SCLS373A - MAY 1997 - REVISED JUNE 1997

- Operating Range 2-V to 5.5-V V_{CC}
- EPIC[™] (Enhanced-Performance Implanted CMOS) Process
- 8-Bit Serial-In, Parallel-Out Shift
- Shift Register Has Direct Clear
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

The 'AHC595 contain an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. The storage register has parallel 3-state outputs. Separate clocks are provided for both the shift and storage register. The shift register has a direct overriding clear (SRCLR) input, serial (SER) input, and serial outputs for cascading. When the output-enable (OE) input is high, the outputs are in the high-impedance state.

Both the shift register clock (RCLK) and storage register clock (SRCLK) are positive-edge triggered. If both clocks are connected together, the shift register is always one clock pulse ahead of the storage register.

SN54AHC595 . . . J OR W PACKAGE SN74AHC595 . . . D, DB, N, OR PW PACKAGE (TOP VIEW)

SN54AHC595 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN54AHC595 is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74AHC595 is characterized for operation from -40° C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, J, N, PW, and W packages.

PRODUCT PREVIEW

SCLS373A - MAY 1997 - REVISED JUNE 1997

logic diagram (positive logic)

SCLS373A - MAY 1997 - REVISED JUNE 1997

absolute maximum ratings over operating free-air temperature range

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input voltage range, V _I (see Note 1)		0.5 V to 7 V
Output voltage range, VO (see Note 1)		$1.005 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$)		
Output clamp current, IOK (VO < 0 or VO > VC	c)	±20 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$		
Continuous current through V _{CC} or GND		
Package thermal impedance, θ _{.IA} (see Note 2)): D package	113°C/W
, 3 ,1,1	DB package	
	N package	
	PW package	149°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

			SN54A	HC595	SN74A	HC595	UNIT
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
VIН	High-level input voltage	V _{CC} = 3 V	2.1		2.1		V
		V _{CC} = 5.5 V	3.85		3.85		
		V _{CC} = 2 V		0.5		0.5	
VIL	Low-level input voltage	V _{CC} = 3 V		0.9		0.9	V
		V _{CC} = 5.5 V		1.65		1.65	
٧ı	Input voltage		0	5.5	0	5.5	V
۷o	Output voltage		0	VCC	0	VCC	V
		V _{CC} = 2 V		-50		-50	μΑ
ЮН	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4		-4	mA
		$V_{CC} = 5 V \pm 0.5 V$		-8		-8	ША
		V _{CC} = 2 V		50		50	μΑ
loL	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4		4	mA
		$V_{CC} = 5 V \pm 0.5 V$		8		8	IIIA
Δt/Δν	langet transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100		100	ns/V
ΔυΔν	Input transition rise or fall rate	$V_{CC} = 5 V \pm 0.5 V$		20		20	115/ V
T _A	Operating free-air temperature		– 55	125	-40	85	°C

NOTE 3: Unused inputs must be held high or low to prevent them from floating.

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V	T,	չ = 25°C	;	SN54A	HC595	SN74AI	HC595	UNIT
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		2 V	1.9	2		1.9		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		2.9		
Voн		4.5 V	4.4	4.5		4.4		4.4		V
	I _{OH} = -4 mA	3 V	2.58			2.48		2.48		
	$I_{OH} = -8 \text{ mA}$	4.5 V	3.94			3.8		3.8		
		2 V			0.1		0.1		0.1	
	$I_{OL} = 50 \mu A$	3 V			0.1		0.1		0.1	
V _{OL}		4.5 V			0.1		0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.5		0.44	
	IOL = 8 mA	4.5 V			0.36		0.5		0.44	
lį	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μΑ
loz	$\frac{V_L}{OE} = V_{CC}$ or GND, $V_O = V_{CC}$ or GND,	5.5 V			±0.25		±2.5		±2.5	μΑ
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		40		40	μΑ
C _i	V _I = V _{CC} or GND	5 V		4					· .	pF
Co	$V_O = V_{CC}$ or GND	5 V		4						pF

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A =	25°C	SN54A	HC595	SN74A	HC595	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNII
		SRCLK high or low	5		5		5		
t_W	Pulse duration	RCLK high or low	5		5		5		ns
		SRCLR low	5		5		5		
		SER before SRCLK↑	3.5		3.5		3.5		
	Outros times	SRCLK↑ before RCLK↑†	8		8.5		8.5		
t _{su}	Setup time	SRCLR low before RCLK↑	8		9		9		ns
		SRCLR high (inactive) before SRCLK↑	3		3		3		
		SER after SRCLK↑	1.5		1.5		1.5		
th	Hold time	SRCLK↑ after RCLK↑	0		0		0		ns
		SRCLR low after RCLK↑	0		0		0		

[†] This setup time ensures the output register sees stable data from the shift-register outputs. The clocks may be tied together, in which case the output register is one clock pulse behind the shift register.

SCLS373A - MAY 1997 - REVISED JUNE 1997

timing requirements over recommended operating free-air temperature range, $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (unless otherwise noted) (see Figure 1)

			T _A =	25°C	SN54A	HC595	SN74AI	HC595	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	UNII
		SRCLK high or low	5		5		5		
t _W	Pulse duration	RCLK high or low	5		5		5		ns
		SRCLR low	5		5		5		
		SER before SRCLK↑	3		3		3		
١.	Onton the e	SRCLK↑ before RCLK↑†	5		5		5		
t _{su}	Setup time	SRCLR low before RCLK↑	5		5		5		ns
		SRCLR high (inactive) before SRCLK↑	2.5		2.5		2.5		
		SER after SRCLK↑	2		2		2		
th	Hold time	SRCLK↑ after RCLK↑	0		0		0		ns
		SRCLR low after RCLK↑	0		0		0		

This setup time ensures the output register sees stable data from the shift-register outputs. The clocks may be tied together, in which case the output register is one clock pulse behind the shift register.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)

					SN	54AHC5	95		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T,	չ = 25°C	;	MIN	MAX	UNIT
	(01)	(001101)	OAI AGITANGE	MIN	TYP	MAX	IVIIIV	WAX	
f			C _L = 15 pF*	80	150		70		MHz
f _{max}			C _L = 50 pF	55	130		50		IVII IZ
^t PLH*	RCLK	0.0.	C _L = 15 pF		7.7	11.9	1	13.5	ns
^t PHL*	ROLK	Q _A –Q _H	OL = 15 pi		7.7	11.9	1	13.5	113
^t PLH*	SRCLK	0	C _L = 15 pF		8.8	13	1	15	ns
^t PHL*	SKOLK	Q _H ′	OL = 10 pi		8.8	13	1	15	110
^t PHL*	SRCLR	$Q_{H'}$	$C_L = 15 pF$		8.4	12.8	1	13.7	ns
^t PZH*	ŌĒ	0.0.	C _L = 15 pF		7.5	11.5	1	13.5	ns
tPZL*	OE	Q _A –Q _H	OL = 13 pi		7.5	11.5	1	13.5	113
^t PHZ*	ŌĒ	0. 0	C _I = 15 pF						ns
^t PLZ*	OE	Q _A –Q _H	OL = 10 pi						110
^t PLH	RCLK	Q _A –Q _H	C _L = 50 pF		10.2	15.4	1	17	ns
^t PHL	KOLK	QA-QH	OL = 00 pi		10.2	15.4	1	17	110
^t PLH	SRCLK	$Q_{H'}$	C _L = 50 pF		11.3	16.5	1	18.5	ns
^t PHL	SKOLK	QH'	OL = 00 pi		11.3	16.5	1	18.5	110
^t PHL	SRCLR	$Q_{H'}$	C _L = 50 pF		10.9	16.3	1	17.2	ns
^t PZH	ŌĒ	0. 0	C _L = 50 pF		9	15	1	17	ns
^t PZL	UE	Q _A –Q _H	OL = 30 bi		9	15	1	17	110
^t PHZ	ŌĒ	04-011	C _L = 50 pF		12.1	15.7	1	16.2	ns
t _{PLZ}	OE .	Q _A –Q _H	CL = 50 pr		12.1	15.7	1	16.2	115

^{*} On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.

PRODUCT PREVIEW

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

					SN	74AHC5	95		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T,	Վ = 25° C	;	MIN	MAX	UNIT
	(01)	(0011 01)	OAI AGITANGE	MIN	TYP	MAX	IVIIIV	WAX	
•			C _L = 15 pF	80	150		70		MHz
fmax			C _L = 50 pF	55	130		50		IVII IZ
tPLH	RCLK	0. 0	C _L = 15 pF		7.7	11.9	1	13.5	ns
t _{PHL}	ROLK	Q _A –Q _H	OL = 13 pi		7.7	11.9	1	13.5	113
^t PLH	SRCLK	0	C _L = 15 pF		8.8	13	1	15	ns
tPHL	SRULK	$Q_{H'}$	OL = 10 pi		8.8	13	1	15	113
^t PHL	SRCLR	Q _H ′	C _L = 15 pF		8.4	12.8	1	13.7	ns
^t PZH	ŌĒ	0 0	C _L = 15 pF		7.5	11.5	1	13.5	ns
t _{PZL}	OE	Q _A –Q _H	CL = 13 pr		7.5	11.5	1	13.5	115
^t PHZ	ŌĒ	0 - 0 -	C _L = 15 pF						ns
t _{PLZ}	OE	Q _A –Q _H	GL = 13 pr						115
^t PLH	DOLK	0.0	C _I = 50 pF		10.2	15.4	1	17	ns
^t PHL	RCLK	Q _A –Q _H	OL = 30 pi		10.2	15.4	1	17	115
^t PLH	SRCLK	0	C _L = 50 pF		11.3	16.5	1	18.5	ns
^t PHL	SRULK	$Q_{H'}$	OL = 30 pi		11.3	16.5	1	18.5	113
^t PHL	SRCLR	$Q_{H'}$	C _L = 50 pF		10.9	16.3	1	17.2	ns
^t PZH		0 0	C: = 50 pF		9	15	1	17	ne
^t PZL	ŌĒ	Q _A –Q _H	C _L = 50 pF		9	15	1	17	ns
^t PHZ	ŌĒ	0. 0	C: - 50 pF		12.1	15.7	1	16.2	20
tPLZ	UE	Q _A –Q _H	C _L = 50 pF		12.1	15.7	1	16.2	ns

SN54AHC595, SN74AHC595 **8-BIT SHIFT REGISTERS** WITH 3-STATE OUTPUT REGISTERS SCLS373A – MAY 1997 – REVISED JUNE 1997

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

					SN	54AHC5	95		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T,	Վ = 25° C	;	MIN	MAX	UNIT
	(01)	(001101)	OAI AGITANGE	MIN	TYP	MAX	IVIIIV	WAX	
f			C _L = 15 pF*	135	185		115		MHz
f _{max}			$C_L = 50 pF$	95	155		85		IVII IZ
tPLH*	DOLK	0. 0	C _L = 15 pF		5.4	7.4	1	8.5	ns
^t PHL*	RCLK	Q _A –Q _H	CL = 15 pr		5.4	7.4	1	8.5	115
^t PLH*	CDCI IX	0	C _I = 15 pF		6.2	8.2	1	9.4	ns
^t PHL*	SRCLK	Q _H ′	OL = 13 bi		6.2	8.2	1	9.4	115
tPHL*	SRCLR	Q _H ′	C _L = 15 pF		5.9	8	1	9.1	ns
^t PZH*		0.0	C _L = 15 pF		4.8	8.6	1	10	ns
t _{PZL} *	ŌĒ	Q _A –Q _H	C[= 15 pr		4.8	8.6	1	10	ns
^t PHZ*		0.0	C 15 pF						20
tPLZ*	ŌĒ	Q _A –Q _H	C _L = 15 pF						ns
^t PLH	DOLK	0.0	C _I = 50 pF		6.9	9.4	1	10.5	ns
^t PHL	RCLK	Q _A –Q _H	CL = 30 pr		6.9	9.4	1	10.5	115
^t PLH	CDCLK		C _L = 50 pF		7.7	10.2	1	11.4	ns
^t PHL	SRCLK	$Q_{H'}$	CL = 30 pr		7.7	10.2	1	11.4	115
^t PHL	SRCLR	Q _H ′	C _L = 50 pF		7.4	10	1	11.1	ns
^t PZH			C: - 50 pF		8.3	10.6	1	12	ns
^t PZL	ŌĒ	Q _A –Q _H	C _L = 50 pF		8.3	10.6	1	12	115
^t PHZ	ŌĒ	0. 0	C: - 50 pF		7.6	10.3	1	11	20
t _{PLZ}	UE UE	Q _A –Q _H	C _L = 50 pF		7.6	10.3	1	11	ns

^{*} On products compliant to MIL-PRF-38535, this parameter is ensured but not production tested.

SCLS373A - MAY 1997 - REVISED JUNE 1997

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

					SN	74AHC5	95		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	T,	Վ = 25° C	;	MIN	MAX	UNIT
	(01)	(6611 61)	OAI AOITAITOE	MIN	TYP	MAX	IVIIIV	WAX	
f _{max}			C _L = 15 pF	135	185		115		MHz
ımax			C _L = 50 pF	95	155		85		IVII IZ
^t PLH	RCLK	0. 0	C _L = 15 pF		5.4	7.4	1	8.5	ns
t _{PHL}	KOLK	Q _A –Q _H	ο <u>Γ</u> = 10 βι		5.4	7.4	1	8.5	110
^t PLH	SRCLK	Q _H ′	C _L = 15 pF		6.2	8.2	1	9.4	ns
^t PHL	SKOLK	Ч Н′	ο _L - 10 βι		6.2	8.2	1	9.4	110
^t PHL	SRCLR	$Q_{H'}$	C _L = 15 pF		5.9	8	1	9.1	ns
^t PZH	ŌĒ	0. 0	C _L = 15 pF		4.8	8.6	1	10	ns
^t PZL	OE .	Q _A –Q _H	ОС = 13 рі		4.8	8.6	1	10	113
^t PHZ	ŌĒ	0. 0	C _L = 15 pF						ns
t _{PLZ}	OE .	Q _A –Q _H	оц = 15 рі						113
^t PLH	RCLK	0. 0	C _L = 50 pF		6.9	9.4	1	10.5	ns
^t PHL	RCLK	Q _A –Q _H	ο <u>Γ</u> = 00 βι		6.9	9.4	1	10.5	110
^t PLH	SRCLK	0	C _L = 50 pF		7.7	10.2	1	11.4	ns
^t PHL	SKCLK	Q _H ′	ο[= 30 βι		7.7	10.2	1	11.4	113
t _{PHL}	SRCLR	$Q_{H'}$	$C_L = 50 pF$		7.4	10	1	11.1	ns
^t PZH	ŌĒ	0 . 0 .	C _L = 50 pF		8.3	10.6	1	12	ns
t _{PZL}	OE .	Q _A –Q _H	OL = 30 pr		8.3	10.6	1	12	115
^t PHZ	ŌĒ	04.00	C _I = 50 pF		7.6	10.3	1	11	ns
t _{PLZ}	OE .	Q _A –Q _H	OF = 20 bt.		7.6	10.3	1	11	115

output-skew characteristics, C_L = 50 pF (see Note 4)

			SN74 <i>A</i>	HC595	
	PARAMETER	vcc	T _A = 25°C	MIN MA	UNIT
			MIN MAX	IVIIN IVIA	
+	Output skew	$3.3~V\pm0.3~V$	1.5	1.	
^t sk(o)	Output skew	5 V ± 0.5 V	1		ns 1

NOTE 4: Characteristics are determined during product characterization and ensured by design.

noise characteristics, $V_{CC} = 5 \text{ V}$, $C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$ (see Note 5)

	PARAMETER		HC595	UNIT
	FARAMETER	MIN	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.8	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.8	V
VOH(V)	Quiet output, minimum dynamic V _{OH}			V
VIH(D)	High-level dynamic input voltage	3.5		V
V _{IL(D)}	Low-level dynamic input voltage		1.5	V

NOTE 5: Characteristics are determined during product characterization and ensured by design for surface-mount packages only.

SCLS373A - MAY 1997 - REVISED JUNE 1997

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CO	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	87	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_f = 3 \ ns$, $t_f = 3 \ ns$.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated