SN54LS257B, SN54LS258B, SN54S257, SN54S258, SN74LS257B, SN74LS258B, SN74S257, SN74S258 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

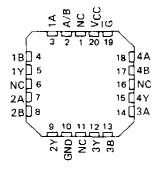
SDLS148 OCTOBER 1976 - REVISED MARCH 1988

- Three-State Outputs Interface Directly with System Bus
- 'LS257B and 'LS258B Offer Three Times the Sink-Current Capability of the Original 'LS257 and 'LS258
- Same Pin Assignments as SN54LS157, SN74LS157, SN54S157, SN74S157, and SN54LS158, SN74LS158, SN54S158, SN74S158
- Provides Bus Interface from Multiple Sources in High-Performance Systems

	AVERAGE PROPAGATION	TYPICAL
	DELAY FROM	POWER
	DATA INPUT	DISSIPATIONT
'LS257B	9 ns	55 mW
'LS258B	9 ns	55 mW
'S257	4.8 ns	320 mW
'\$258	4 ns	280 mW

[†]Off state (worst case)

description


These devices are designed to multiplex signals from four-bit data sources to four-output data lines in busorganized systems. The 3-state outputs will not load the data lines when the output control pin $\{\overline{G}\}$ is at a high-logic level.

Series 54LS and 54S are characterized for operation over the full military temperature range of $\sim55^{\circ}C$ to 125°C; Series 74LS and 74S are characterized for operation from 0°C to 70°C.

SN54LS257B, SN54S257, SN54LS258B, SN54S258 . . . J OR W PACKAGE SN74LS257B, SN74S257, SN74LS258B, SN74S258 . . . D OR N PACKAGE (TOP VIEW)

Ā/в∐	1	U ₁₆	□vcc
1⊿□	2	15	G
18□	3	14] 4A
1 Y 🔲	4	13] 4B
2∧□	5	12	4Y
2В 🏻	6	11]3A
2 Y 🔲	7	10]3B
	8	9]] 3Y

SN54LS257B, SN54S257, SN54LS258B, SN54S25B...FK PACKAGE (TOP VIEW)

NC-No internal connection.

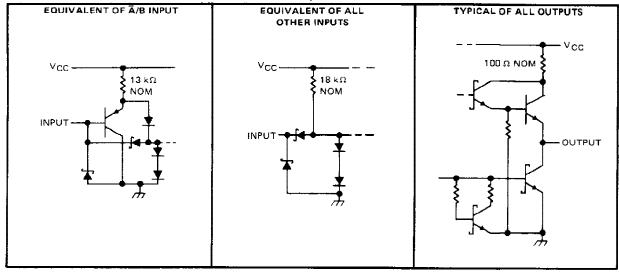
FUNCTION TABLE

	INPUTS	OUTPUT Y				
OUTPUT CONTROL	SELECT	ELECT A B		'L\$257B 'S257	'LS258B 'S258	
Н	×	х	×	Z	Z	
L	L	L	X	L	Н	
L	L	Н	Х	Н	L	
L	Н	Х	L	L	Н	
L	H	Х	Н	Н	L	

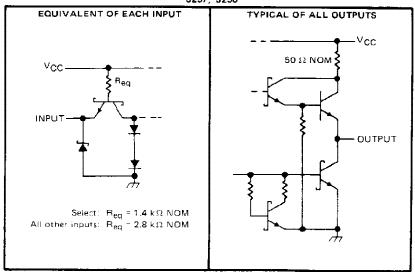
H = high level, L = low level, X = irrelevant,

Z = high impedance (off)

SN54LS257B, SN54LS258B, SN54S257, SN54S258, SN74LS257B, SN74LS258B, SN74S257, SN74S258 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS


logic diagrams (positive logic) 'LS257B, 'S257 'LS258B, 'S258 Ğ G (2) (2) 1 A 1A (4) (3) {3} 18 18 (5) 2A 2A (7) (6) (6) 28 28 (111 (11) 3A 34 (9) (9) (10) (10) 3B 38 (14) 1141 44 4A (13) (13) 48 48 Ā/B Ã/Β logic symbols† 'LS2578 'L\$258B G (15) (15) G ΕN EΝ Ã/B (1) (1) G1 Ã/B G1 MUX ⊳ MUX ⊳ (2) (2) (<u>4)</u> 1Y 1A (<u>4</u>) 1Y 1A (3) (3) 18 1B (5) (5) 2A (7) 2Y 2A (7) 2Y (6) (6) 2B 28 (11) (11) ЗА 3A (9) 3Y (9) (10)(10) 38 3B (14) (14)(12) 4Y 4Α 4Α (12) 4Y (13) (13) 4B 48 'S257 'S258 (15) (15) Ğ Ğ EN (1) 11) Ã/B Ā/B G t MUX MUX (4) 1A 1A (4) 1Y (3) (3) 1₿ 18 (5) (5) ZΑ (7) (7) 2Y 2A (6) 2B (6) 28 (11) (21) ЗА 3A (9) (9) 3Y (10) (10) 3B 3B (14) (14) 4A 4A (12) 4Y (12) (13) (13)

[†]These symbols are in accordance with ANSHIEEE Std 91-1984 and IEC Publication 617-12 Pin numbers shown are for D, J, N, and W packages.



schematics of inputs and outputs

'LS257B, 'LS258B

'\$257, '\$258

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)
Input voltage: 'LS257B, 'LS258B Circuits
'S257, 'S258 Circuits
Off-state output voltage
Operating free-air temperature range: SN54LS', SN54S' Circuits
SN74LS', SN74S' Circuits
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

SN54LS257B, SN54LS258B, SN74LS257B, SN74LS258B QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN54L	 S'		UNIT		
	MIN	NOM	MAX	MIN	NOM	MAX	ONLI
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH} High-level input voltage	2			2			V
VIL Low-level input voltage			0.7			8.0	V
IOH High-level output current			- 1			- 2.G	mΑ
IOL Low-level output current			12			24	mΑ
TA Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TE	ST CONDITION	uet		SN54LS	;		SN74LS	5′	
		16	TEST CONDITIONS			TYP	MAX	MIN	TYP\$	MAX	UNIT
VIK		VCC = MIN,	I <u>I</u> = 18 mA				- 1.5			~ 1.5	V
∨он		V _{CC} = MIN,	V _{IH} = 2 V,	VIL = MAX,	2.4	3.4		2.4	3.1		V
		VCC = MIN.	V _{JH} = 2 V,	IOL = 12 mA		0.25	0.4		0.25	0.4	
VOL		VIL = MAX,		I _{OL} = 24 mA	† -				0.35	0.5	٧
lozh		V _{CC} ≈ MAX,	V _{IH} ≈ 2 V,	VO = 2.7 V			20	1		20	μА
lozi		V _{CC} -MAX,	V _{1H} = 2 V,	VO = 0.4 V			20			- 20	μА
l ₁		VCC = MAX,	V1 = 7 V				0.1			0.1	mA
Чн		VCC = MAX.	V ₁ = 2.7 V				20			20	μΑ
ال		V _{CC} = MAX,	V _J = 0.4 V				- 0.4			- 0.4	mA
los s		V _{CC} ≈ MAX,			- 30		- 130	- 30		130	mA
	All outputs high	_		Ţ		8	12	 	8	12	
	All outputs low	i		'LS257B		12	18		12	18	1
loo	All outputs off	V _{CC} = MAX,	Pan Note 2			13	19		13	19	
lcc	All outputs high	VCC S WAX,	age MOIS 2	-		6	9		6	9	mA
	All outputs low			'LS258B	S258B	10	15		10	15)
	All outputs off					11	. 16		11	16	j

 $^{^\}dagger$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: Igg is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$, $R_L = 667 \Omega$

			· · · · · · · · · · · · · · · · · · ·												
PARAMETER	FROM	то	TEST CONDITIONS			'LS257	В		'LS258	В					
TATIANIETEN	(INPUT)	IOUTPUT)	TEST CON			TYP	MAX	MIN	TYP	MAX	UNIT				
tPLH	Data	Алу	_			8	13		7	12					
[†] PHL	Dato	700	ļ			10	15		11	17	ns				
tp∟H	Select	Any		Sec Note 3		16	21		14	21					
[†] PHL	Output	A.,,		a <u>r</u> 43 pr.,	ar 43 h.,	Δ <u>Γ</u> 43 μ.,	or 42 b	See Note 3		17	24		19	24	ns
tpzH		Any					i	15	30		15	30			
tpZL	Control					19	30		20	30	лѕ				
^t PHŻ	Output	Any	C ₁ = 5 pF,	See Note 3		18	30		18	30					
IPLZ	Control		С[- 5 pг,	-[- σ pr, see Note 3		16	25		16	25	ns				

 $^{^{\}P}$ tp_H $^{=}$ propagation delay time, low-to-high-level output tp_H $^{=}$ propagation delay time, high-to-low-level output

tpLZ = output disable time from low level

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡]A/ typical values are at V_{CC} = 5 V, T_{Δ} = 25 $^{\circ}$ C.

[§] Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

tpzl = output enable time to low level tpHZ = output disable time from high level

tpzH = output enable time to high level

SN54S257, SN54S258, SN74S257, SN74S258 QUADRUPLE 2-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN54S'				SN745'			
	MIN	NOM	MAX	MiN	NOM	MAX	UNIT		
Supply voltage, V _{CC}	4.5	. 5	5.5	4.75	5	5.25	V		
High-level output current, IOH			-2			-6.5	mA		
Low-level output current, IOL			20			20	mA		
Operating free-air temperature, TA	-55		125	0		70	°C		

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

							'\$2 57			'S258		
PARAMETER		TEST CONDITIONST			MIN	MIN TYP‡ MAX		MIN	TYP#	MAX	UNIT	
۷ін	High-level inpu	t voltage				2			2			V
ViL	Low-level input	voltage						0.8			0.8	V
Vik	Input clamp vo	ltage	V _{CC} = MIN.	I _I = -18 mA				-1,2			-1.2	V
		V _{CC} = MIN, V _{1L} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -1 mA	SN745'	2.7	·		2.7			,,	
۷Он	High-level outp	ut voltage	VCC = MIN,		SN545'	2.4	3.4		2.4	3.4		V
			V _{1L} = 0.8 V,	IOH = MAX	SN745'	2.4	3.2		2.4	3.2		
VOL	VOL Law-level autput voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V,				0.5			0.5	v
lozh	Off-state output high-level volta	•	V _{CC} = MAX, V _O = 2.4 V	V _{1H} = 2 V,				50			50	μΑ
IOZL	Off-state output low-level voltage		V _{CC} = MAX, V _O = 0.5 V	V _{IH} = 2 V,				-50		•	-50	μΔ
Ŋ	Input current a input voltage	t maximum	V _{CC} = MAX,	V ₁ = 5.5 V				1		_	1	mA
	High-level	Sinput						100			100	
IIH	input current	Any other	VCC = MAX.	V = 2.7 V				50			50	μΑ
1.	Low-level	\$ input	V 144V	V - 0 E V				-4	<u> </u>		-4	4
ΊL	input current	Any other	V _{CC} = MAX	v j = u.5 v				-2	Î		2	mA
los	Short-circuit ou	tput current §	V _{CC} = MAX			-40		-100	-40	·	-100	mA
		All outputs high					44	6 8		36	56	
Icc	Supply current	All outputs low	VCC = MAX,	See Note 2			60	93		52	81	mA
		All outputs off					64	99		56	87	1

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: ICC is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.

switching characteristics, V_{CC} = 5 V, T_A = 25°C, R_L = 280 Ω

PARAMETER¶	FROM	то	TEST	'S257			'S258			I
TANAME ILI	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
^t PLH	Da ta	Any			5	7.5		4	6	
tPHL .	Oeta				4.5	6.5	-	4	6	ns
^t PLH	Select	Any	$C_L = 15 pF$,	$C_L = 15 pF$,	oF, 8.5 15		8 12			
1PHL	Select	L	See Note 3		8.5	15		7.5	12	ns
^t PZH	Output	Any			13	19.5		13	19.5	
tPZL	Control	Ally	İ		14	21		14	21	ns
^t PHZ	Output		C _L = 5 pF,		5.5	8.5		5.5	8.5	†
tPLZ	Control	Any	See Note 3		9	14		9	14	ns

¶f_{max} = Maximum clock frequency

 $t_{PLH} = propagation delay time, low-to-high-level output$

tpHL = propagation delay time, high-to-low-level output tpZH = output enable time to high level

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $t_{PZL} \equiv$ output enable time to low level $t_{PMZ} \equiv$ output disable time from high level tpLZ = output disable time from low level

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_{A} = 25°C.

Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated