- Easy Microprocessor Interface
- On-Chip Data Latches
- Digital Inputs Are TTL-Compatible With $10.8-\mathrm{V}$ to 15.75 -V Power Supply
- Monotonic Over the Entire A/D Conversion Range
- Fast Control Signaling for Digital Signal Processor (DSP) Applications Including Interface With TMS320
- CMOS Technology

KEY PERFORMANCE SPECIFICATIONS	
Resolution	8 bits
Linearity Error	$1 / 2 \mathrm{LSB}$
Power Dissipation	20 mW
Settling Time	100 ns
Propagation Delay Time	80 ns

description

The TLC7628C, TLC7628E, and TLC2628I are dual, 8-bit, digital-to-analog converters (DACs) designed with separate on-chip data latches and feature exceptionally close DAC-to-DAC matching. Data is transferred to either of the two DAC data latches through a common, 8 -bit input port. Control input DACA/DACB determines which DAC is loaded. The load cycle of these devices is similar to the write cycle of a random-access memory, allowing easy interface to most popular microprocessor buses and output ports. Segmenting the high-order bits minimizes glitches during changes in the most significant bits, where glitch impulse is typically the strongest.

DW OR N PACKAGE
(TOP VIEW)

FN PACKAGE (TOP VIEW)

The TLC7628C operates from a 10.8 -V to $15.75-\mathrm{V}$ power supply and is TTL-compatible over this range. 2- or 4-quadrant multiplying makes these devices a sound choice for many microprocessor-controlled gain-setting and signal-control applications.

The TLC6728C is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The TLC76281 is characterized for operation from $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TLC7628E is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

AVAILABLE OPTIONS

$\mathbf{T}_{\mathbf{A}}$	PACKAGE		
	SMALL OUTLINE PLASTIC DIP (DW)	PLASTIC CHIP CARRIER (FN)	PLASTIC DIP (N)
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	TLC7628CDW	TLC7628CFN	TLC7628CN
$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TLC7628IDW	TLC7628IFN	TLC7628IN
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TLC7628EDW	TLC7628EFN	TLC7628EN

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{DD} (to AGND or DGND) .. 0.3 V to 17 V

Reference voltage range, $\mathrm{V}_{\text {refA }}$ or $\mathrm{V}_{\text {refB }}$ (to AGND) ... $\pm 25 \mathrm{~V}$

Output voltage range, V_{OA} or V_{OB} (to AGND) .. 25 V
Peak input current ... $10 \mu \mathrm{~A}$

TLC76281 .. . $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
TLC7628E $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Case temperature for 10 seconds, T_{C} : FN package .. $260^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds: DW or N package $\ldots \ldots \ldots . . .260^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

electrical characteristics over recommended ranges of operating free-air temperature and $V_{D D}$, $V_{\text {refA }}=V_{\text {refB }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OA}}$ and V_{OB} at 0 V (unless otherwise noted)

PARAMETER			TEST CONDITIONS		MIN MAX	UNIT	
${ }^{1} \mathrm{H}$	High-level input current		$V_{I}=V_{\text {DD }}$	Full range	10	$\mu \mathrm{A}$	
			$25^{\circ} \mathrm{C}$	1			
IIL	Low-level input current			$\mathrm{V}_{\mathrm{I}}=0$	Full range	-10	$\mu \mathrm{A}$
			$25^{\circ} \mathrm{C}$		-1		
	Reference input impedance REFA or REFB to AGND				520	k Ω	
1 kg	Output leakage current	OUTA	DAC data latch loaded with 00000000,$V_{\text {refA }}= \pm 10 \mathrm{~V}$	Full range	± 200	nA	
				$25^{\circ} \mathrm{C}$	± 50		
		OUTB	DAC data latch loaded with 00000000,$V_{\text {refB }}= \pm 10 \mathrm{~V}$	Full range	± 200		
				$25^{\circ} \mathrm{C}$	± 50		
Input resistance match (REFA to REFB)					$\pm 1 \%$		
DC supply sensitivity Δ gain $/ \Delta \mathrm{V}_{\mathrm{DD}}$			$\Delta \mathrm{V}_{\mathrm{DD}}= \pm 5 \%$	Full range	0.02	\%/\%	
			$25^{\circ} \mathrm{C}$	0.01			
IDD	Supply current	Quiescent		All digital inputs at $\mathrm{V}_{\text {IH }}$ min or $\mathrm{V}_{\text {IL }}$ max		2	mA
		Standby	All digital inputs at 0 V or V_{DD}	Full range	0.5		
				$25^{\circ} \mathrm{C}$	0.1		
C_{i}	Input capacitance	DB0-DB7			10	pF	
		$\begin{array}{\|l} \hline \frac{\overline{W R}, \overline{C S}}{\overline{D A C A} / D A C B} \end{array}$			15		
C_{0}	Output capacitance (OUTA, OUTB)		DAC data latches loaded with 00000000		25	pF	
			DAC data latches loaded with 11111111		60		

operating characteristics over recommended ranges of operating free-air temperature and $V_{D D}$, $\mathrm{V}_{\text {refA }}=\mathrm{V}_{\text {refB }}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OA}}$ and V_{OB} at 0 V (unless otherwise noted)

NOTES: 1. OUTA, OUTB load $=100 \Omega$, $C_{\text {ext }}=13 \mathrm{pF} ; \overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ at 0 V ; DB0-DB7 at 0 V to $\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {DD }}$ to 0 V .
2. Gain error is measured using an internal feedback resistor. Nominal full scale range (FSR) $=\mathrm{V}_{\text {ref }}-1$ LSB. Both DAC latches are loaded with 11111111.
3. $\mathrm{V}_{\text {ref }}=20 \mathrm{~V}$ peak-to-peak, $10-\mathrm{kHz}$ sine wave
4. $\mathrm{V}_{\text {refA }}=\mathrm{V}_{\text {refB }}=10 \mathrm{~V}$; OUTA/OUTB load $=100 \Omega, \mathrm{C}_{\text {ext }}=13 \mathrm{pF} ; \overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ at 0 V ; DB0-DB7 at 0 V to V_{DD} or V_{DD} to 0 V .
5. $\mathrm{V}_{\text {refA }}=20 \mathrm{~V}$ peak-to-peak, $10-\mathrm{kHz}$ sine wave; $\mathrm{V}_{\text {refB }}=0$
6. $\mathrm{V}_{\text {ref }}=20 \mathrm{~V}$ peak-to-peak, $10-\mathrm{kHz}$ sine wave; $\mathrm{V}_{\text {ref }}=0$

For all input signals, $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}$ (10% to 90% points).
Figure 1. Setup and Hold Times

TLC7628C, TLC7628E, TLC7628I
 DUAL 8-BIT MULTIPLYING
 DIGITAL-TO-ANALOG CONVERTERS

APPLICATION INFORMATION

These devices are capable of performing 2-quadrant or full 4-quadrant multiplication. Circuit configurations for 2-quadrant and 4-quadrant multiplication are shown in Figures 2 and 3. Input coding for unipolar and bipolar operation are summarized in Tables 2 and 3, respectively.

NOTES: A. R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Make gain adjustment with digital input of 255.
B. C1 and C2 phase compensation capacitors (10 pF to 15 pF) are required when using high-speed amplifiers to prevent ringing or oscillation.

Figure 2. Unipolar Operation (2-Quadrant Multiplication)

APPLICATION INFORMATION

NOTES: A. R1, R2, R3, and R4 are used only if gain adjustment is required. See table for recommended values. Adjust R1 for $\mathrm{V}_{\mathrm{OA}}=0 \mathrm{~V}$ with code 10000000 in DACA latch. Adjust R 3 for $\mathrm{V} \mathrm{OB}=0 \mathrm{~V}$ with 10000000 in DACB latch.
B. Matching and tracking are essential for resistor pairs R6, R7, R9, and R10.
C. C 1 and C 2 phase compensation capacitors (10 pF to 15 pF) may be required if A 1 and A 3 are high-speed amplifiers.

Figure 3. Bipolar Operation (4-Quadrant Operation)

NOTE A: A = decoded address for TLC7628 DACA
A $+1=$ decoded address for TLC7628 DACB
Figure 4. TLC7628 - Intel 8051 Interface

APPLICATION INFORMATION

NOTE A: A = decoded address for TLC7628 DACA
A $+1=$ decoded address for TLC7628 DACB
Figure 5. TLC7628-6800 Interface

voltage-mode operation

The current-multiplying DAC in these devices can be operated in a voltage mode. In the voltage mode, a fixed voltage is placed on the current output terminal. The analog output voltage is then available at the reference voltage terminal. An example of a current-multiplying DAC operating in voltage mode is shown in Figure 6. The relationship between the fixed input voltage and the analog output voltage is given by the following equation:

Analog output voltage $=$ fixed input voltage ($\mathrm{D} / 256$)
where $\mathrm{D}=$ the digital input. In voltage-mode operation, these devices meet the following specification:

LINEARITY ERROR	TEST CONDITIONS			MIN
MAX	UNIT			
Analog output voltage for REFA, REFB	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \quad$ OUTA or OUTB at $5 \mathrm{~V}, \quad \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1	LSB

Figure 6. Current-Multiplying DAC Operating in Voltage Mode

PRINCIPLES OF OPERATION

These devices contain two, identical, 8-bit, multiplying DACs, DACA and DACB. Each DAC consists of an inverted R-2R ladder, analog switches, and input data latches. Binary-weighted currents are switched between the DAC output and AGND, thus maintaining a constant current in each ladder leg independent of the switch state. Most applications require only the addition of an external operational amplifier and voltage reference. A simplified D/A circuit for DACA or DACB with all digital inputs low is shown in Figure 7.
Figure 8 shows the DACA or DACB equivalent circuit. Both DACs share the analog ground terminal 1 (AGND). With all digital inputs high, the reference current flows to OUTA. A small leakage current (llkg) flows across internal junctions, and as with most semiconductor devices, doubles every $10^{\circ} \mathrm{C}$. The C_{0} is caused by the parallel combination of the NMOS switches and has a value that depends on the number of switches connected to the output. The range of C_{0} is 25 pF to 60 pF maximum. The equivalent output resistance (r_{0}) varies with the input code from 0.8 R to 3 R where R is the nominal value of the ladder resistor in the R-2R network.
These devices interface to a microprocessor through the data bus, $\overline{C S}, \overline{W R}$, and $\overline{\mathrm{DACA}} / D A C B$ control signals. When $\overline{C S}$ and $\overline{W R}$ are both low, the analog output on these devices, specified by the $\overline{\mathrm{DACA}} / \mathrm{DACB}$ control line, responds to the activity on the DB0-DB7 data bus inputs. In this mode, the input latches are transparent and input data directly affects the analog output. When either the $\overline{\mathrm{CS}}$ signal or $\overline{\mathrm{WR}}$ signal goes high, the data on the DB0-DB7 inputs is latched until the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ signals go low again. When $\overline{\mathrm{CS}}$ is high, the data inputs are disabled, regardless of the state of the $\overline{W R}$ signal.
The digital inputs of these devices provide TTL compatibility when operated from a supply voltage of 10.8 V to 15.75 V .

Figure 7. Simplified Functional Circuit for DACA or DACB

Latch A or Latch B Loaded With 11111111
Figure 8. TLC7628 Equivalent Circuit for DACA or DACB

TLC7628C, TLC7628E, TLC7628I
 DUAL 8-BIT MULTIPLYING
 DIGITAL-TO-ANALOG CONVERTERS

PRINCIPLES OF OPERATION

Table 1. MODE SELECTION TABLE

$\overline{\text { DACA/DACB }}$	$\overline{\text { CS }}$	$\overline{\text { WR }}$	DACA	DACB
L	L	L	Write	Hold
H	L	L	Hold	Write
X	H	X	Hold	Hold
X	X	H	Hold	Hold

L = low level, $\quad H=$ high level, $\quad X=$ don't care

Table 2. Unipolar Binary Code

| DAC LATCH CONTENTS
 (see Note 7)
 MSB | LSB |
| :---: | :--- | ANALOG OUTPUT

Table 3. Bipolar (Offset Binary) Code

DAC LATCH CONTENTS (see Note 8)	ANALOG OUTPUT
MSB LSB	
11111111	$\mathrm{V}_{\mathrm{I}}(127 / 128)$
10000001	$\mathrm{V}_{\mathrm{I}}(1 / 128)$
10000000	0 V
01111111	- $\mathrm{V}_{\mathrm{I}}(1 / 128)$
00000001	- $\mathrm{V}_{\mathrm{I}}(127 / 128)$
00000000	- $\mathrm{V}_{\text {I }}(128 / 128)$

NOTES: 7. $1 \mathrm{LSB}=(2-8) \mathrm{V}$,
8. $1 \mathrm{LSB}=(2-7) \mathrm{V}_{\text {I }}$

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

