75C185.

The GD75232 complies with the requirements of the EIA/TIA-232-E and ITU (formerly CCITT) V.28 standards. These standards are for data interchange between a host computer and a peripheral at signalling rates up to 20 kbps. The switching speeds of the GD75232 are fast enough to support rates up to 120 kbps with lower capacitive loads (shorter cables). Interoperability at the higher signalling rates cannot be assured unless the designer has design control of the cable and the interface circuits at both ends. For interoperability at signalling rates up to 120 kbps, use of ANSI EIA/TIA-423-B (ITU V.10) and EIA/TIA-422-B (ITU V.11) standards are recommended.

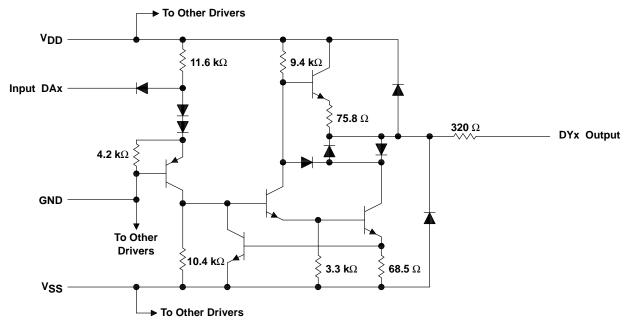
The GD75232 is characterized for operation over the temperature range of 0°C to 70°C.



logic symbol†

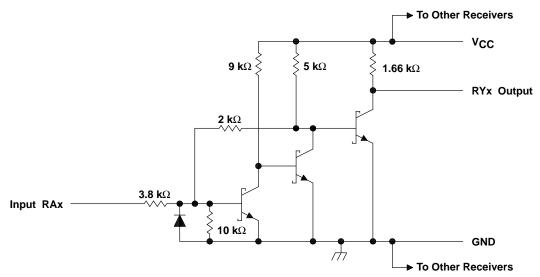
[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PC/AT is a trademark of IBM Corporation.



schematic (each driver)

Resistor values shown are nominal.

schematic (each receiver)

Resistor values shown are nominal.

SLLS206A - MAY 1995 - REVISED SEPTEMBER 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	10 V
Supply voltage, V _{DD} (see Note 1)	15 V
Supply voltage, VSS (see Note 1)	
Input voltage range, V _I : Driver	
Receiver	30 V to 30 V
Driver output voltage range, V _O	
Receiver low-level output current, I _{OL}	20 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to the network ground terminal.

DISSIPATION RATING TABLE‡

PACKAGE	$T_{\mbox{\scriptsize A}} \leq 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	$T_{\mbox{$A$}} \leq 70^{\circ}\mbox{$C$}$ POWER RATING		
DW	1256 mW	9.7 mW/°C	819 mW		
N	1943 mW	14.9 mW/°C	1272 mW		

 $[\]ddagger$ This is the inverse of the traditional junction-to-case thermal resistance (R $_{\theta JA}$).

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}		7.5	9	15	V
Supply voltage, VSS		-7.5	-9	-15	V
Supply voltage, VCC		4.5	5	5.5	V
High-level input voltage, V _{IH} (driver only)				V	
Low-level input voltage, V _{IL} (driver only)				0.8	V
Lligh lovel evitavit evitant lev	Driver			-6	mA
High-level output current, IOH	Receiver			-0.5	IIIA
Low-level output current, IOL	Driver			6	mA
Low-level output current, IOL	Receiver			16	ША
Operating free-air temperature,	^г А	0		70	°C

SLLS206A - MAY 1995 - REVISED SEPTEMBER 1996

supply currents over recommended operating free-air temperature range

	PARAMETER		TEST CONDI	TIONS		MIN	MAX	UNIT
				V _{DD} = 9 V,	$V_{SS} = -9 \text{ V}$		15	
		All inputs at 1.9 V,		$V_{DD} = 12 V$,	$V_{SS} = -12 \text{ V}$		19	mA
	Supply current from VDD			$V_{DD} = 15 V$,	$V_{SS} = -15 \text{ V}$		25	
IDD	Зарріў сапені поні УДД			$V_{DD} = 9 V$,	$V_{SS} = -9 V$		4.5	
		All inputs at 0.8 V,	No load	$V_{DD} = 12 V$,	$V_{SS} = -12 \text{ V}$		5.5	mA
				$V_{DD} = 15 V$,	$V_{SS} = -15 \text{ V}$		9	
				$V_{DD} = 9 V$,	$V_{SS} = -9 V$		-15	
		All inputs at 1.9 V,	No load	$V_{DD} = 12 V$,	$V_{SS} = -12 \text{ V}$		-19	mA
	Supply current from VSS			$V_{DD} = 15 V$,	$V_{SS} = -15 \text{ V}$		-25	
Iss			No load	$V_{DD} = 9 V$,	$V_{SS} = -9 V$		-3.2	
		All inputs at 0.8 V,		$V_{DD} = 12 V$,	V _{SS} = -12 V		-3.2	mA
				$V_{DD} = 15 V$,	V _{SS} = -15 V		-3.2	
ICC	Supply current from V _{CC}	V _{CC} = 5 V,	All inputs at 5 V,	, No lo	oad		30	mA

DRIVER SECTION

electrical characteristics over recommended operating free-air temperature range, V_{DD} = 9 V, $V_{SS} = -9 \text{ V}, V_{CC} = 5 \text{ V} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
Vон	High-level output voltage	$V_{IL} = 0.8 V$,	$R_L = 3 k\Omega$,	See Figure 1	6	7.5		V
VOL	Low-level output voltage (see Note 2)	V _{IH} = 1.9 V,	$R_L = 3 k\Omega$,	See Figure 1		-7.5	-6	V
ΙΗ	High-level input current	V _I = 5 V,	See Figure 2				10	μА
I _{IL}	Low-level input current	$V_{ } = 0,$	See Figure 2				-1.6	mA
los(H)	High-level short-circuit output current (see Note 3)	V _{IL} = 0.8 V,	V _O = 0,	See Figure 1	-4.5	-12	-19.5	mA
los(L)	Low-level short-circuit output current	V _{IH} = 2 V,	$V_{O} = 0$,	See Figure 1	4.5	12	19.5	mA
rO	Output resistance (see Note 4)	VCC = VDD =	= V _{SS} = 0,	$V_0 = -2 \text{ V to } 2 \text{ V}$	300			Ω

- NOTES: 2. The algebraic convention, where the more positive (less negative) limit is designated as maximum, is used in this data sheet for logic levels only (e.g., if –10 V is maximum, the typical value is a more negative voltage).
 - 3. Output short-circuit conditions must maintain the total power dissipation below absolute maximum ratings.
 - 4. Test conditions are those specified by EIA/TIA-232-E and as listed above.

switching characteristics, $V_{CC} = 5 \text{ V}$, $V_{DD} = 12 \text{ V}$, $V_{SS} = -12 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER TEST CONDITIONS			TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	D. 2kO to 7kO C. 45 pF Coo Figure 2		315	500	ns
tPHL	Propagation delay time, high- to low-level output	R _L = 3 kΩ to 7 kΩ, C _L = 15 pF, See Figure 3		75	175	ns
	Transition time, low- to high-	$R_L = 3 \text{ k}\Omega$ to 7 k Ω , $C_L = 15 \text{ pF}$, See Figure 3		60	100	ns
tTLH	level output	$R_L = 3 \text{ k}\Omega$ to 7 k Ω , $C_L = 2500 \text{ pF}$, See Figure 3 and Note 5		1.7	2.5	μs
	Transition time, high- to low-	$R_L = 3 \text{ k}\Omega$ to 7 k Ω , $C_L = 15 \text{ pF}$, See Figure 3		40	75	ns
tTHL	level output	$R_L = 3 \text{ k}\Omega$ to 7 k Ω , $C_L = 2500 \text{ pF}$, See Figure 3 and Note 5		1.5	2.5	μs

NOTES: 5. Measured between ± 3-V and ± 3-V points of the output waveform (EIA/TIA-232-E conditions), all unused inputs are tied either high or low.

RECEIVER SECTION

electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS		TYP [†]	MAX	UNIT
\/. -	Positive going input throughold voltage	Coo Figuro F	T _A = 25°C	1.75	1.9	2.3	
VIT+	Positive-going input threshold voltage	See Figure 5	$T_A = 0$ °C to 70 °C	1.55		2.3	V
V _{IT} –	Negative-going input threshold voltage		_		0.97	1.25	V
V _{hys}	Input hysteresis voltage ($V_{IT+} - V_{IT-}$)			0.5			
Vall	High-level output voltage	I _{OH} = -0.5 mA	V _{IH} = 0.75 V	2.6	4	5	V
VOH			Inputs open	2.6			
VOL	Low-level input voltage	$I_{OL} = 10 \text{ mA},$	V _I = 3 V		0.2	0.45	٧
Ī	High-level input current	V _I = 25 V,	See Figure 5	3.6		8.3	mA
'ін	Tilgir-level iriput current	V _I = 3 V,	See Figure 5	0.43			ША
ļ	Low-level output current	$V_{I} = -25 V$,	See Figure 5	-3.6		-8.3	
'IL		$V_{I} = -3 V$,	See Figure 5	-0.43		·	mA
los	Short-circuit output current	See Figure 4			-3.4	-12	mA

[†] All typical values are at $T_A = 25^{\circ}C$, $V_{CC} = 5$ V, $V_{DD} = 9$ V, and $V_{SS} = -9$ V.

switching characteristics, V_{CC} = 5 V, V_{DD} = 12 V, V_{SS} = -12 V, T_A = 25°C

	PARAMETER		TEST CONDITIONS			MAX	UNIT
tPLH	Propagation delay time, low- to high-level output				107	250	ns
tPHL	Propagation delay time, high- to low-level output	C _L = 50 pF, See Figure 6	$R_L = 5 k\Omega$,		42	150	ns
tTLH	Transition time, low- to high-level output				175	350	ns
tTHL	Transition time, high- to low-level output				16	60	ns
tPLH	Propagation delay time, low- to high-level output				100	160	ns
tPHL	Propagation delay time, high- to low-level output	C _L = 15 pF,			60	100	ns
tTLH	Transition time, low- to high-level output	See Figure 6			90	175	ns
tTHL	Transition time, high- to low-level output				15	50	ns

PARAMETER MEASUREMENT INFORMATION

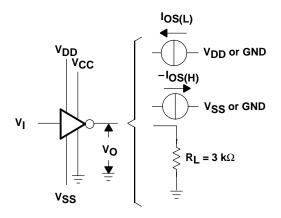


Figure 1. Driver Test Circuit for $V_{OH}, V_{OL}, I_{OS(H)},$ and $I_{OS(L)}$

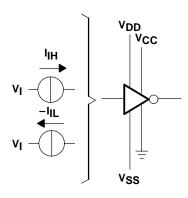
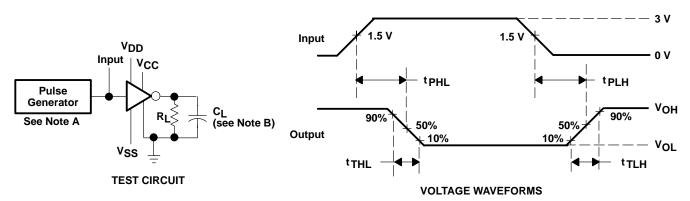
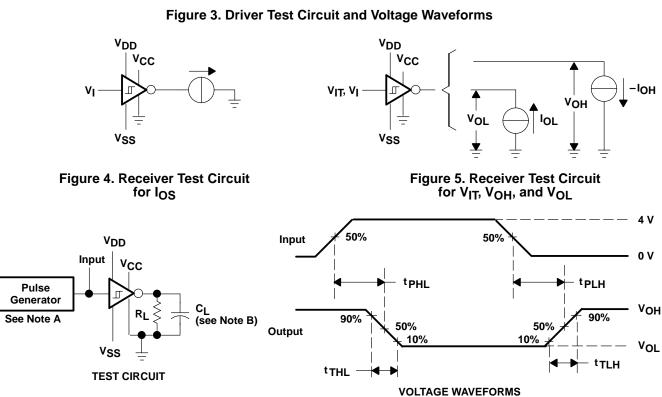



Figure 2. Driver Test Circuit for I_{IH} and I_{IL}



PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: $t_W = 25 \mu s$, PRR = 20 kHz, $Z_O = 50 \Omega$, $t_f = t_f < 50 ns$.

B. C_L includes probe and jig capacitance.

NOTES: A. The pulse generator has the following characteristics: t_W = 25 μ s, PRR = 20 kHz, Z_O = 50 Ω , t_f = t_f < 50 ns.

B. C_L includes probe and jig capacitance.

Figure 6. Receiver Propagation and Transition Times

TYPICAL CHARACTERISTICS

DRIVER SECTION

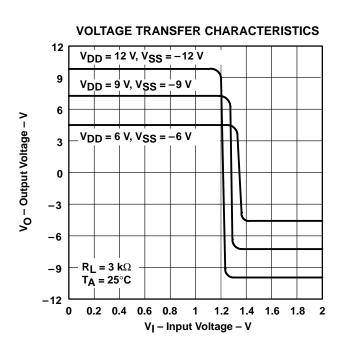
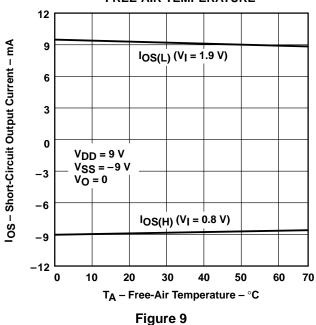



Figure 7

SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE

OUTPUT CURRENT vs

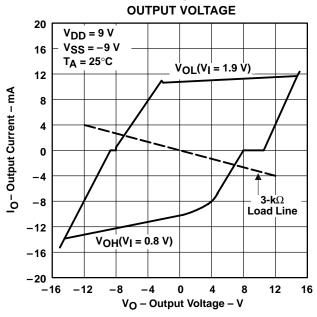
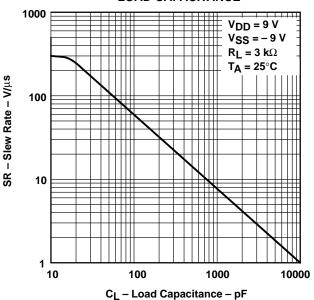
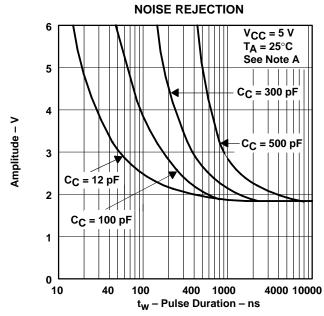


Figure 8

SLEW RATE vs LOAD CAPACITANCE




Figure 10

TYPICAL CHARACTERISTICS

RECEIVER SECTION

INPUT THRESHOLD VOLTAGE vs FREE-AIR TEMPERATURE 2.4 2.2 V_{IT} - Input Threshold Voltage - V 2 VIT + 1.8 1.6 1.4 1.2 V_{IT} 1 0.8 0.6 0.4 0 10 20 30 40 50 60 70 T_A – Free-Air Temperature – $^{\circ}C$ Figure 11

NOTE A: This figure shows the maximum amplitude of a positive-going pulse that, starting from 0 V, does not cause a change of the output level.

Figure 13

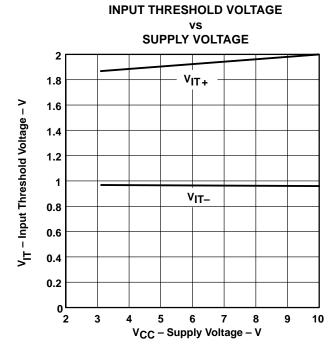


Figure 12

MAXIMUM SUPPLY VOLTAGE

vs

FREE-AIR TEMPERATURE

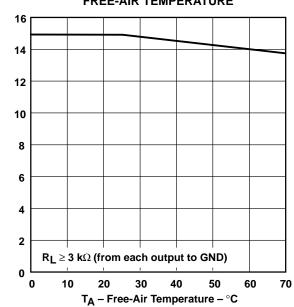


Figure 14

V_{DD} - Maximum Supply Voltage - V

APPLICATION INFORMATION

Diodes placed in series with the V_{DD} and V_{SS} , leads protect the GD75232 in the fault condition in which the device outputs are shorted to ± 15 V and the power supplies are at low and provide low-impedance paths to ground (see Figure 15).

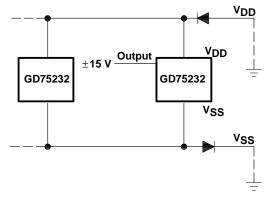
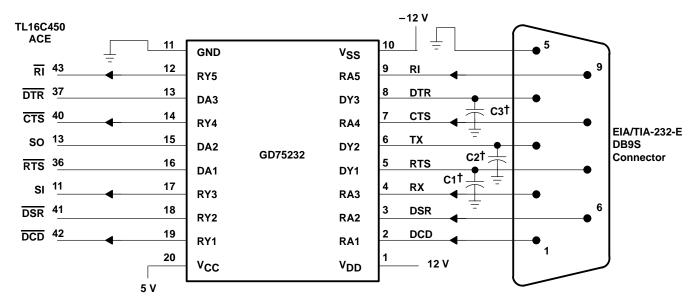



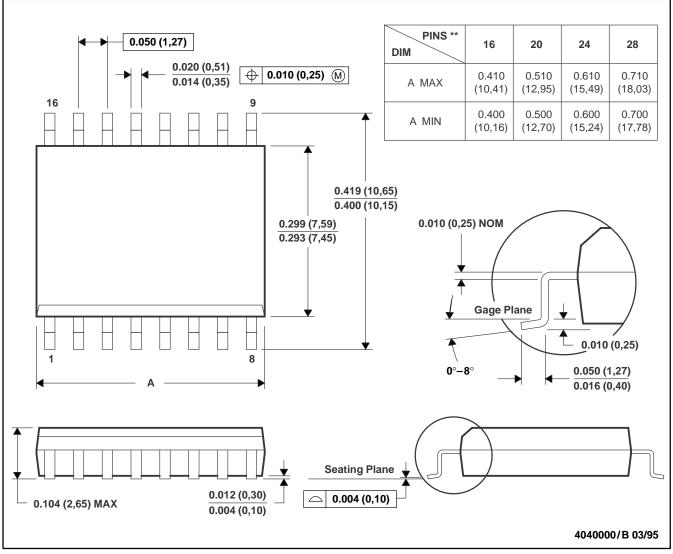
Figure 15. Power-Supply Protection to Meet Power-Off Fault Conditions of EIA/TIA-232-E

Figure 16. Typical Connection

NOTE

For the most reliable operation and to avoid potential device damage, the following power-up sequence should be followed. First, apply the V_{DD} (+12 V) supply for 5 ms to 100 ms prior to applying the V_{CC} (+5V) supply. The V_{SS} (–12 V) supply can be applied at any time during the sequence, but the best results have been acheived when V_{SS} is applied prior to V_{DD} , to bias the substrate.

The power-down sequence is the reverse of the power-up sequence. The V_{CC} should be removed first. Then after 5 ms to 100 ms, V_{DD} can be removed. V_{SS} can be removed at any point during this sequence. But, for best results, V_{SS} should be removed last.


SLLS206A - MAY 1995 - REVISED SEPTEMBER 1996

MECHANICAL INFORMATION

DW (R-PDSO-G**)

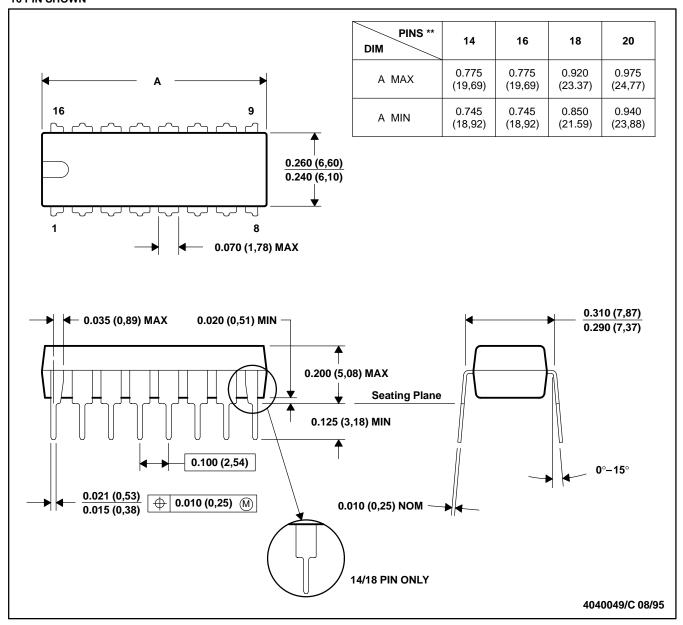
PLASTIC SMALL-OUTLINE PACKAGE

16 PIN SHOWN

NOTES: A: All linear dimensions are in inches (millimeters).

B: This drawing is subject to change without notice.

C: Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).


D: Falls within JEDEC MS-013

MECHANICAL INFORMATION

N (R-PDIP-T**)

16 PIN SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated