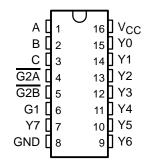
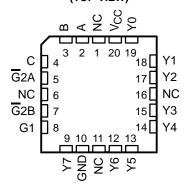
SCAS291F - MARCH 1993 - REVISED MARCH 1997


- EPIC[™] (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 2 V at V_{CC} = 3.3 V, T_A = 25°C
- Inputs Accept Voltages to 5.5 V
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK) and Flat (W) Packages, and DIPs (J)

description


These 3-line to 8-line decoders/demultiplexers are designed for 2.7-V to 3.6-V V_{CC} operation.

The 'LVC138A are designed for high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these decoders minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoders is negligible.

SN54LVC138A . . . J OR W PACKAGE SN74LVC138A . . . D, DB, OR PW PACKAGE (TOP VIEW)

SN54LVC138A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

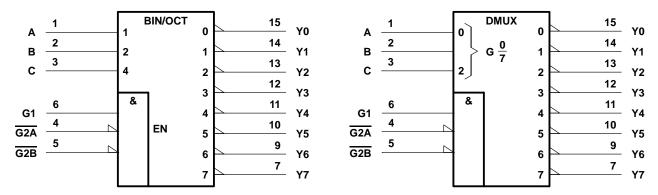
The conditions at the binary-select inputs and the three enable inputs select one of eight output lines. Two active-low enable inputs and one active-high enable input reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

The SN54LVC138A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LVC138A is characterized for operation from –40°C to 85°C.

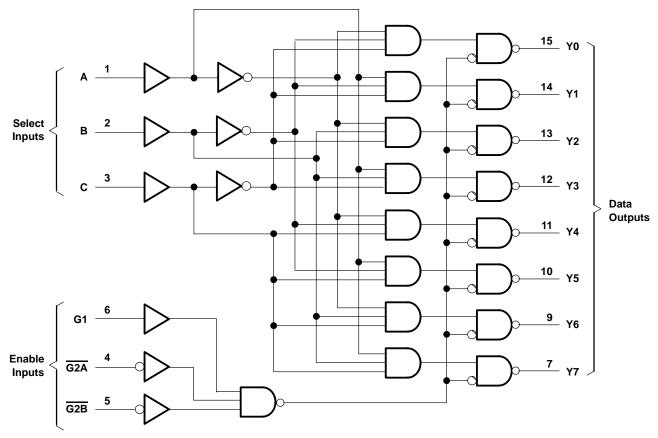
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.



SCAS291F - MARCH 1993 - REVISED MARCH 1997

FUNCTION TABLE


ENA	ENABLE INPUTS		SEL	ECT INP	UTS				OUTI	PUTS			
G1	G2A	G2B	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	Χ	Х	Х	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Х	X	Н	Х	Χ	X	Н	Н	Н	Н	Н	Н	Н	Н
L	X	X	Х	Χ	X	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

logic symbols (alternatives)†

[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the D, DB, J, PW, and W packages.

logic diagram (positive logic)

Pin numbers shown are for the D, DB, J, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		0.5 V to 6.5 V
Input voltage range, V _I (see Note 1)		0.5 V to 6.5 V
Output voltage range, VO (see Notes 1 and 2)	\dots -0.5 V to V _{CC} + 0.5 V	
Input clamp current, I_{IK} ($V_I < 0$)		–50 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CO}	c)	±50 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±50 mA	
Continuous current through V _{CC} or GND		±100 mA
Package thermal impedance, θ_{JA} (see Note 3):	D package	113°C/W
•	DB package	131°C/W
	PW package	149°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The value of V_{CC} is provided in the recommended operating conditions table.
 - 3. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51.

SN54LVC138A, SN74LVC138A 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

SCAS291F - MARCH 1993 - REVISED MARCH 1997

recommended operating conditions (see Note 4)

			SN54LV	′C138A	SN74LVC138A		UNIT
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage	Operating	2	3.6	2	3.6	V
	Supply voltage	Data retention only			1.5		, ^v
VIH	High-level input voltage V _{CC} = 2.7 V to 3.6 V		2		2		V
VIL	Low-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		0.8	V
٧ _I	Input voltage		0	5.5	0	5.5	V
٧o	Output voltage		0	VCC	0	VCC	V
1	High level output ourrent	V _{CC} = 2.7 V		-12		-12	mA
ЮН	High-level output current $V_{CC} = 3 \text{ V}$			-24		-24	IIIA
lai	Low lovel output ourrent	V _{CC} = 2.7 V		12		12	mA
IOL	Low-level output current		24		24		
Δt/Δν	Input transition rise or fall rate		0	10	0	10	ns/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		SN54	LVC138A	SN74LVC138	SN74LVC138A			
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP [†] MAX	MIN TYP†	MAX	UNIT		
	I _{OH} = -100 μA	2.7 V to 3.6 V	V _{CC} -0.2		V _{CC} -0.2				
Vari	I _{OH} = -12 mA	2.7 V	2.2		2.2		V		
VOH	10H = -12 IIIA	3 V	2.4		2.4		v l		
	I _{OH} = -24 mA	3 V	2.2		2.2				
	I _{OL} = 100 μA	2.7 V to 3.6 V		0.2		0.2			
VOL	I _{OL} = 12 mA	2.7 V		0.4		0.4	V		
	I _{OL} = 24 mA	3 V		0.55		0.55			
lį	V _I = 5.5 V or GND	3.6 V		±5		±5	μΑ		
loz	$V_O = V_{CC}$ or GND	3.6 V		±10		±10	μΑ		
lcc	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V		10		10	μΑ		
ΔlCC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V		500		500	μА		
C _i	$V_I = V_{CC}$ or GND	3.3 V		5	5		pF		

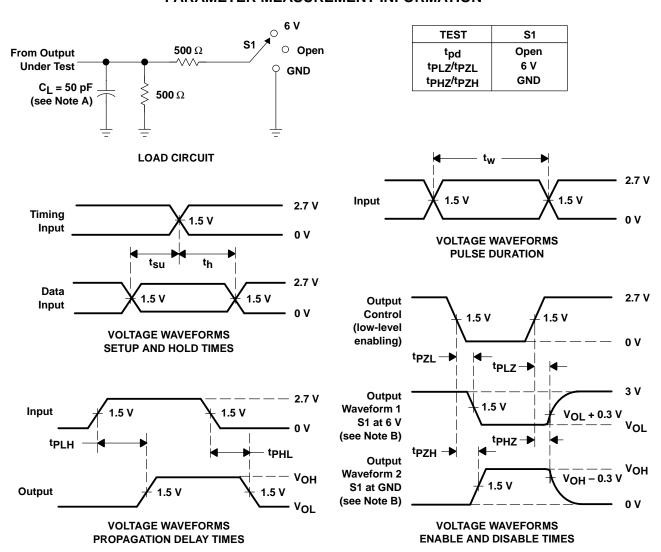
[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SN54LVC138A, SN74LVC138A 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

SCAS291F - MARCH 1993 - REVISED MARCH 1997

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

			SN54LVC138A				SN74LVC138A				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	$CC = 3.3 \text{ V} \pm 0.3 \text{ V} $ $V_{CC} = 2.7 \text{ V}$		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	A or B or C	Y	1	6.7		7.9	1	6.7		7.9	
	G2A or G2B		1	6.5		7.4	1	6.5		7.4	ns
	G1		1	5.8		6.4	1	5.8		6.4	
t _{sk(o)} †*				1				1			ns


^{*} On products compliant to MIL-PRF-38535, this parameter does not apply.

operating characteristics, V_{CC} = 3.3 V, T_A = 25°C

	PARAMETER	TEST COM	TYP	UNIT	
C _{pd}	Power dissipation capacitance	C _L = 50 pF,	f = 10 MHz	27	pF

[†] Skew between any two outputs of the same package switching in the same direction. This parameter is warranted but not production tested.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \,\Omega$, $t_f \leq 2.5 \,$ ns, $t_f \leq 2.5 \,$ ns,
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated