- Operating Range $2-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$
- EPICTM (Enhanced-Performance Implanted CMOS) Process
- 8-Bit Serial-In, Parallel-Out Shift
- Shift Register Has Direct Clear
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

The 'AHC595 contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3 -state outputs. Separate clocks are provided for both the shift and storage register. The shift register has a direct overriding clear ($\overline{\mathrm{SRCLR}}$) input, serial (SER) input, and serial outputs for cascading. When the output-enable ($\overline{\mathrm{OE}}$) input is high, the outputs are in the high-impedance state.
Both the shift register clock (RCLK) and storage register clock (SRCLK) are positive-edge triggered. If both clocks are connected together, the shift register is always one clock pulse ahead of the storage register.

SN54AHC595 . . J OR W PACKAGE
SN74AHC595... D, DB, N, OR PW PACKAGE
(TOP VIEW)

SN54AHC595 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN54AHC595 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74AHC595 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the D, DB, J, N, PW, and W packages.
logic diagram (positive logic)

MヨI^ヨyd IOnOOपd

absolute maximum ratings over operating free-air temperature range \dagger

Input voltage range, V_{I} (see Note 1) . 0.5 V to 7 V

Package thermal impedance, θ_{JA} (see Note 2): D package . 113º C / W
DB package . $131^{\circ} \mathrm{C} / \mathrm{W}$
N package ... $78^{\circ} \mathrm{C} / \mathrm{W}$
PW package $149^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.
recommended operating conditions (see Note 3)

			SN54AH	C595	SN74A	C595	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		2	5.5	2	5.5	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5		1.5		
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	2.1		2.1		V
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	3.85		3.85		
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$		0.5		0.5	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		0.9		0.9	V
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		1.65		1.65	
V_{1}	Input voltage		0	5.5	0	5.5	V
V_{O}	Output voltage		0	V_{CC}	0	V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$		-50		-50	$\mu \mathrm{A}$
${ }^{\mathrm{IOH}}$	High-level output current	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		-4		-4	mA
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$		-8		-8	ma
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$		50		50	$\mu \mathrm{A}$
${ }^{\text {IOL }}$	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		4		4	mA
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$		8		8	
$\Delta t / \Delta v$	Input transition rise or fall rate	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		100		100	ns/V
	Input transtion rise or fall rate	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$		20		20	
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: Unused inputs must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free－air temperature range（unless otherwise noted）

PARAMETER	TEST CONDITIONS	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54AHC595	SN74AHC595	UNIT
			MIN	TYP MAX	MIN MAX	MIN MAX	
V_{OH}	$\mathrm{l} \mathrm{OH}=-50 \mu \mathrm{~A}$	2 V	1.9	2	1.9	1.9	V
		3 V	2.9	3	2.9	2.9	
		4.5 V	4.4	4.5	4.4	4.4	
	$\mathrm{IOH}=-4 \mathrm{~mA}$	3 V	2.58		2.48	2.48	
	$\mathrm{OH}=-8 \mathrm{~mA}$	4.5 V	3.94		3.8	3.8	
VOL	$\mathrm{IOL}=50 \mu \mathrm{~A}$	2 V		0.1	0.1	0.1	V
		3 V		0.1	0.1	0.1	
		4.5 V		0.1	0.1	0.1	
	$\mathrm{IOL}=4 \mathrm{~mA}$	3 V		0.36	0.5	0.44	
	$\mathrm{IOL}=8 \mathrm{~mA}$	4.5 V		0.36	0.5	0.44	
1	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5 V		± 0.1	± 1	± 1	$\mu \mathrm{A}$
Ioz	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	5.5 V		± 0.25	± 2.5	± 2.5	$\mu \mathrm{A}$
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND，$\quad \mathrm{I} \mathrm{O}=0$	5.5 V		4	40	40	$\mu \mathrm{A}$
C_{i}	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	5 V		4			pF
C_{0}	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ or GND	5 V		4			pF

timing requirements over recommended operating free－air temperature range， $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$（unless otherwise noted）（see Figure 1）

			$\mathrm{T}_{\mathrm{A}}=$	$5^{\circ} \mathrm{C}$	SN54A	C595	SN74A	C595	
			MIN	MAX	MIN	MAX	MIN	MAX	NTT
		SRCLK high or low	5		5		5		
$t_{\text {w }}$	Pulse duration	RCLK high or low	5		5		5		ns
		$\overline{\text { SRCLR }}$ low	5		5		5		
		SER before SRCLK \uparrow	3.5		3.5		3.5		
		SRCLK \uparrow before RCLK $\uparrow \dagger$	8		8.5		8.5		
su	Setup time	$\overline{\text { SRCLR }}$ low before RCLK \uparrow	8		9		9		ns
		$\overline{\text { SRCLR }}$ high（inactive）before SRCLK \uparrow	3		3		3		
		SER after SRCLK \uparrow	1.5		1.5		1.5		
$t^{\text {h }}$	Hold time	SRCLK \uparrow after RCLK \uparrow	0		0		0		ns
		$\overline{\text { SRCLR }}$ low after RCLK介	0		0		0		

\dagger This setup time ensures the output register sees stable data from the shift－register outputs．The clocks may be tied together，in which case the output register is one clock pulse behind the shift register．
timing requirements over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

\dagger This setup time ensures the output register sees stable data from the shift-register outputs. The clocks may be tied together, in which case the output register is one clock pulse behind the shift register.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	SN54AHC595					UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	
				MIN	TYP	MAX			
${ }^{\prime}$ max			$\mathrm{CLL}_{\mathrm{L}}=15 \mathrm{pF}$ *	80	150		70		
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	55	130		50		MHz
tpLH*	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$		7.7	11.9	1	13.5	ns
tPHL*					7.7	11.9	1	13.5	
tpLH*	SRCLK	$Q_{H}{ }^{\prime}$	$C_{L}=15 \mathrm{pF}$		8.8	13	1	15	ns
tPHL*					8.8	13	1	15	
tPHL*	$\overline{\text { SRCLR }}$	QH^{\prime}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		8.4	12.8	1	13.7	ns
tPZH*	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$		7.5	11.5	1	13.5	ns
tPZL*					7.5	11.5	1	13.5	
tpHZ*	$\overline{O E}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$						ns
tPLZ*									
tPLH	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		10.2	15.4	1	17	ns
tPHL					10.2	15.4	1	17	
tPLH	SRCLK	Q H^{\prime}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		11.3	16.5	1	18.5	ns
tPHL					11.3	16.5	1	18.5	
tPHL	$\overline{\text { SRCLR }}$	QH^{\prime}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10.9	16.3	1	17.2	ns
tPZH	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		9	15	1	17	ns
tPZL					9	15	1	17	
tPHZ	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		12.1	15.7	1	16.2	ns
tplZ					12.1	15.7	1	16.2	

* On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	SN74AHC595					UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	
				MIN	TYP	MAX			
$f_{\text {max }}$			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	80	150		70		
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	55	130		50		MHz
tPLH	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$		7.7	11.9	1	13.5	ns
tPHL					7.7	11.9	1	13.5	
tPLH	SRCLK	$Q_{H}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		8.8	13	1	15	ns
tPHL					8.8	13	1	15	
tPHL	$\overline{\text { SRCLR }}$	$\mathrm{Q}_{\mathrm{H}^{\prime}}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		8.4	12.8	1	13.7	ns
tPZH	$\overline{O E}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$		7.5	11.5	1	13.5	ns
tPZL					7.5	11.5	1	13.5	
tphZ	$\overline{O E}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$						ns
tpLZ									
tPLH	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		10.2	15.4	1	17	ns
tPHL					10.2	15.4	1	17	
tPLH	SRCLK	$Q_{H}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		11.3	16.5	1	18.5	ns
tPHL					11.3	16.5	1	18.5	
tPHL	$\overline{\text { SRCLR }}$	$\mathrm{Q}_{\mathrm{H}^{\prime}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10.9	16.3	1	17.2	ns
tPZH	$\overline{O E}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		9	15	1	17	ns
tpZL					9	15	1	17	
tphz	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		12.1	15.7	1	16.2	ns
tpLZ					12.1	15.7	1	16.2	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	SN54AHC595					UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	
				MIN	TYP	MAX			
${ }^{f}$ max			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ *	135	185		115		
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	95	155		85		
tpLH*	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$		5.4	7.4	1	8.5	ns
tPHL*					5.4	7.4	1	8.5	
tpLH*	SRCLK	$Q_{H}{ }^{\prime}$	$C_{L}=15 \mathrm{pF}$		6.2	8.2	1	9.4	ns
tPHL*					6.2	8.2	1	9.4	
tPHL*	$\overline{\text { SRCLR }}$	QH^{\prime}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		5.9	8	1	9.1	ns
tpZH*	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$		4.8	8.6	1	10	ns
tPZL*					4.8	8.6	1	10	
tPHZ*	$\overline{\mathrm{OE}}$	$Q_{A}-Q_{H}$	$C_{L}=15 \mathrm{pF}$						ns
tPLZ*									
tPLH	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		6.9	9.4	1	10.5	ns
tPHL					6.9	9.4	1	10.5	
tPLH	SRCLK	$Q_{H}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.7	10.2	1	11.4	ns
tpHL					7.7	10.2	1	11.4	
tPHL	$\overline{\text { SRCLR }}$	QH^{\prime}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.4	10	1	11.1	ns
tPZH	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		8.3	10.6	1	12	ns
tpZL					8.3	10.6	1	12	
tPHZ	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		7.6	10.3	1	11	ns
tplZ					7.6	10.3	1	11	

* On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	SN74AHC595					UNIT
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			MIN	MAX	
				MIN	TYP	MAX			
${ }^{f}$ max			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	135	185		115		MHz
			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	95	155		85		
tPLH	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$		5.4	7.4	1	8.5	ns
tPHL					5.4	7.4	1	8.5	
tPLH	SRCLK	$Q_{H}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		6.2	8.2	1	9.4	ns
tPHL					6.2	8.2	1	9.4	
tPHL	$\overline{\text { SRCLR }}$	QH^{\prime}	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		5.9	8	1	9.1	ns
tPZH	$\overline{O E}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$		4.8	8.6	1	10	ns
tPZL					4.8	8.6	1	10	
tPhZ	$\overline{O E}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=15 \mathrm{pF}$						ns
tPLZ									
tPLH	RCLK	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		6.9	9.4	1	10.5	ns
tPHL					6.9	9.4	1	10.5	
tPLH	SRCLK	$Q_{H}{ }^{\prime}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.7	10.2	1	11.4	ns
tphL					7.7	10.2	1	11.4	
tPHL	$\overline{\text { SRCLR }}$	QH^{\prime}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.4	10	1	11.1	ns
tPZH	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		8.3	10.6	1	12	ns
tpZL					8.3	10.6	1	12	
tPHZ	$\overline{\mathrm{OE}}$	$\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$C_{L}=50 \mathrm{pF}$		7.6	10.3	1	11	ns
tplZ					7.6	10.3	1	11	

output-skew characteristics, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (see Note 4)

PARAMETER		V_{Cc}	SN74AHC595		UNIT	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	MIN MAX			
		MIN MAX	MIN MAX			
$\mathrm{t}_{\text {sk }}(0)$	Output skew		$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	1.5	1.5	ns
			$5 \mathrm{~V} \pm 0.5 \mathrm{~V}$	1	1	

NOTE 4: Characteristics are determined during product characterization and ensured by design.
noise characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (see Note 5)

\left.| PARAMETER | SN74AHC595 | UNIT | |
| :--- | :--- | ---: | :---: |
| | | | MAX |$\right)$

NOTE 5: Characteristics are determined during product characterization and ensured by design for surface-mount packages only.
operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	TYP	UNIT	
C_{pd}	Power dissipation capacitance	No load, $\mathrm{f}=1 \mathrm{MHz}$	87	pF

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
DELAY TIMES

TEST	S1
$\mathrm{t}^{\mathrm{t} L H} / \mathrm{tPHL}^{2}$	Open
$\mathrm{t}^{\mathrm{PLZ}} / \mathrm{tPZL}$	VCC
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{tPZH}$	GND

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$.
D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

