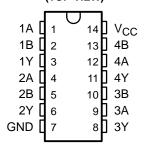
SDFS019A - JANUARY 1989 - REVISED OCTOBER 1993

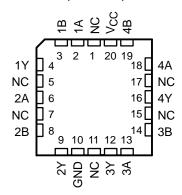
 Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

description

These devices contain four independent 2-input exclusive-OR gates. They perform the Boolean functions $Y = A \oplus B$ or $Y = \overline{AB} + A\overline{B}$ in positive logic.

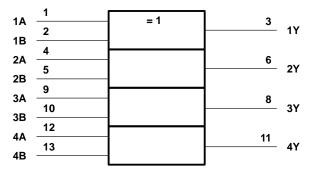

A common application is as a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.

The SN54F86 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74F86 is characterized for operation from 0°C to 70°C.


FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Α	В	Υ
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

SN54F86...J PACKAGE SN74F86...D OR N PACKAGE (TOP VIEW)

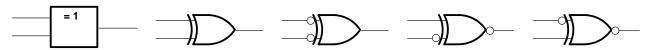


SN54F86 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, J, and N packages.



SDFS019A - JANUARY 1989 - REVISED OCTOBER 1993

exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic

EXCLUSIVE-OR

These are five equivalent exclusive-OR symbols valid for an 'F86 gate in positive logic; negation may be shown at any two ports.

	LOGIC-IDENTITY ELEMENT	EVEN-PARITY ELEMENT	ODD-PARITY ELEMENT
logic level (i.e., A = B). (i.e., 0 or 2) are active. (i.e., only 1 of the 2) are active.	all inputs stand at the same	The output is active (low) if an even number of inputs	The output is active (high) if an odd number of outputs (i.e., only 1 of the 2) are

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	1.2 V to 7 V
Input current range	30 mA to 5 mA
Voltage range applied to any output in the high state	0.5 V to V _{CC}
Current into any output in the low state	40 mA
Operating free-air temperature range: SN54F86	. −55°C to 125°C
SN74F86	0°C to 70°C
Storage temperature range	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54F86		SN74F86			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNII
VCC	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.8			8.0	V
lιΚ	Input clamp current			-18			-18	mA
loн	High-level output current			– 1			- 1	mA
l _{OL}	Low-level output current			20			20	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 1: The input voltage ratings may be exceeded provided the input current ratings are observed.

SDFS019A - JANUARY 1989 - REVISED OCTOBER 1993

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			SN54F86			SN74F86		
PARAMETER	'	TEST CONDITIONS	MIN	TYP†	MAX	MIN	TYP	MAX	UNIT
VIK	$V_{CC} = 4.5 \text{ V},$	$I_I = -18 \text{ mA}$			-1.2			-1.2	V
VOH	$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -1 \text{ mA}$	2.5	3.4		2.5	3.4		V
VОН	$V_{CC} = 4.75 \text{ V},$	$I_{OH} = -1 \text{ mA}$				2.7			V
V _{OL}	$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 20 \text{ mA}$		0.3	0.5		0.3	0.5	V
lį	$V_{CC} = 5.5 \text{ V},$	V _I = 7 V			0.1			0.1	mA
lіН	$V_{CC} = 5.5 \text{ V},$	V _I = 2.7 V			20			20	μΑ
Ι _Ι L	$V_{CC} = 5.5 \text{ V},$	V _I = 0.5 V			- 0.6			- 0.6	mA
los [‡]	$V_{CC} = 5.5 \text{ V},$	VO = 0	-60		-150	-60		-150	mA
Iссн	$V_{CC} = 5.5 \text{ V},$	See Note 2		15	23		15	23	mA
^I CCL	$V_{CC} = 5.5 \text{ V},$	V _I = 4.5 V		18	28		18	28	mA

 $[\]dagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics (see Note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	C _I R _I	CC = 5 V L = 50 p L = 500 s A = 25°C	F , Ω,	C _L R _L	= 50 pF = 500 Ω		V,	UNIT	
	, ,		′F86		SN54F86		SN74F86				
			MIN	TYP	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	A or B (other input low)	V	3	4	5.5	3	7	3	6.5		
^t PHL		Ť	3	4.2	5.5	2.6	8	3	6.5	ns	
t _{PLH}	A or B (other input low)	A or B	V	3.5	5.3	7	3.5	10	3.5	8	ns
^t PHL		·	3	4.7	6.5	3	8	3	7.5	115	

§ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 3: Load circuits and waveforms are shown in Section 1.

[‡] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: ICCH is measured with outputs open, and the A or B input (not both) at 4.5 V. Remaining inputs are grounded.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated