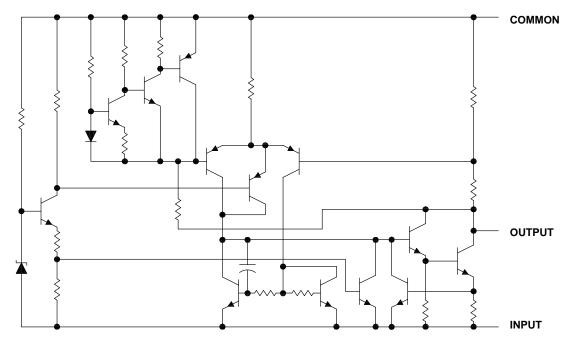

SLVS011A - OCTOBER 1982 - REVISED NOVEMBER 1991

- 3-Terminal Regulators
- Output Current Up to 100 mA
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Direct Replacement for Motorola MC79L00 Series
- Available in 5% or 10% Selections

description

This series of fixed negative-voltage monolithic integrated-circuit voltage regulators is designed for a wide range of applications. These include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. In addition, they can be used to control series pass elements to make high-current voltage-regulator circuits. One of these regulators can deliver up to 100 mA of output current. The internal current-limiting and thermal-shutdownfeatures make them essentially immune to overload. When used as a replacement for a zener diode and resistor combination, these devices can provide an effective improvement in output impedance of two orders of magnitude and lower bias current.


equivalent schematic

COMMON

NC-No internal connection

NOMINAL OUTPUT VOLTAGE	5% OUTPUT VOLTAGE TOLERANCE	10% OUTPUT VOLTAGE TOLERANCE
-5 V	MC79L05AC	MC79L05C
-12 V	MC79L12AC	MC79L12C
-15 V	MC79L15AC	MC79L15C

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLVS011A - OCTOBER 1982 - REVISED NOVEMBER 1991

absolute maximum ratings over operating temperature ranges (unless otherwise noted)

	MC79L05	MC79LI2 MC79L15	UNIT
Input voltage	-30	-35	V
Continuous total dissipation	See Dissipation Rating Tables 1 and 2		
Operating free-air, case, or virtual junction temperature range	0 to 150	0 to 150	°C
Storage temperature range	-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260	260	°C

DISSIPATION RATING TABLE 1 – FREE-AIR TEMPERATURE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING
D	825 mW	6.6 mW/°C	25°C	528 mW
LP†	775 mW	6.2 mW/°C	25°C	496 mW

[†] The LP package dissipation rating is based on thermal resistance measured in still air with the device mounted in an Augat socket. The bottom of the package was 10 mm (0.375 in.) above the socket.

DISSIPATION RATING TABLE 2 – CASE TEMPERATURE

PACKAGE	T _C ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _C	T _C = 125°C POWER RATING
D	1600 mW	29.0 mW/°C	95°C	725 mW
LP	1600 mW	28.6 mW/°C	94°C	715 mW

recommended operating conditions

	-	MIN	MAX	UNIT
	MC79L05	-7	-20	
Input voltage, VI	MC79L12	-14.5	-27	V
	MC79L15	-17.5	-30	
Output current, IO				mA
Operating virtual junction temperature, TJ		0	125	°C

SLVS011A - OCTOBER 1982 - REVISED NOVEMBER 1991

electrical characteristics at specified virtual junction temperature, $V_I = -10 V$, $I_O = 40 mA$ (unless otherwise noted)

	TEST CONDITIONS [†]	T.T	м	C79L05	C	МС	79L05A	AC	UNIT
PARAMETER	TEST CONDITIONS	t _J ‡	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	-4.6	-5	-5.4	-4.8	-5	-5.2	
Output voltage§	$V_{I} = -7 V \text{ to } -20 V,$ $I_{O} = 1 \text{ mA to } 40 \text{ mA}$	Full range	-4.5		-5.5	-4.75		-5.25	V
	$V_{I} = -10 V$, $I_{O} = 1 mA$ to 70 mA	Full range	-4.5		-5.5	-4.75		-5.25	
Input regulation	$V_{I} = -7 V \text{ to } -20 V$	25°C			200			150	mV
	$V_{I} = -8 V \text{ to } -20 V$	25-0			150			100	mv
Ripple rejection	$V_{I} = -8 V \text{ to} - 18 V,$ f = 120 Hz	25°C	40	49		41	49		dB
	I _O = 1 mA to 100 mA				60			60	
Output regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	25°C			30			30	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		40			40		μV
Dropout voltage	I _O = 40 mA	25°C		1.7			1.7		V
Diag ourrent		25°C			6			6	
Bias current		125°C			5.5			5.5	mV
Bias current change	$V_{I} = -8 V \text{ to } -20 V$	Full range			1.5			1.5	mV
bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	i un range			0.2			0.1	

electrical characteristics at specified virtual junction temperature, $V_I = -19 V$, $I_O = 40 mA$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]	т.т	M	C79L12C	МС	C79L12A	C	UNIT
PARAMETER	TEST CONDITIONST	∓رT	MIN	ΤΥΡ ΜΑΧ	MIN	TYP	MAX	UNIT
		25°C	-11.1	-12 -12.9	-11.5	-12	-12.5	
Output voltage§	$V_{I} = -14.5 V \text{ to } -27 V,$ $I_{O} = 1 \text{ mA to } 40 \text{ mA}$	Full range	-10.8	-13.2	-11.4		-12.6	V
	$V_{I} = -19 V$, $I_{O} = 1 mA$ to 70 mA	Full range	-10.8	-13.2	-11.4		-12.6	
Input regulation	$V_{I} = -14.5 \text{ V to } -27 \text{ V}$	25°C		250			250	mV
	$V_{I} = -16 V \text{ to } -27 V$			200			200	mv
Ripple rejection	V _I = -15 V to -25 V, f = 120 Hz	25°C	36	42	37	42		dB
Output as a dation	IO = 1 mA to 100 mA			100			100	
Output regulation	$I_O = 1 \text{ mA to } 40 \text{ mA}$	25°C		50			50	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		80		80		μV
Dropout voltage	I _O = 40 mA	25°C		1.7		1.7		V
Diag aument		25°C		6.5			6.5	
Bias current		125°C		6			6	mV
Bias current change	$V_{I} = -16 \text{ V to } -27 \text{ V}$	Full range		1.5			1.5	mV
bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	Fuillange		0.2			0.1	ΠV

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡] Full range virtual junction temperature is 0°C to 125°C.

§ This specification applies only for dc power dissipation permitted by absolute maximum ratings.

SLVS011A - OCTOBER 1982 - REVISED NOVEMBER 1991

electrical characteristics at specified virtual junction temperature, $V_I = -23 V$, $I_O = 40 mA$ (unless otherwise noted)

DADAMETED	TEST CONDITIONST	T .†	MC79L15C			МС	LINUT		
PARAMETER	TEST CONDITIONS [†]	Tj‡	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
		25°C	-13.8	-15	-16.2	-14.4	-15	-15.6	
Output voltage§	$V_{I} = -17.5 V \text{ to } -30 V,$ I _O = 1 mA to 40 mA	Full range	-13.5		-16.5	-14.25		-15.75	V
	$V_I = -23 V$, $I_O = 1 mA to 70 mA$	Full range	-13.5		-16.5	-14.25		-15.75	
Input regulation	$V_{I} = -17.5 \text{ V to } -30 \text{ V}$	25°C			300			300	
	$V_{I} = -17.5 \text{ V to } -30 \text{ V}$				250			250	mV
Ripple rejection	V _I = -18.5 V to -28.5 V, f = 120 Hz	25°C	33	39		34	39		dB
	I _O = 1 mA to 100 mA				150			150	
Output regulation	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	25°C			75			75	mV
Output noise voltage	f = 10 Hz to 100 kHz	25°C		90			90		μV
Dropout voltage	I _O = 40 mA	25°C		1.7			1.7		V
		25°C			6.5			6.5	
Bias current		125°C			6			6	mV
Pige ourrept abapac	$V_{I} = -20 V \text{ to } -30 V$	Full rongs			1.5			1.5	mV
Bias current change	$I_{O} = 1 \text{ mA to } 40 \text{ mA}$	Full range			0.2			0.1	mv

[†] All characteristics are measured with a 0.33-μF capacitor across the input and a 0.1-μF capacitor across the output. Pulse-testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡]Full range virtual junction temperature is 0°C to 125°C.

§ This specification applies only for dc power dissipation permitted by absolute maximum ratings.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated