
SLOS188A – JANRUARY 1997 – REVISED MAY 1997

- **Power-On Calibration of Input Offset** Voltage
- Low Input Offset Voltage . . . < 40 μ V Max (TLC4501A)
- Low Input Offset Voltage Drift . . . < 1 μ V/°C
- **Low Input Bias Current**
- **High Output Drive Capability** $C_L < 1 \text{ nF and } R_L > 1 \text{ k}\Omega$
- High Open Loop Gain ... > 120 dB
- Rail-To-Rail Output Voltage Swing
- Low Distortion . . . < 0.01% at 10 kHz
- Low Noise . . . 12 nV/√Hz at 1 kHz
- High Slew Rate . . . 2.5 V/µs
- Low Power Consumption . . . < 1.5 mA (Typical)
- Short Calibration Time . . . 300 ms Typ

description

The TLC4501 self-calibrating operational amplifier utilizes the recent availability of on-chip digital and analog signal processing to automatically null the input offset voltage at powerup. This self-calibrating feature requires typically 300 ms to complete and is repeatable to within ±3 μV on successive calibrations. The technique involves the extraction and digital storage of the key offset-nulling information. This information is retained without degradation as long as the circuit is powered. This eliminates the need for continuous chopping of the input signal to refresh the offset information. Once the process is complete, the bulk of the calibration circuitry drops out of the signal path and shuts down. This minimizes or eliminates any effect the calibration circuitry might have on the desired signal path. It also allows the TLC4501 to be used exactly like any other operational amplifier after the calibration cycle is complete.

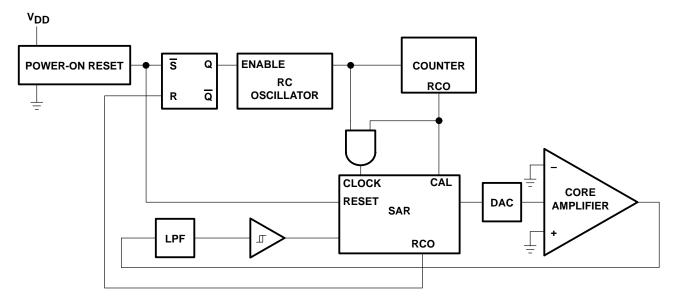
The TLC4501 is a high-performance operational amplifier fabricated in a 1-μm 5-V digital CMOS technology. It achieves very high dc gain, as well as excellent power supply rejection ratio (PSRR) and common-mode rejection ratio (CMRR). It uses a mixed-mode (analog/digital) internal compensation loop with digital storage of the offset information and a current-mode output to reduce its input offset to < 40 μV. The TLC4501 also features a rail-to-rail output structure capable of driving loads to 1 k Ω and 1 nF. Unlike existing commercially available low-offset high-precision amplifiers, the TLC4501 needs only a single 5-V supply, requires no trimming, and uses no bipolar transistors or JFETs.

AVAILABLE OPTIONS

		PACKAGED DEVICET	CHIP FORM
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	(Y)
0°C to 70°C	40 μV	TLC4501ACDR	
0 0 10 70 0	80 μV	TLC4501CDR	TLC4501Y
-40°C to 85°C	40 μV	TLC4501AIDR	11045011
-40 C 10 65 C	80 μV	TLC4501IDR	

[†] The D package is also available taped and reeled.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


LinEPIC and Self-Cal are a trademarks of Texas Instruments Incorporated

description (continued)

To achieve high dc gain, large bandwidth, high CMRR and PSRR, as well as good output drive capability, the TLC4501 is built around a 3-stage topology: two gain stages, one rail-to-rail, and a class-AB output stage. A nested Miller topology is used for frequency compensation.

functional block diagram (during calibration)

During the calibration procedure, the operational amplifier is removed from the signal path and both inputs are tied to GND.

The class AB output stage features rail-to-rail voltage swing and incorporates additional switches to put the output node into a high-impedance mode during the calibration cycle. Small-replica output transistors (matched to the main output transistors) provide the amplifier output signal for the calibration circuit. The TLC4501 also features built-in output short-circuit protection. The output current flowing through the main output transistors is continuously being sensed. If the current through either of these transistors exceeds the preset limit (60 mA -70 mA) for more than about 1 μs , the output transistors are shut down to essentially their quiescent operating point for approximately 5 ms. The device is then returned to normal operation. If the short circuit is still in place, it is detected in less than 1 μs and the device is shutdown for another 5 ms.

The offset cancellation uses a current-mode digital-to-analog converter (DAC), whose full-scale current allows for an adjustment of approximately ± 5 mV to the input offset voltage. The digital code producing the cancellation current is stored in the successive-approximation register (SAR).

During power up, when the offset cancellation procedure is initiated, an on-chip RC oscillator is activated to provide the timing of the successive-approximation algorithm. To prevent wide-band noise from interfering with the calibration procedure, an analog low-pass filter followed by a Schmidt trigger is used in the decision chain to implement an averaging process. Once the calibration procedure is complete, the RC oscillator is deactivated to reduce supply current and the associated noise.

The key operational-amplifier parameters CMRR, PSRR, and offset drift were optimized to achieve superior offset performance. The TLC4501 calibration DAC is implemented by a binary-weighted current array using a pseudo-R-2R MOSFET ladder architecture, which minimizes the silicon area required for the calibration circuitry, and thereby reduces the cost of the TLC4501.

SLOS188A - JANRUARY 1997 - REVISED MAY 1997

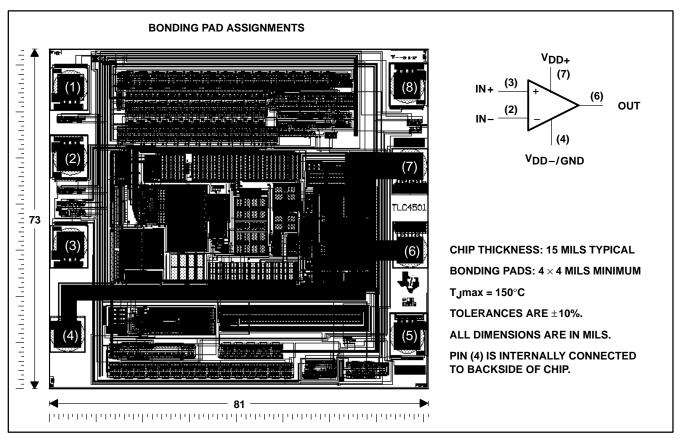
description (continued)

Due to the performance (precision, PSRR, CMRR, gain, output drive, and ac performance) of the TLC4501, it is ideal for applications like:

- Data acquisition systems
- Medical equipment
- Portable digital scales
- Strain gauges
- Automotive sensors
- Digital audio circuits
- Industrial control applications

It is also ideal in circuits like:

- A precision buffer for current-to-voltage converters, a/d buffers, or bridge applications
- High-impedance buffers or preamplifiers
- Long term integration
- Sample-and-hold circuits
- Peak detectors


The TLC4501 self-calibrating operational amplifier is manufactured using Texas instruments LinEPIC process technology and is available in an 8-pin SOIC (D) Package. The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 85°C.

SLOS188A - JANRUARY 1997 - REVISED MAY 1997

TLC4501Y chip information

This chip, when properly assembled, display characteristics similar to the TLC4501C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip can be mounted with conductive epoxy or a gold-silicon preform.

SLOS188A - JANRUARY 1997 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Output current, I_O ... ± 100 mA

Total current into V_{DD+} ... ± 100 mA

Total current out of V_{DD-}/GND ... ± 100 mA

- NOTES: 1. All voltage values, except differential voltages, are with respect to V_{DD} _/GND.
 - 2. Differential voltages are at IN+ with respect to IN-. Excessive current flows when an input is brought below V_{DD}-0.3 V.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	DERATING FACTOR	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW

recommended operating conditions

	TL	C4501C	TL	UNIT	
	MIN	MAX	MIN	MAX	UNII
Supply voltage, V _{DD}	4	6	4	6	V
Input voltage range, V _I	V_{DD-}	V _{DD+} – 2.3	V_{DD-}	V _{DD+} – 2.3	V
Common-mode input voltage, V _{IC}	V _{DD} -	V _{DD+} – 2.3	V_{DD-}	V _{DD+} – 2.3	V
Operating free-air temperature, T _A	0	70	-40	85	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TLC4501, TLC4501A, TLC4501Y Advanced LinEPIC™ SELF-CALIBRATING (Self-Cal™) PRECISION OPERATIONAL AMPLIFIERS SLOS188A – JANRUARY 1997 – REVISED MAY 1997

electrical characteristics at specified free-air temperature, V_{DD} = 5 V, GND = 0 (unless otherwise noted)

PARAMETER		TEST 00	NDITIONS	T. †	TI	_C45010	;	TL	C4501A	С	LINIT
PA	ARAMETER	TEST CC	NDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset			25°C	-80		80	-40		40	μV
۷IO	voltage			Full range	-80		80	-40		40	μν
αVIO	Temperature coefficient of input offset voltage	$V_{DD} = \pm 2.5 \text{ V},$ $V_{IC} = 0,$	$V_O = 0$, $R_S = 50 \Omega$	Full range		1			1		μV/°C
li o	Input offset cur-		G	25°C		1			1		5 A
ΙΟ	rent			Full range			500			500	pА
lin.	Input bias current			25°C		1			1		pА
IВ	input bias current			Full range			500			500	pΑ
	LP-de laced autout	$I_{OH} = -500 \mu A$	ı	25°C		4.99			4.99		
Vон	High-level output voltage	I _{OH} = – 5 mA		25°C		4.9			4.9		V
	voltago	IOH = -3 IIIA		Full range	4.7			4.7			
		$V_{IC} = 2.5 V$,	I _{OL} = 500 μA	25°C		0.01			0.01		
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 5 mA	25°C		0.1			0.1		V
	vollago	VIC = 2.5 V,	IC = 2.0 v, IOL = 0 IIIA	Full range			0.3			0.3	
A _{VD}	Large-signal differential voltage	V _{IC} = 2.5 V,	V _O = 1 V to 4 V,	25°C	200	1000		200	1000		V/mV
l vb	amplification	$R_L = 1 k\Omega$,	See Note 4	Full range	200			200			
R _{I(D)}	Differential input resistance			25°C		10			10		kΩ
R_{L}	Input resistance	See Note 4		25°C		1012			1012		Ω
CL	Common-mode input capacitance	f = 10 kHz,	P package	25°C		8			8		pF
zO	Closed-loop output impedance	A _V = 10,	f = 100 kHz	25°C		1			1		Ω
CMRR	Common-mode	$V_{IC} = 0 \text{ to } 2.7 \text{ V}_{O} = 2.5 \text{ V},$	/ ,	25°C	90	100		90	100		dB
CIVIKK	rejection ratio	$VO = 2.5 \text{ V},$ $R_S = 1 \text{ k}\Omega$		Full range	85			85			uБ
kovo	Supply-voltage	$V_{DD} = 4 \text{ V to } 6$	V,	25°C	90	100		90	100		dB
ksvr	rejection ratio $(\Delta V_{DD \pm}/\Delta V_{IO})$	V _{IC} = 0, No load		Full range	90			90			ub
I _{DD}	Supply current	V _O = 2.5 V,	No load	25°C		1	1.5		1	1.5	mΑ
		J 12 1,		Full range			2			2	
VIT(CAL)	Calibration input threshold voltage			Full range	4			4			٧

† Full range is 0°C to 70°C. NOTE 4: R_L and C_L values are referenced to 2.5 V.

electrical characteristics at specified free-air temperature, V_{DD} = 5 V, GND = 0 (unless otherwise noted)

PARAMETER		TEST 00	NUDITIONS	T. †	Т	LC4501		TL	.C4501A	71	UNIT
PF	ARAMETER	TEST CC	ONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII
VIO	Input offset			25°C	-80	-	80	-40		40	μV
VIO	voltage			Full range	-80		80	-40		40	μν
^α VIO	Temperature coefficient of input offset voltage	$V_{DD} = \pm 2.5 \text{ V},$ $V_{IC} = 0,$	$V_O = 0$, $R_S = 50 \Omega$	Full range		1			1		μV/°C
lio	Input offset cur-		G	25°C		1			1		pА
lio	rent			Full range			500			500	pΑ
IIB	Input bias current			25°C		1			1		pА
ıВ	input bias current			Full range			500			500	pΑ
	High lovel output	ΙΟΗ = – 500 μΑ		25°C		4.99			4.99		
Vон	High-level output voltage	I _{OH} = – 5 mA		25°C		4.9			4.9		V
		IOH = 3 IIIA		Full range	4.7			4.7			
	1 and land and and	$V_{IC} = 2.5 V$,	$I_{OL} = 500 \mu\text{A}$	25°C		0.01			0.01		
V_{OL}	Low-level output voltage	V _{IC} = 2.5 V,	$I_{OL} = 5 \text{ mA}$	25°C		0.1			0.1		V
		V ₁ C = 2.5 V,	-OL 9 11" (Full range			0.3			0.3	
A _{VD}	Large-signal differential voltage	$V_{IC} = 2.5 \text{ V},$ $R_{I} = 1 \text{ k}\Omega,$	V _O = 1 V to 4 V, See Note 4	25°C	200	1000		200	1000		V/mV
	amplification	RL = 1 KS2,	See Note 4	Full range	200			200			
R _{I(D)}	Differential input resistance			25°C		10			10		kΩ
RL	Input resistance	See Note 4		25°C		1012			1012		Ω
CL	Common-mode input capacitance	f = 10 kHz,	P package	25°C		8			8		pF
z _O	Closed-loop output impedance	A _V = 10,	f = 100 kHz	25°C		1			1		Ω
CMRR	Common-mode	V _{IC} = 0 to 2.7 \	/,	25°C	90	100		90	100		dB
CIVIKK	rejection ratio	$V_O = 2.5 \text{ V},$ $R_S = 1 \text{ k}\Omega$		Full range	85			85			ив
k _{SVR}	Supply-voltage rejection ratio	$V_{DD} = 4 \text{ V to 6}$ $V_{IC} = 0$,	V,	25°C	90	100		90	100		dB
··ovk	(ΔV _{DD} ±/ΔV _{IO})	No load		Full range	90			90			, J
I _{DD}	Supply current	V _O = 2.5 V,	No load	25°C		1	1.5		1	1.5	mΑ
-טט	Сарріу сапопі	VO = 2.5 V,		Full range			2			2	шА
VIT(CAL)	Calibration input threshold voltage			Full range	4			4			٧

† Full range is –40°C to 85°C. NOTE 4: R_L and C_L values are referenced to 2.5 V.

TLC4501, TLC4501A, TLC4501Y Advanced LinEPIC™ SELF-CALIBRATING (Self-Cal™) PRECISION OPERATIONAL AMPLIFIERS SLOS188A – JANRUARY 1997 – REVISED MAY 1997

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	TEST COND	ITIONS		TLC4501	C, TLC4	501AC	UNIT
	PARAMETER	TEST CONDI	ITIONS	T _A †	MIN	TYP	MAX	UNII
SR	Slow rate at unity gain	V _O = 0.5 V to 2.5 V,	C 100 pF	25°C	1.5	2.5		V/μs
SK	Slew rate at unity gain	ν _O = 0.5 ν to 2.5 ν,	CL = 100 pr	Full range	1			V/μs
V	Equivalent input noise voltage	f = 10 Hz		25°C		70		->//s/II=
V _n	Equivalent input noise voltage	f = 1 kHz		25°C		12		nV/√Hz
V4.455	Peak-to-peak equivalent input	f = 0.1 to 1 Hz		25°C		1		μV
V _{N(PP)}	noise voltage	f = 0.1 to 10 Hz		25°C		1.5		μν
In	Equivalent input noise current			25°C		0.6		fA/√Hz
		$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	A _V = 1	25°C		0.02%		
THD + N	Total harmonic distortion plus noise	$f = 10 \text{ kHz},$ $R_L = 1 \text{ k}\Omega,$	A _V = 10	25°C		0.08%		
		C _L = 100 pF	A _V = 100	25°C		0.55%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 1 \text{ k}\Omega$,	25°C		4.7		MHz
ВОМ	Maximum output swing bandwidth	$V_{O(PP)} = 2 V$, $R_L = 1 k\Omega$,	A _V = 1, C _L = 100 pF	25°C		1		MHz
	Settling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	to 0.1%	25°C		1.6		:
t _S	Jetung une	$R_L = 1 k\Omega$, $C_L = 100 pF$	to 0.01%	25°C		2.2		μs
φm	Phase margin at unity gain	$R_L = 1 k\Omega$,	$C_L = 100 pF$	25°C		74		
	Calibration time			25°C		300		ms

†Full range is 0°C to 70°C.

NOTE 4: R_L and C_L values are referenced to 2.5 V.

TLC4501, TLC4501A, TLC4501Y Advanced LinEPICTM SELF-CALIBRATING (Self-CalTM) PRECISION OPERATIONAL AMPLIFIERS SLOS188A – JANRUARY 1997 – REVISED MAY 1997

operating characteristics, $V_{DD} = 5 \text{ V}$

	DADAMETED	TEST COND	TEST CONDITIONS TAT TLC4501		T_1		TLC4501I, TLC4501AI	
	PARAMETER	IEST COND	IIIONS	TAI	MIN	TYP	MAX	UNIT
SR	Class rate at units main	Va 05 V to 25 V	C: 100 pF	25°C	1.5	2.5		V/μs
SK	Slew rate at unity gain	$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	C[= 100 pr	Full range	1			V/μs
V	Equivalent input noise voltage	f = 10 Hz		25°C		70		nV/√ Hz
V _n	Equivalent input noise voltage	f = 1 kHz		25°C		12		NV/∀HZ
V*****	Peak-to-peak equivalent input	f = 0.1 to 1 Hz	: 0.1 to 1 Hz 25°C			1		μV
VN(PP)	noise voltage	f = 0.1 to 10 Hz		25°C		1.5		μν
In	Equivalent input noise current			25°C		0.6		fA/√ Hz
		$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	A _V = 1	25°C		0.02%		
THD + N	Total harmonic distortion plus noise	$f = 10 \text{ kHz},$ $R_L = 1 \text{ k}\Omega,$	A _V = 10	25°C		0.08%		
		C _L = 100 pF	A _V = 100	25°C		0.55%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 1 \text{ k}\Omega$,	25°C		4.7		MHz
ВОМ	Maximum output swing bandwidth	$V_{O(PP)} = 2 V$, $R_L = 1 k\Omega$,	A _V = 1, C _L = 100 pF	25°C		1		MHz
	Settling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	to 0.1%	25°C		1.6		
t _S	Setting time	$R_L = 1 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	to 0.01%	25°C		2.2		μs
φm	Phase margin at unity gain	$R_L = 1 k\Omega$,	C _L = 100 pF	25°C		74		
	Calibration time			25°C		300		ms

† Full range is –40°C to 85°C. NOTE 4: R_L and C_L values are referenced to 2.5 V.

TLC4501, TLC4501A, TLC4501Y Advanced LinEPIC™ SELF-CALIBRATING (Self-Cal™) PRECISION OPERATIONAL AMPLIFIERS SLOS188A – JANRUARY 1997 – REVISED MAY 1997

electrical characteristics at specified free-air temperature, V_{DD} = 5 V, GND = 0, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEOT 001	DITIONS	TI	_C4501\	1	UNIT
	PARAMETER	TEST CONI	OHIONS	MIN	TYP	MAX	UNII
V _{IO}	Input offset voltage		., .		10		μV
IIO	Input offset current	$V_{DD} = \pm 2.5 \text{ V},$ $V_{IC} = 0,$	$V_O = 0$, $R_S = 50 \Omega$		1		pА
I _{IB}	Input bias current	VIC = 0,	113 = 00 12		1		pА
\/a	High level output veltage	$I_{OH} = -500 \mu A$			4.99		٧
VOH	High-level output voltage	$I_{OH} = -5 \text{ mA}$			4.9		V
V	Low level output voltage	$V_{IC} = 2.5 V,$	I _{OL} = 500 μA		0.01		V
VOL	Low-level output voltage	$V_{IC} = 2.5 V,$	$I_{OL} = 5 \text{ mA}$		0.1		V
A _{VD}	Large-signal differential voltage amplification	$V_{IC} = 2.5 \text{ V},$ $R_L = 1 \text{ k}\Omega,$	V _O = 1 V to 4 V, See Note 4		1000		V/mV
R _{I(D)}	Differential input resistance				10		kΩ
RL	Input resistance	See Note 4			1012		Ω
CL	Common-mode input capacitance	f = 10 kHz,	P package		8		pF
zO	Closed-loop output impedance	A _V = 10,	f = 100 kHz		1		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 2.7 \text{ V},$ $R_S = 1 \text{ k}\Omega$	V _O = 2.5 V,		100		dB
ksvr	Supply-voltage rejection ratio ($\Delta V_{DD \pm}/\Delta V_{IO}$)	$V_{DD} = \pm 2 \text{ V to } \pm 3 \text{ V},$ No load	V _{IC} = 0,		100		dB
I _{DD}	Supply current	$V_0 = 2.5 V$,	No load		1		mA

NOTE 4: $\,$ RL and CL values are referenced to 2.5 V.

operating characteristics, V_{DD} = 5 V, T_A = 25°C

	DADAMETED	TEOT 001	DITIONS	TL	-C4501Y		
	PARAMETER	IESI CON	TEST CONDITIONS			MAX	UNIT
SR	Slew rate at unity gain	$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	C _L = 100 pF		2.5		V/μs
V	Equivalent input poice voltage	f = 10 Hz			70		->//s/II=
Vn	Equivalent input noise voltage	f = 1 kHz			12		nV/√Hz
Vvvoo,	Peak-to-peak equivalent input noise voltage	f = 0.1 to 1 Hz			1		μV
V _{N(PP)}	r eak-to-peak equivalent input noise voltage	f = 0.1 to 10 Hz			1.5		μν
In	Equivalent input noise current				0.6		fA/√Hz
		$V_0 = 0.5 \text{ V to } 2.5 \text{ V},$	A _V = 1		0.02%		
THD + N	Total harmonic distortion plus noise	f = 10 kHz, $R_1 = 1 \text{ k}\Omega,$	A _V = 10		0.08%		
		C _L = 100 pF	A _V = 100		0.55%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF	$R_L = 1 \text{ k}\Omega$,		4.7		MHz
ВОМ	Maximum output swing bandwidth	$V_{O(PP)} = 2 \text{ V},$ $R_L = 1 \text{ k}\Omega,$	A _V = 1, C _L = 100 pF		1		MHz
•	Settling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	to 0.1%		1.6		
t _S	Jetuing unle	$R_L = 1 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	to 0.01%		2.2		μ\$
φm	Phase margin at unity gain	$R_L = 1 \text{ k}\Omega,$	C _L = 100 pF		74		
	Calibration time				300		ms

NOTE 4: R_L and C_L values are referenced to 2.5 V.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
V: -	lanut effect voltage	Distribution	1, 2, 3
VIO	Input offset voltage	vs Common-mode input voltage	4
$_{lpha}$ VIO	Input offset voltage temperature coefficient	Distribution	5, 6
Vон	High-level output voltage	vs High-level output current	7
VOL	Low-level output voltage	vs Low-level output current	8
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	9
los	Short-circuit output current	vs Free-air temperature	10
٧o	Output voltage	vs Differential input voltage	11
AVD	Large-signal differential voltage amplification	vs Free-air temperature vs Frequency	12 13
z _o	Output impedance	vs Frequency	14
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	15 16
SR	Slew rate	vs Load capacitance vs Free-air temperature	17 18
	Inverting large-signal pulse response	vs Time	19
	Voltage-follower large-signal pulse response	vs Time	20
	Inverting small-signal pulse response	vs Time	21
	Voltage-follower small-signal pulse response	vs Time	22
V _n	Equivalent input noise voltage	vs Frequency	23
	Input noise voltage	Over a 10-second period	24
THD + N	Total harmonic distortion plus noise	vs Frequency	25
	Gain-bandwidth product	vs Free-air temperature	26
<u> </u>	Phone margin	vs Load capacitance	27, 28
φm	Phase margin	vs Frequency	13
PSRR	Power-supply rejection ratio	vs Free-air temperature	29
	Calibration time at -40°C	vs Time	30
	Calibration time at 25°C	vs Time	31
	Calibration time at 85°C	vs Time	32

TYPICAL CHARACTERISTICS

DISTRIBUTION OF TLC4501 INPUT OFFSET VOLTAGE

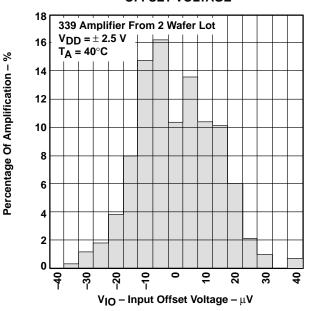


Figure 1

DISTRIBUTION OF TLC4501 INPUT OFFSET VOLTAGE

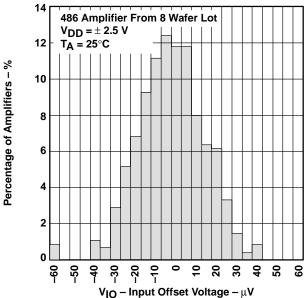
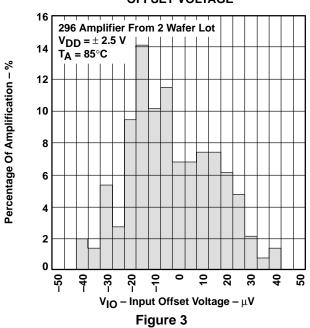



Figure 2

DISTRIBUTION OF TLC4501 INPUT OFFSET VOLTAGE

INPUT OFFSET VOLTAGE

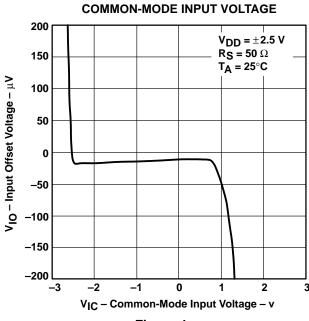


Figure 4

TYPICAL CHARACTERISTICS

DISTRIBUTION OF TLC4501 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

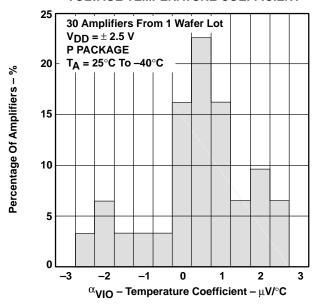
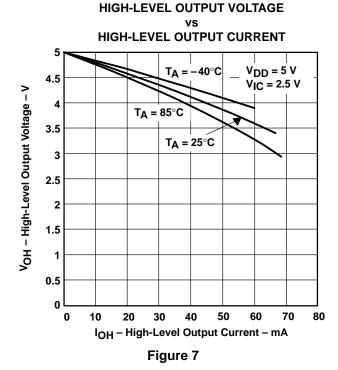



Figure 5

DISTRIBUTION OF TLC4501 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

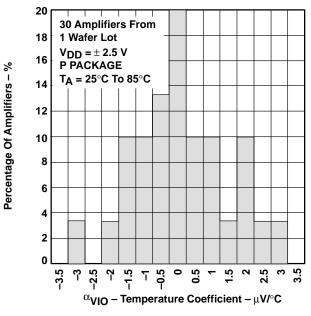
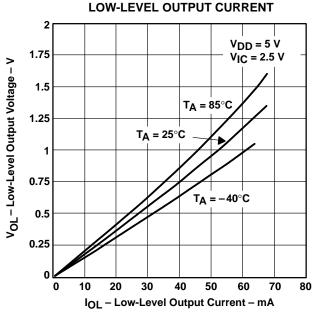
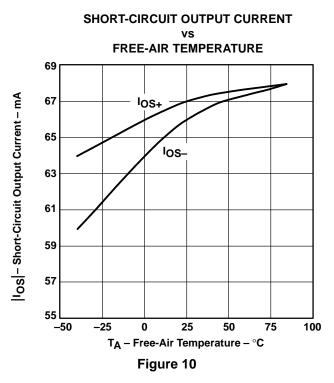


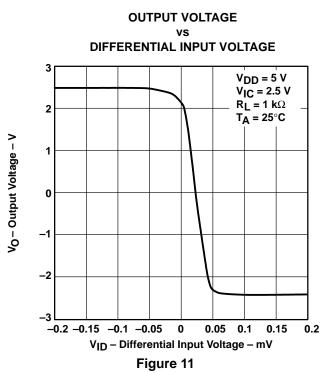
Figure 6

LOW-LEVEL OUTPUT VOLTAGE vs




Figure 8

TYPICAL CHARACTERISTICS


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE FREQUENCY Vo(PP)- Maximum Peak-To-Peak Output Voltage - V 10 $V_{DD} = 5 V$ 8 6 2 100 1 k 10 k 100 k 1 M 10 M

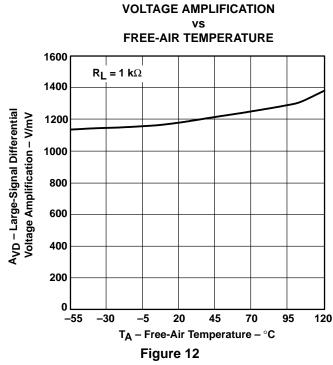

f - Frequency - Hz

Figure 9

LARGE-SIGNAL DIFFERENTIAL

TYPICAL CHARACTERISTICS

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN

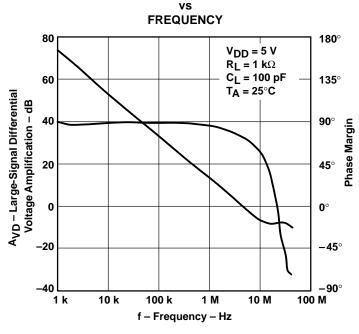
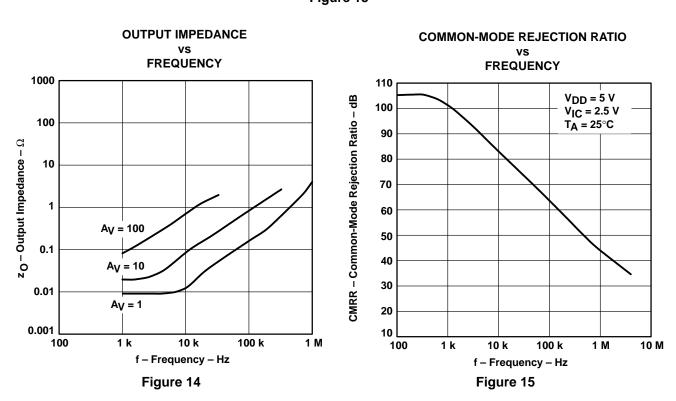



Figure 13

TYPICAL CHARACTERISTICS

COMMON-MODE REJECTION RATIO FREE-AIR TEMPERATURE 130 V_{DD} = 5 V CMRR - Common-Mode Rejection Ratio - dB 125 120 115 110 105 100 95 90 -50 -25 25 50 75 100 125 T_A – Free-Air Temperature – $^{\circ}$ C

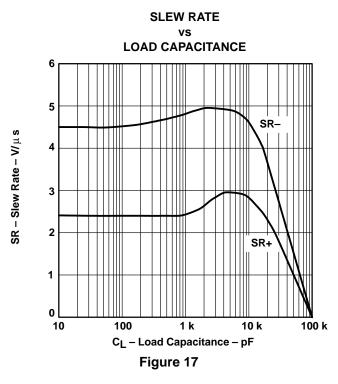
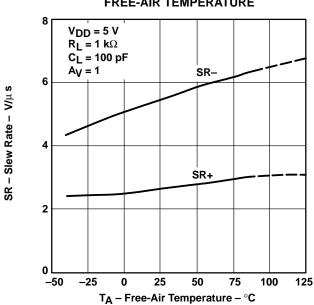
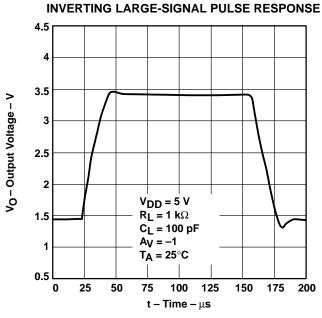
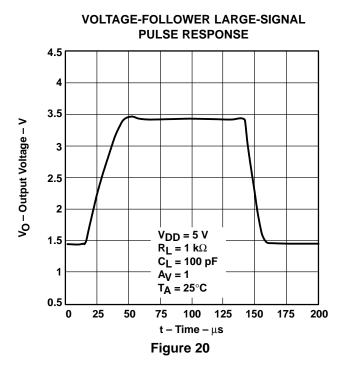



Figure 16

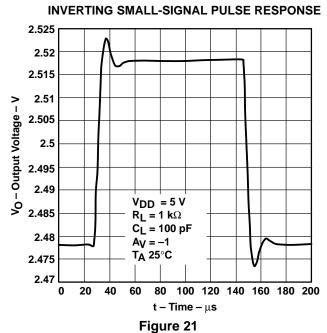

Figure 18

Figure 19

TYPICAL CHARACTERISTICS

VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE

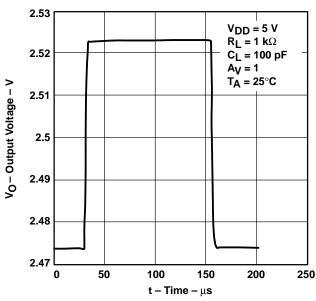
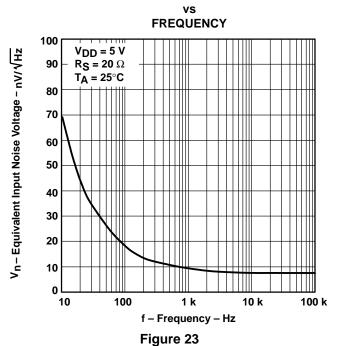
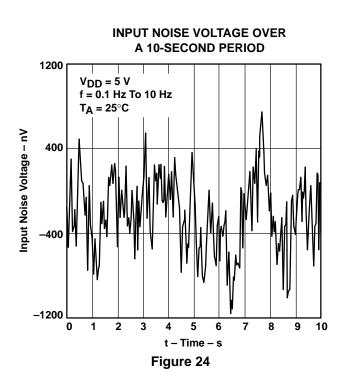
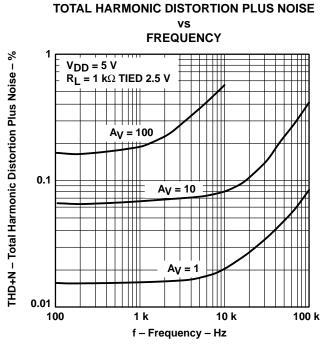
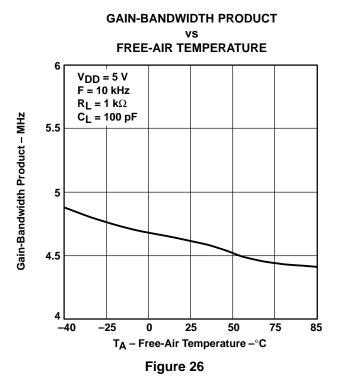
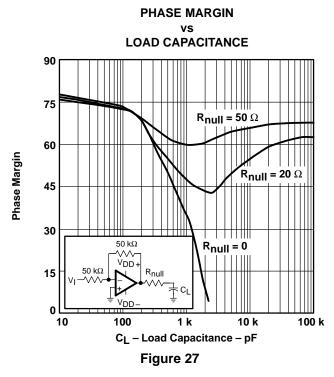
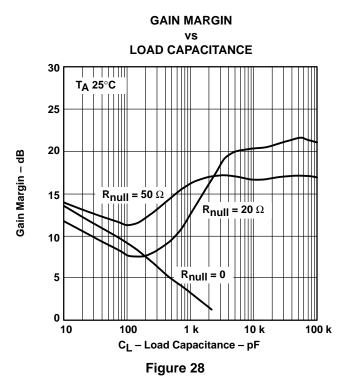




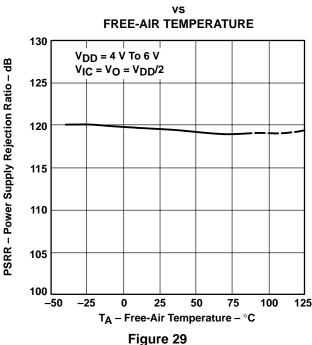
Figure 22

EQUIVALENT INPUT NOISE VOLTAGE

TYPICAL CHARACTERISTICS


Figure 25



POWER SUPPLY REJECTION RATIO

TYPICAL CHARACTERISTICS

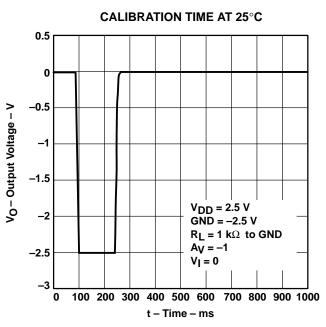
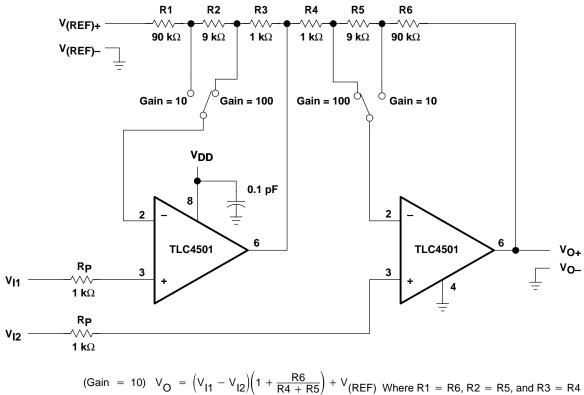


Figure 31

TYPICAL CHARACTERISTICS

CALIBRATION TIME AT 85°C 0.5 0 Vo - Output Voltage - V -0.5 -1.5 $V_{DD} = 2.5 V$ -2 GND = -2.5 V R_L = 1 $k\Omega\,$ to GND $A_V = -1$ -2.5 $V_{I} = 0$ -3 100 200 300 400 500 600 700 800 900 1000 t - Time - ms

Figure 32



SLOS188A - JANRUARY 1997 - REVISED MAY 1997

APPLICATION INFORMATION

- The TLC4501 is designed to operate with only a single 5-V power supply, have true differential inputs, and remain in the linear mode with an input common-mode voltage of 0.
- The TLC4501 has a standard single-amplifier pinout allowing for easy design upgrades.
- Large differential input voltages can be easily accommodated and, as input differential-voltage protection diodes are not needed, no large input currents result from large differential input voltage. Protection should be provided to prevent the input voltages from going negative more than -0.3 V at 25°C. An input clamp diode with a resistor to the device input terminal can be used for this purpose.
- For ac applications, where the load is capacitively coupled to the output of the amplifier, a resistor can be
 used from the output of the amplifier to ground. This increases the class-A bias current and prevents
 crossover distortion. Where the load is directly coupled, for example dc applications, there is no crossover
 distortion.
- Capacitive loads, which are applied directly to the output of the amplifier, reduce the loop stability margin.
 Values of 500 pF can be accommodated using the worst-case noninverting unity-gain connection. Resistive isolation should be considered when larger load capacitance must be driven by the amplifier.

The following typical application circuits emphasize operation on only a single power supply. When complementary power supplies are available, the TLC4501 can be used in all of the standard operational amplifier circuits. In general, introducing a pseudo-ground (a bias voltage of V_I/2 like that generated by the TLE2426) allows operation above and below this value in a single-supply system. Many application circuits are shown which take advantage of the wide common-mode input-voltage range of the TLC4501, which includes ground. In most cases, input biasing is not required and input voltages that range to ground can easily be accommodated.

(Gain = 10)
$$V_O = (V_{I1} - V_{I2})(1 + \frac{RO}{R4 + R5}) + V_{(REF)}$$
 Where R1 = R6, R2 = R5, and R3 = R4
(Gain = 100) $V_O = (V_{I1} - V_{I2})(1 + \frac{R5 + R6}{R4}) + V_{(REF)}$ Where R1 = R6, R2 = R5, and R3 = R4

Figure 33. Single-Supply Programmable Instrumentation Amplifier Circuit

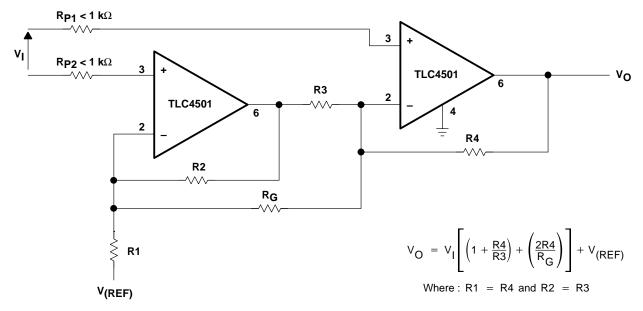


Figure 34. Two Operational-Amplifier Instrumentation Amplifier Circuit

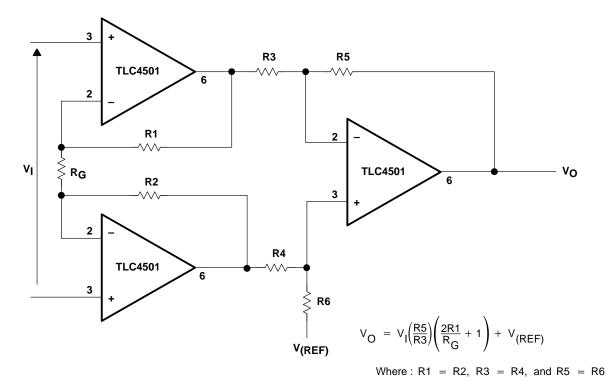


Figure 35. Three Operational-Amplifier Instrumentation Amplifier Circuit

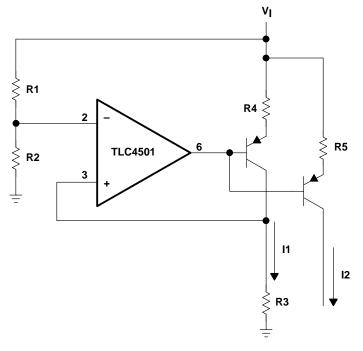


Figure 36. Fixed Current-Source Circuit

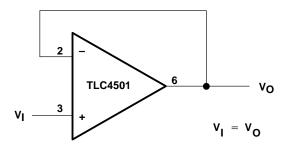


Figure 37. Voltage-Follower Circuit

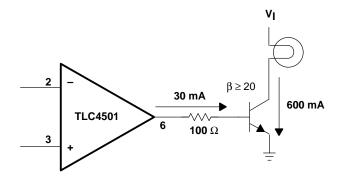


Figure 38. Lamp-Driver Circuit

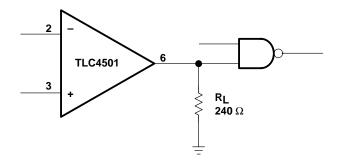


Figure 39. TTL-Driver Circuit

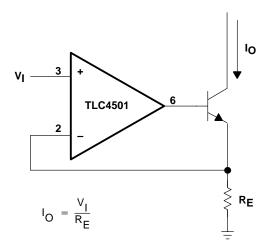


Figure 40. High-Compliance Current-Sink Circuit

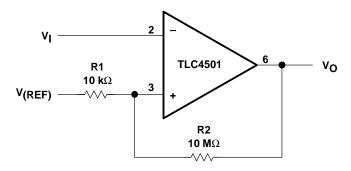
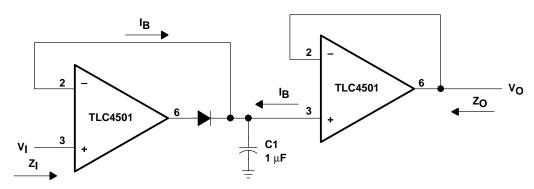
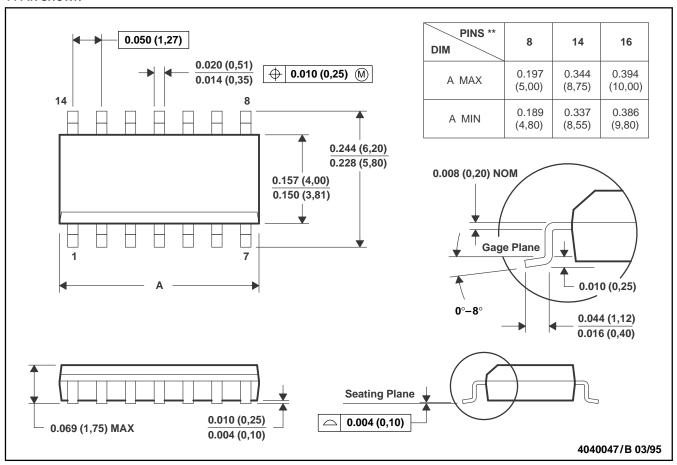


Figure 41. Comparator With Hysteresis Circuit




Figure 42. Low-Drift Detector Circuit

MECHANICAL INFORMATION

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Four center pins are connected to die mount pad.
- E. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated