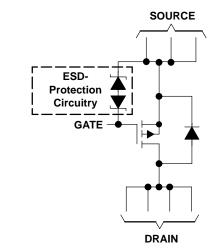

- Low $r_{DS(on)} \dots 0.18 \Omega$ Typ at $V_{GS} = -10 \text{ V}$
- 3 V Compatible
- Requires No External V_{CC}
- TTL and CMOS Compatible Inputs
- V_{GS(th)} = −1.5 V Max
- Available in Ultrathin TSSOP Package (PW)
- ESD Protection Up to 2 kV Per MIL-STD-883C, Method 3015

description


The TPS1100 P-channel is a single enhancement-mode MOSFET. The device has been optimized for 3-V or 5-V power distribution in battery-powered systems by means of Texas Instruments LinBiCMOS™ process. With a maximum V_{GS(th)} of -1.5 V and an I_{DSS} of only 0.5 μA, the TPS1100 is the ideal high-side switch for low-voltage, portable battery-management systems where maximizing battery life is a primary concern. The low r_{DS(on)} and excellent ac characteristics (rise time 10 ns typical) make the TPS1100 the logical choice for low-voltage switching applications such as power switches for pulse-width-modulated (PWM) controllers or motor/bridge drivers.

The ultrathin thin shrink small-outline package or TSSOP (PW) version with its smaller footprint and reduction in height fits in places where other P-channel MOSFETs cannot. The size advantage is especially important where board real estate is at a premium and height restrictions do not allow for an small-outline integrated circuit (SOIC) package.

schematic

NOTE A. For all applications, all source pins should be connected and all drain pins should be connected.

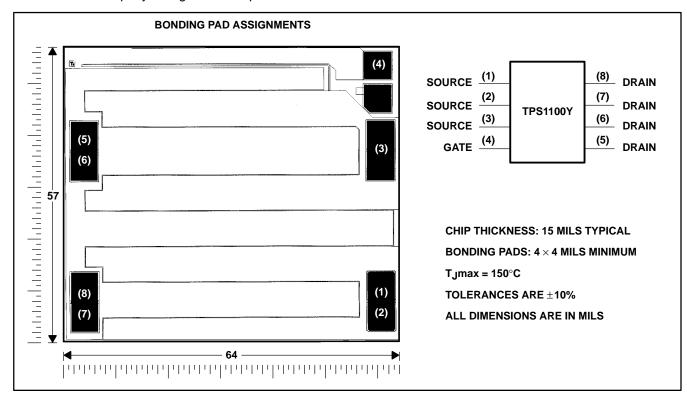
AVAILABLE OPTIONS

	PACKAGED I	CHIP FORM		
TA	SMALL OUTLINE PLASTIC DIP (D) (P)		(Y)	
-40°C to 85°C	TPS1100D	TPS1100PWLE	TPS1100Y	

The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS1100DR). The PW package is available only left-end taped and reeled (indicated by the LE suffix on the device type; e.g., TPS1100PWLE). The chip form is tested at 25° C.

Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated voltages to these high-impedance circuits.

LinBiCMOS is a trademark of Texas Instruments Incorporated.


SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

description (continued)

Such applications include notebook computers, personal digital assistants (PDAs), cellular telephones, and PCMCIA cards. For existing designs, the D-packaged version has a pinout common with other p-channel MOSFETs in SOIC packages.

TPS1100Y chip information

This chip, when properly assembled, displays characteristics similar to the TPS1100. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

					UNIT	
Drain-to-source voltage, V _{DS}						
Gate-to-source voltage, VGS						
		D package	T _A = 25°C	±0.41		
	$V_{GS} = -2.7 \text{ V}$		T _A = 125°C	±0.28		
	VGS = -2.7 V	PW package	T _A = 25°C	±0.4	A	
		1 W package	T _A = 125°C	±0.23		
		D package	T _A = 25°C	±0.6		
	V _{GS} = -3 V	Браскаде	T _A = 125°C	±0.33		
	VGS = -3 V	PW package	T _A = 25°C	±0.53		
Continuous drain current (T _J = 150°C), I _D ‡		1 W package	T _A = 125°C	±0.27		
Continuous drain current (1) = 150°C), ID+		D package	T _A = 25°C	±1	_ ^	
	$V_{GS} = -4.5 \text{ V}$		T _A = 125°C	±0.47		
	VGS = -4.5 V	PW package	T _A = 25°C	±0.81		
			T _A = 125°C	±0.37		
		D package	T _A = 25°C	±1.6		
	V _{GS} = -10 V	Браскаде	T _A = 125°C	±0.72		
	VGS = -10 V	PW package	T _A = 25°C	±1.27		
		1 W package	T _A = 125°C	±0.58		
Pulsed drain current, I _D ‡			T _A = 25°C	±7	Α	
Continuous source current (diode conduction), IS	-1	Α				
Storage temperature range, T _{Stg}	-55 to 150	°C				
Operating junction temperature range, T _J	-40 to 150	°C				
Operating free-air temperature range, T _A	-40 to 125	°C				
Lead temperature 1,6 mm (1/16 inch) from case for 10 se	260	°C				

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR [‡] ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	791 mW	6.33 mW/°C	506 mW	411 mW	158 mW
PW	504 mW	4.03 mW/°C	323 mW	262 mW	101 mW

[‡] Maximum values are calculated using a derating factor based on R_{θJA} = 158°C/W for the D package and R_{θJA} = 248°C/W for the PW package. These devices are mounted on an FR4 board with no special thermal considerations when tested.

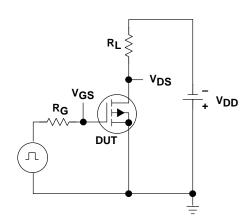
[‡] Maximum values are calculated using a derating factor based on R₀JA = 158°C/W for the D package and R₀JA = 248°C/W for the PW package. These devices are mounted on an FR4 board with no special thermal considerations.

TPS1100, TPS1100Y SINGLE P-CHANNEL ENHANCEMENT-MODE MOSFETS

SLVS078C - DECEMBER 1993 - REVISED AUGUST 1995

electrical characteristics at $T_J = 25^{\circ}C$ (unless otherwise noted)

static


	PARAMETER	TEST CONDITIONS		TPS1100		TPS1100Y		UNIT			
FANAMETER		TEST CONDITIONS			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V _{GS(th)}	Gate-to-source threshold voltage	$V_{DS} = V_{GS}$	I _D = -250 μA		-1	-1.25	-1.50		-1.25		>
V _{SD}	Source-to-drain voltage (diode- forward voltage)†	I _S = -1 A,	V _{GS} = 0 V			-0.9			-0.9		V
IGSS	Reverse gate current, drain short circuited to source	V _{DS} = 0 V,	V _{GS} = -12 V				±100				nA
Inno	Zero-gate-voltage	V _{DS} = -12 V,	\\co = 0 \\	T _J = 25°C			-0.5				^
IDSS	drain current	VDS = -12 V,	vGS = 0 v	T _J = 125°C			-10				μΑ
		$V_{GS} = -10 \text{ V}$	$I_D = -1.5 A$			180			180		
		$V_{GS} = -4.5 \text{ V}$	$I_D = -0.5 A$			291	400		291		~ 0
rDS(on)		$V_{GS} = -3 V$	I 02A			476	700		476		mΩ
		$V_{GS} = -3 V$ $V_{GS} = -2.7 V$	ID = -0.2 A			606	850		606		
9fs	Forward transconductance†	$V_{DS} = -10 \text{ V},$				2.5			2.5		S

[†] Pulse test: pulse duration ≤ 300 μs, duty cycle ≤ 2%

dynamic

PARAMETER		TEST CONDITIONS			TPS1100, TPS1100Y			LINUT	
					MIN	TYP	MAX	UNIT	
Qg	Total gate charge					5.45			
Qgs	Gate-to-source charge	$V_{DS} = -10 V$,	$V_{GS} = -10 \text{ V},$	$I_{D} = -1 A$		0.87		nC	
Q _{gd}	Gate-to-drain charge	1				1.4			
t _{d(on)}	Turn-on delay time					4.5		ns	
td(off)	Turn-off delay time	$V_{DD} = -10 \text{ V},$	$R_L = 10 \Omega$, See Figures 1 and 2	$I_{D} = -1 A,$		13		ns	
t _r	Rise time	$R_G = 6 \Omega$,				10			
t _f	Fall time					2		ns	
trr(SD)	Source-to-drain reverse recovery time	$I_F = 5.3 A$,	di/dt = 100 A/μs			16	·		

PARAMETER MEASUREMENT INFORMATION

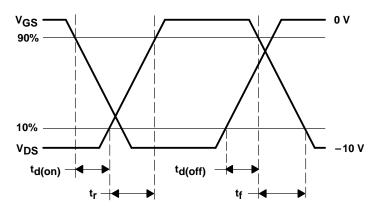


Figure 1. Switching-Time Test Circuit

Figure 2. Switching-Time Waveforms

TYPICAL CHARACTERISTICS

Table of Graphs

		FIGURE
Drain current	vs Drain-to-source voltage	3
Drain current	vs Gate-to-source voltage	4
Static drain-to-source on-state resistance	vs Drain current	5
Capacitance	vs Drain-to-source voltage	6
Static drain-to-source on-state resistance (normalized)	vs Junction temperature	7
Source-to-drain diode current	vs Source-to-drain voltage	8
Static drain-to-source on-state resistance	vs Gate-to-source voltage	9
Gate-to-source threshold voltage	vs Junction temperature	10
Gate-to-source voltage	vs Gate charge	11

TYPICAL CHARACTERISTICS

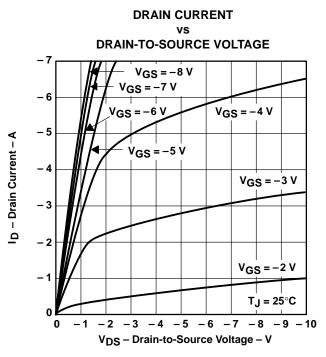
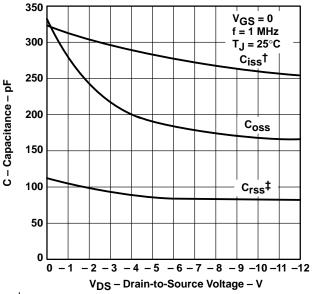


Figure 3


STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE

DRAIN CURRENT GATE-TO-SOURCE VOLTAGE $V_{DS} = -10 \text{ V}$ - 6 T_J = 25°C T_J = 150°C - 5 ID - Drain Current - A T_J = −40°C - 4 - 3 - 2 - 1 0 - 3 -6 V_{GS} - Gate-to-Source Voltage - V

Figure 4

CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE

$$\dagger C_{iss} = C_{gs} + C_{gd}, C_{ds(shorted)}$$

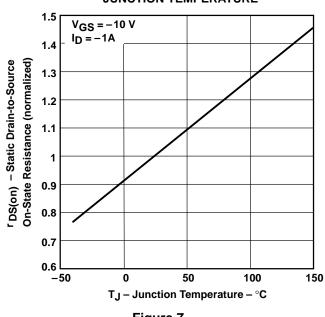

$$\ddagger C_{rss} = C_{gd}, C_{oss} = C_{ds} + \frac{C_{gs} C_{gd}}{C_{gs} + C_{gd}} \approx C_{ds} + C_{gd}$$

Figure 6

TYPICAL CHARACTERISTICS

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE (NORMALIZED)

JUNCTION TEMPERATURE

Figure 7

SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE

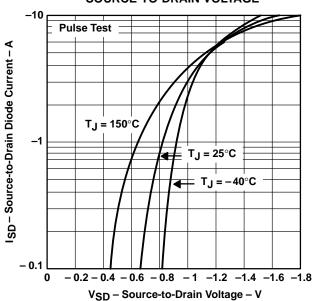


Figure 8

STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE

GATE-TO-SOURCE VOLTAGE



Figure 9

GATE-TO-SOURCE THRESHOLD VOLTAGE

vs

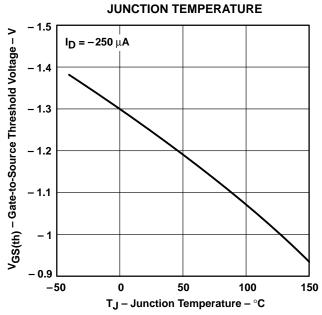


Figure 10

TYPICAL CHARACTERISTICS

GATE-TO-SOURCE VOLTAGE vs GATE CHARGE

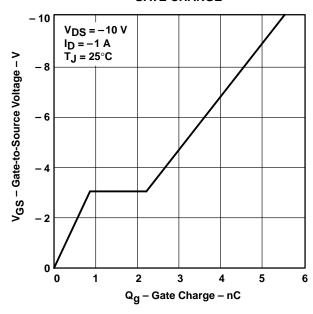
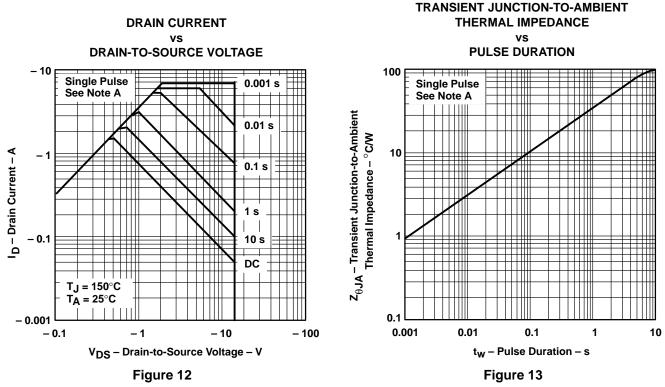



Figure 11

THERMAL INFORMATION

NOTE A. Values are for the D package and are FR4-board mounted only.

APPLICATION INFORMATION

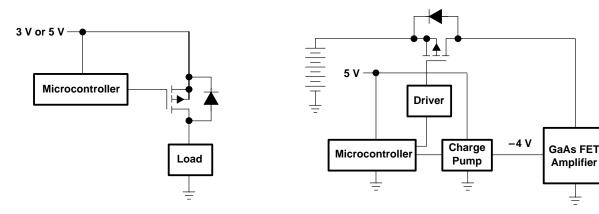


Figure 14. Notebook Load Management

Figure 15. Cellular Phone Output Drive

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated