- 5- Ω Switch Connection Between Two Ports
 - TTL-Compatible Input and Output Levels
 - Designed to Be Used in Level-Shifting Applications
 - Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), Quarter-Size Small-Outline (DBQ), and Thin Shrink Small-Outline (PW) Packages, Ceramic Flat (W) Package, Ceramic DIPs (JT), and Ceramic Chip Carriers (FK)
 description

The 'CBTD3384 provide ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switches allows connections to be made without adding propagation delay. A diode to V_{CC} is integrated on the die to allow for level shifting between $5-\mathrm{V}$ inputs and $3.3-\mathrm{V}$ outputs.

These devices are organized as two 5-bit switches with separate output-enable ($\overline{\mathrm{OE} \text {) }}$ inputs. When $\overline{O E}$ is low, the switch is on and port A is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch is open and a high-impedance state exists between the two ports.
The SN54CBTD3384 is characterized for operation over the full military temperature range from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74CBTD3384 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

SN54CBTD3384... JT OR W PACKAGE
SN74CBTD3384... DB, DBQ, DW, OR PW PACKAGE
(TOP VIEW)

SN54CBTD3384... FK PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

$\mathbf{1} \overline{\mathrm{OE}}$	2 $\overline{\mathrm{OE}}$	1B1-1B5	2B1-2B5
L	L	1A1-1A5	2A1-2A5
L	H	$1 A 1-1 A 5$	Z
H	L	Z	$2 A 1-2 A 5$
H	H	Z	Z

logic diagram

Pin numbers shown are for the DB, DBQ, DW, JT, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions

		SN54CBTD3384		SN74CBTD3384		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V_{IH}	High-level control input voltage	2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level control input voltage		0.8		0.8	V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-55	125	-40	85	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN54CBTD3384			SN74CBTD3384			UNIT			
		MIN	TYP \dagger	MAX	MIN	TYP \dagger	MAX							
V_{IK}					$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2			-1.2	V
V_{OH}		See Figure 1												
I		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	GND			± 1			± 1	$\mu \mathrm{A}$			
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	l	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			1.5			1.5	mA			
${ }^{1} \mathrm{CC}^{\ddagger}$	Control pins	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND					2.5			2.5	mA			
C_{i}	Control pins	$\mathrm{V}_{\mathrm{l}}=3 \mathrm{~V}$ or 0				3			3		pF			
$\mathrm{C}_{\mathrm{io} \text { (OFF) }}$		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{C}}$			3.5			3.5		pF			
r_{on} §		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0$,	I $=64 \mathrm{~mA}$		5			5	7	Ω			
		$\mathrm{V}_{\mathrm{I}}=0$,	I $=30 \mathrm{~mA}$		5			5	7					
		$\mathrm{V}_{1}=2.4 \mathrm{~V}$	$\mathrm{I}=15 \mathrm{~mA}$		35			35	50					

\dagger Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	$\begin{gathered} \text { TO } \\ \text { (OUTPUT) } \end{gathered}$	SN54CBTD3384		SN74CBTD3384		UNIT
			MIN	MAX	MIN	MAX	
$t_{\text {pd }}{ }^{\text {I }}$	A or B	B or A		0.25		0.25	ns
ten	$\overline{\mathrm{OE}}$	A or B	2.2	9.7	2.3	7	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	1.5	8.6	1.7	5.3	ns

T This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF , when driven by an ideal voltage source (zero output impedance).

OUTPUT VOLTAGE HIGH
vs
SUPPLY VOLTAGE

Figure 1. V_{OH} Values

PARAMETER MEASUREMENT INFORMATION

Figure 2. Load Circuit and Voltage Waveforms

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

