- 5- Ω Switch Connection Between Two Ports
- TTL-Compatible Control Input Levels
- Designed to Be Used in Level-Shifting Applications
- Package Options Include Plastic Small-Outline (D) and Thin Shrink Small-Outline (PW) Packages

D OR PW PACKAGE

(TOP VIEW)

description

The SN74CBTD3306 features two independent line switches. Each switch is disabled when the associated output-enable $(\overline{\mathrm{OE}})$ input is high. A diode to V_{CC} is integrated on the chip to allow for level shifting between 5-V inputs and $3.3-\mathrm{V}$ outputs.

This device is available in Tl's thin shrink small-outline (PW) package, which provides the same I/O pin count and functionality of standard small-outline packages in less than half the printed circuit board area.
The SN74CBTD3306 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE
(each buffer)

INPUTS		OUTPUT
$\overline{\mathrm{OE}}$	\mathbf{A} / \mathbf{B}	B/A
L	H	H
L	L	L
H	X	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \text {. }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (see Note 1) . }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Continuous channel current . } 128 \text { mA } \\
& \text { Input clamp current, } \mathrm{l}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I} / \mathrm{O}}<0\right) \text {. }-50 \mathrm{~mA} \\
& \text { Maximum power dissipation at } \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \text { (in still air) (see Note 2): D package . } 0.8 \mathrm{~W} \\
& \text { PW package } 0.5 \mathrm{~W}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The maximum package power dissipation is calculated using a junction temperature of $150^{\circ} \mathrm{C}$ and a board trace length of 750 mils.
For more information, refer to the Package Thermal Considerations application note in the ABT Advanced BiCMOS Technology Data
Book.
recommended operating conditions

		MIN	MAX	UNIT
V_{CC}	Supply voltage	4.5	5.5	V
V_{IH}	High-level control input voltage	2		V
$\mathrm{V}_{\text {IL }}$	Low-level control input voltage		0.8	V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature	-40	85	${ }^{\circ} \mathrm{C}$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP \ddagger	MAX	UNIT	
$\mathrm{V}_{\text {IK }}$		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$				-1.2	V	
V_{OH}		See Figure 1							
II		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND				± 1	$\mu \mathrm{A}$	
ICC		$\mathrm{V}_{C C}=5.5 \mathrm{~V}$,	$\mathrm{O}=0$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			1.5	mA	
$\Delta \mathrm{ICC}^{\text {§ }}$	Control pins	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	One input at 3.4 V ,	Other inputs at V_{CC} or GND			2.5	mA	
C_{i}	Control pins	$\mathrm{V}_{1}=3 \mathrm{~V}$ or 0				3		pF	
$\mathrm{Cio}_{\mathrm{io}}$ (OFF)		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{CC}}$			4		pF	
$r_{0 n} \\|$			$\mathrm{V}_{\mathrm{I}}=0$,	$\mathrm{I}_{1}=64 \mathrm{~mA}$		5	7	Ω	
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0$,	$\boldsymbol{I}=30 \mathrm{~mA}$		5	7		
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		35	50			

[^0]

Figure 1. V_{OH} Values
switching characteristics over recommended ranges of supply voltage and operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
$t_{p d}{ }^{\dagger}$	A or B	B or A		0.25	ns
ten	$\overline{\mathrm{OE}}$	A or B	2.1	5.4	ns
$\mathrm{t}_{\text {dis }}$	$\overline{\mathrm{OE}}$	A or B	1	4.7	ns

\dagger This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF , when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION

TEST	S1
$\begin{gathered} \mathrm{t}_{\mathrm{pd}} \\ \mathrm{t}_{\mathrm{PLZ}} / \mathrm{t}_{\mathrm{PZL}} \\ \mathrm{t}_{\mathrm{PH}} / \mathrm{t}_{\mathrm{PZH}} \end{gathered}$	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{tr}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. tPLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
F. tPZL and tPZH are the same as ten.
G. tPHL and tPLH are the same as $\mathrm{tpd}^{\text {. }}$

Figure 2. Load Circuit and Voltage Waveforms

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

[^0]: \ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 § This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
 II Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

