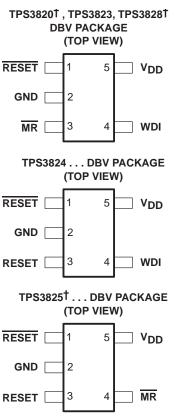

SLVS165B – APRIL 1998 – REVISED MAY 1999


- Power-On Reset Generator With Fixed Delay Time of 200 ms (TPS3823/4/5/8) or 25 ms (TPS3820)
- Manual Reset Input (TPS3820/3/5/8)
- Push/Pull Reset (TPS3820/3/4/5), Reset (TPS3824), or Open-Drain Outputs (TPS3828)
- Supply Voltage Supervision Range 2.5 V, 3 V, 3.3 V, 5 V
- Watchdog Timer (TPS3820/3/4/8)
- Supply Current of 15 µA (Typ)
- SOT23-5 Package
- Temperature Range . . . –40°C to 85°C

description

The TPS382x family of supervisors provides circuit initialization and timing supervision, primarily for DSP and processor-based systems.

During power-on, RESET is asserted when supply voltage V_{DD} becomes higher than 1.1 V. Thereafter, the supply voltage supervisor monitors V_{DD} and keeps RESET active as long as V_{DD} remains below the threshold voltage V_{IT}. An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time, t_d, starts after V_{DD} has risen above the threshold voltage V_{IT}. When the supply voltage drops below the threshold voltage V_{IT}. No external components are required. All the devices of this family have a fixed-sense threshold voltage V_{IT} set by an internal voltage divider.

[†] This device is in the Product Preview stage of development. Contact the local TI sales office for availability

- Applications Using DSPs, Microcontrollers, or Microprocessors
- Industrial Equipment
- Programmable Controls
- Automotive Systems
- Portable/Battery-Powered Equipment
- Intelligent Instruments
- Wireless Communications Systems
- Notebook/Desktop Computers

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

SLVS165B - APRIL 1998 - REVISED MAY 1999

description (continued)

The TPS3820/3/5/8 devices incorporate a manual reset input, \overline{MR} . A low level at \overline{MR} causes \overline{RESET} to become active. The TPS3824/5 devices include a high-level output RESET. TPS3820/3/4/8 have a watchdog timer that is periodically triggered by a positive or negative transition at WDI. When the supervising system fails to retrigger the watchdog circuit within the time-out interval, t_{tout}, \overline{RESET} becomes active for the time period t_d. This event also reinitializes the watchdog timer. Leaving WDI unconnected disables the watchdog.

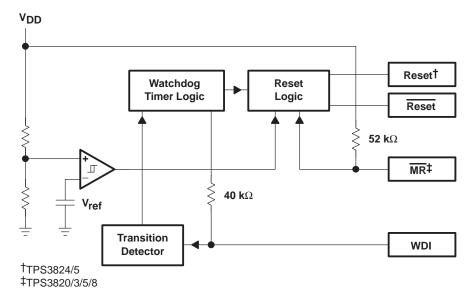
The product spectrum is designed for supply voltages of 2.5 V, 3 V, 3.3 V, and 5 V. The circuits are available in a 5-pin SOT23-5 package. The TPS382x devices are characterized for operation over a temperature range of -40°C to 85°C.

PACKAGE INFORMATION						
DEVICE NAME	THRESHOLD VOLTAGE	MARKING				
TPS3820-25DBVR [†]	2.25 V					
TPS3820-30DBVR [†]	2.63 V					
TPS3820-33DBVR [†]	2.93 V	PDEI				
TPS3820-50DBVR [†]	4.55 V	PDDI				
TPS3823-25DBVR	2.25 V	PAPI				
TPS3823-30DBVR	2.63 V	PAQI				
TPS3823-33DBVR	2.93 V	PARI				
TPS3823-50DBVR	4.55 V	PASI				
TPS3824-25DBVR	2.25 V	PATI				
TPS3824-30DBVR	2.63 V	PAUI				
TPS3824-33DBVR	2.93 V	PAVI				
TPS3824-50DBVR	4.55 V	PAWI				
TPS3825-25DBVR [†]	2.25 V					
TPS3825-30DBVR [†]	2.63 V					
TPS3825-33DBVR [†]	2.93 V	PDGI				
TPS3825-50DBVR [†]	4.55 V	PDFI				
TPS3828-25DBVR [†]	2.25 V					
TPS3828-30DBVR [†]	2.63 V					
TPS3828-33DBVR [†]	2.93 V	PDII				
TPS3828-50DBVR [†]	4.55 V	PDHI				

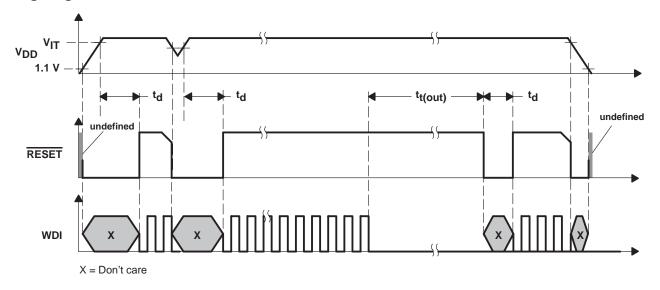
PACKAGE INFORMATION

[†] This device is in the Product Preview stage of development. Contact the local TI sales office for availability

SLVS165B - APRIL 1998 - REVISED MAY 1999


INPUTS		OUTPUTS			
MR‡	V _{DD} >V _{IT}	D>VIT RESET RESET [†]			
L	0	L	Н		
L	1	L	Н		
Н	0	L	Н		
Н	1	Н	L		

FUNCTION/TRUTH TABLE


† TPS3824/5

‡TPS3820/3/5/8

functional block diagram

timing diagram

SLVS165B - APRIL 1998 - REVISED MAY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note 1)	
Input voltage, MR, WDI (see Note 1)	
Maximum low output current, I _{OL}	5 mA
Maximum high output current, I _{OH}	–5 mA
Input clamp current range, I _{IK} (V _I < 0 or V _I > V _{DD})	±10 mA
Output clamp current range, I_{OK} ($V_O < 0$ or $V_O > V_{DD}$)	±10 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	40°C to 85°C
Storage temperature range, T _{stg}	65°C to 150°C
Soldering temperature	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

DISSIPATION RATING TABLEPACKAGE $T_A \le 25^{\circ}C$
POWER RATINGOPERATING FACTOR
ABOVE $T_A = 25^{\circ}C$ $T_A = 70^{\circ}C$
POWER RATING $T_A = 85^{\circ}C$
POWER RATINGDBV350 mW $3.5 \text{ mW/o^{\circ}C}$ 192 mW140 mW

recommended operating conditions

	MIN	MAX	UNIT
Supply voltage, V _{DD}	1.1	5.5	V
Input voltage, VI	0	V _{DD} + 0.3	V
High-level input voltage at $\overline{\text{MR}}$ and WDI, VIH	$0.7 \times V_{DD}$		V
Low-level input voltage, VIL		$0.3 \times V_{DD}$	V
Input transition rise and fall rate at $\overline{\text{MR}}$ or WDI, $\Delta t/\Delta V$		100	ns/V
Operating free-air temperature range, T _A	-40	85	°C

SLVS165B - APRIL 1998 - REVISED MAY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT	
			TPS382x-25	$V_{DD} = V_{IT-} + 0.2 V$ $I_{OH} = -20 \ \mu A$	0.8 × V _{DD}				
		RESET	TPS382x-30 TPS382x-33	$V_{DD} = V_{IT-} + 0.2 V$ $I_{OH} = -30 \mu A$			V		
			TPS382x-50	V _{DD} = V _{IT} + 0.2 V I _{OH} = -120 μA	V _{DD} – 1.5 V				
Vон	High-level output voltage		TPS3824-25 TPS3825-25	$V_{DD} \ge 1.8$ V, $I_{OH} = -100 \ \mu A$					
		DEOET	TPS3824-30 TPS3825-30					V	
		RESET	TPS3824-33 TPS3825-33	$V_{DD} \ge 1.8 \text{ V}, I_{OH} = -150 \mu\text{A}$	$0.8 \times V_{DD}$			V	
			TPS3824-50 TPS3825-50]					
			TPS3824-25 TPS3825-25	$V_{DD} = V_{IT-} + 0.2 V$ $I_{OL} = 1 mA$					
	RESET	DECET	TPS3824-30 TPS3825-30	V _{DD} = V _{IT} + 0.2 V				v	
		TPS3824-33 TPS3825-33	I _{OL} = 1.2 mA			0.4	v		
VOL	Low-level output voltage		TPS3824-50 TPS3825-50	$V_{DD} = V_{IT-} + 0.2 V$ $I_{OL} = 3 \text{ mA}$	1				
			TPS382x-25	$V_{DD} = V_{IT-} - 0.2 V$ $I_{OL} = 1 mA$					
		RESET	TPS382x-30	$V_{DD} = V_{IT-} -0.2 V$ $I_{OL} = 1.2 mA$	1		0.4	V	
		I KLOLI	TPS382x-33				0.4	v	
			TPS382x-50	$V_{DD} = V_{IT-} - 0.2 V$ $I_{OL} = 3 mA$					
	Power-up reset voltage (see	Note 2)		$V_{DD} \geq 1.1 \text{ V}, \text{ I}_{OL} = 20 \ \mu\text{A}$			0.4	V	
			TPS382x-25		2.21	2.25	2.30		
			TPS382x-30	T. 000 0500	2.59	2.63	2.69	v	
			TPS382x-33	$T_{A} = 0^{\circ}C - 85^{\circ}C$	2.88	2.93	3		
V. 	Negative-going input threshol	d	TPS382x-50		4.49	4.55	4.64		
VIT-	voltage (see Note 3)		TPS382x-25		2.20	2.25	2.30		
			TPS382x-30	T _A = −40°C − 85°C	2.57	2.63	2.69	V	
		TPS382x-33	A - +0 0 00 0	2.86	2.93	3	v		
			TPS382x-50		4.46	4.55	4.64		
			TPS382x-25						
VI	Hysteresis at V _{DD} input		TPS382x-30			30		mV	
Vhys			TPS382x-33						
			TPS382x-50			50			

NOTES: 2. The lowest supply voltage at which RESET becomes active. $t_{r, VDD} \ge 15 \,\mu s/V$

3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 µF) should be placed near the supply terminals.

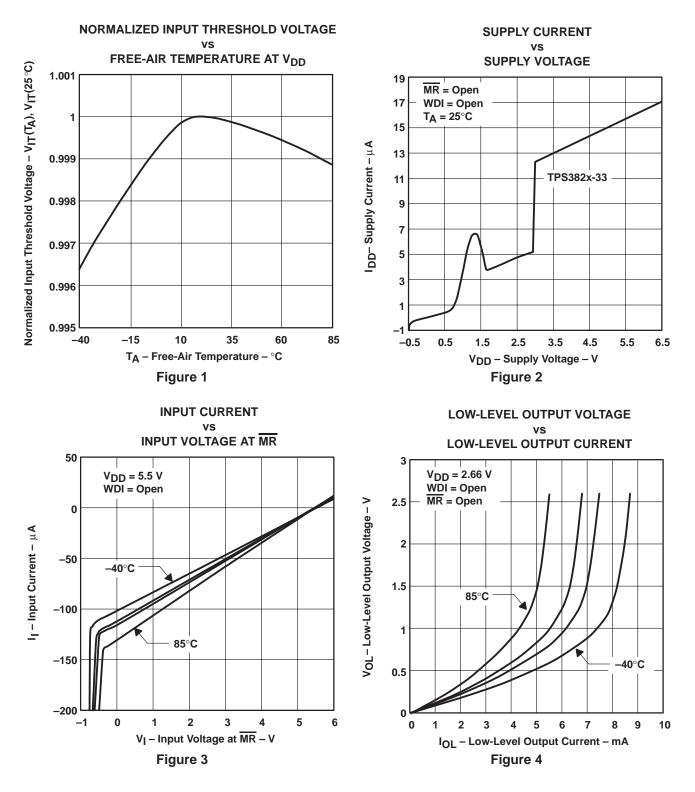
SLVS165B - APRIL 1998 - REVISED MAY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

	PARAMETER	2		TEST CONDITIONS	MIN TYP	MAX	UNIT	
IIH(AV)	Average high-level input curr	ent		WDI = V _{DD} , time average (dc = 88%)	120			
IIL(AV)	Average low-level input curre	nt	WDI	WDI = 0.3 V, V_{DD} = 5.5 V time average (dc = 12%)	-15			
			WDI	$WDI = V_{DD}$	140	190	μA	
ΙΗ	High-level input current		MR		-40	-60		
L.	Level level innut avment		WDI	WDI = 0.3 V, V _{DD} = 5.5 V	140	190		
۱L	Low-level input current		MR	MR = 0.3 V, V _{DD} = 5.5 V	-110			
			TPS382x-25					
1	Output short-circuit current	RESET	TPS382x-30	V _{DD} = V _{IT, max} + 0.2 V,		-400	۸	
los	(see Note 4)	RESET	TPS382x-33	$V_{O} = 0 V$			μA	
			TPS382x-50] [-800		
IDD	Supply current			WDI and MR unconnected, Outputs unconnected	15	25	μΑ	
	Internal pullup resistor at MR				52		kΩ	
Ci	Input capacitance at MR, WD			V _I = 0 V to 5.5 V	5		рF	

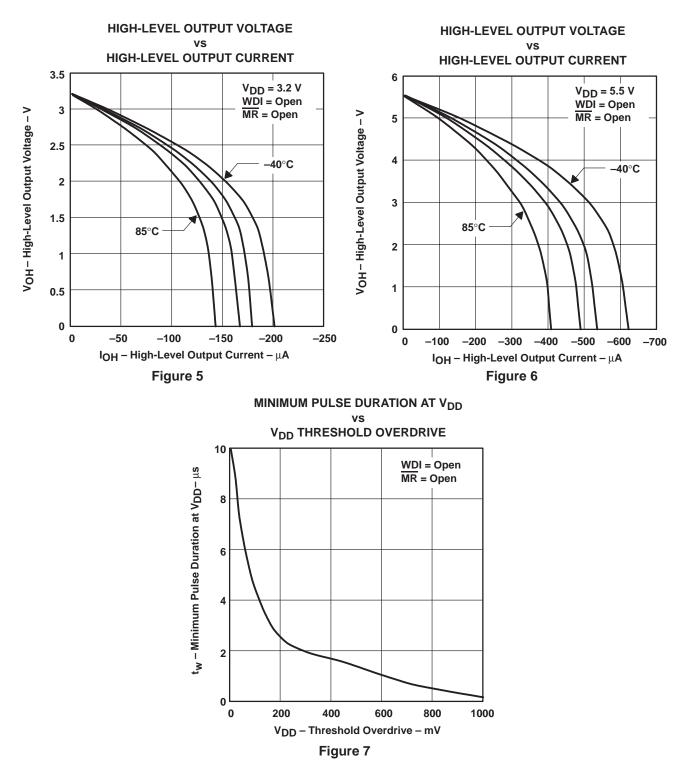
NOTE 4: The RESET short-circuit current is the maximum pullup current when RESET is driven low by a µP bidirectional reset pin.

timing requirements at RL = 1 MΩ, CL = 50 pF, TA = 25°C


	PARAMET	ER	TEST CONDITIONS	MIN	MAX	UNIT
		at V _{DD}	$V_{DD} = V_{IT-} + 0.2 \text{ V}, V_{DD} = V_{IT-} - 0.2 \text{ V}$	6		μs
tw	Pulse width	at MR	$V_{DD} \ge V_{IT-} + 0.2 \text{ V}, V_{IL} = 0.3 \text{ x } V_{DD}, V_{IH} = 0.7 \text{ x } V_{DD}$	1		μs
		at WDI	$V_{DD} \ge V_{IT-} + 0.2 \text{ V}, V_{IL} = 0.3 \text{ x } V_{DD}, V_{IH} = 0.7 \text{ x } V_{DD}$	100		ns

switching characteristics at RL = 1 MΩ, CL = 50 pF, TA = 25°C

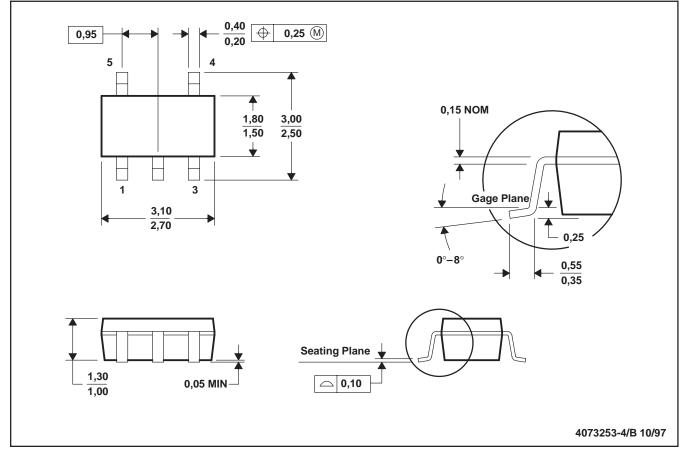
	PARAME	TER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
. .		TPS3820	$V_{DD} \ge V_{IT-} + 0.2 V,$	112	200	310	ms
^t tout	Watchdog time out	TPS3823/4/8	See Timing Diagram	0.9	1.6	2.5	S
÷.	Delay time	TPS3820	V _{DD} ≥V _{IT} _ +0.2 V,	15	25	37	ms
^t d	Delay line	TPS3823/4/5/8	See timing diagram	120	200	310 2.5	
Propagation (delay) time, ^t pHL high-to-low-level output	MR to RESET delay (TPS3820/3/5/8)	V _{DD} ≧V _{IT} _ +0.2 V, V _{IL} =0.3 x V _{DD} , V _{IH} =0.7 x V _{DD}			0.1	μs	
	V _{DD} to RESET delay	$V_{IL} = V_{IT} - 0.2 V,$			25		
		V _{DD} to RESET delay (TPS3824/5)				25	


SLVS165B - APRIL 1998 - REVISED MAY 1999

TYPICAL CHARACTERISTICS

SLVS165B - APRIL 1998 - REVISED MAY 1999

TYPICAL CHARACTERISTICS



SLVS165B - APRIL 1998 - REVISED MAY 1999

MECHANICAL DATA

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions include mold flash or protrusion.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated