



# DCP02 Series

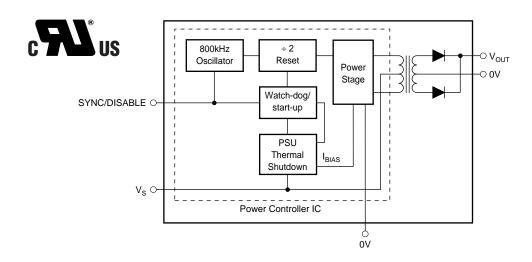
For most current data sheet and other product information, visit www.burr-brown.com

# Miniature, 2W Isolated UNREGULATED DC/DC CONVERTERS

# **FEATURES**

- UP TO 89% EFFICIENCY
- THERMAL PROTECTION
- DEVICE-TO-DEVICE SYNCHRONIZATION
- SO-28<sup>(1)</sup> POWER DENSITY OF 106W/in<sup>3</sup> (6.5W/cm<sup>3</sup>)
- EN55022 CLASS B EMC PERFORMANCE
- UL1950 RECOGNIZED
- JEDEC 14-PIN AND SO-28<sup>(1)</sup> PACKAGES

# **APPLICATIONS**


- POINT-OF-USE POWER CONVERSION
- GROUND LOOP ELIMINATION
- DATA ACQUISITION
- INDUSTRIAL CONTROL AND INSTRUMENTATION
- TEST EQUIPMENT

# DESCRIPTION

The DCP02 series is a family of 2W, unregulated, isolated DC/DC converters. Requiring a minimum of external components and including on-chip device protection, the DCP02 series provides extra features such as output disable and synchronization of switching frequencies.

The use of a highly integrated package design results in highly reliable products with power densities of 79W/in<sup>3</sup> (4.8W/cm<sup>3</sup>) for the 14-PDIP, and 106W/in<sup>3</sup> (6.5W/cm<sup>3</sup>) for the SO-28<sup>(1)</sup>. This combination of features and small size makes the DCP02 suitable for a wide range of applications.

NOTE: (1) SO-28 version available January, 2000.



International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111

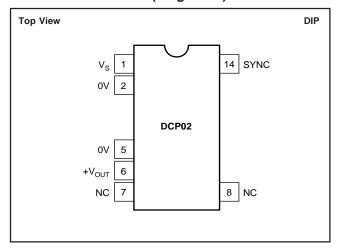
Twx: 910-952-1111 • Internet: http://www.burr-brown.com/ • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

# **SPECIFICATIONS**

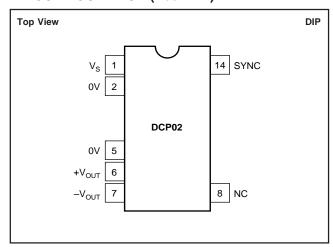
At  $T_A = +25$ °C, unless otherwise specified.

| PARAMETER                                | CONDITIONS                                | MIN | MIN TYP |     | UNITS                  |
|------------------------------------------|-------------------------------------------|-----|---------|-----|------------------------|
| OUTPUT                                   |                                           |     |         |     |                        |
| Power                                    | 100% Full Load                            |     | 2       |     | W                      |
| Ripple                                   | O/P Capacitor = 1μF, 50% Load             |     | 20      |     | mVp-p                  |
| INPUT                                    |                                           |     |         |     |                        |
| Voltage Range on $V_{\text{S}}$          |                                           | -10 |         | 10  | %                      |
| ISOLATION                                |                                           |     |         |     |                        |
| Voltage                                  | 1s Flash Test                             | 1   |         |     | kVrms                  |
|                                          | 60s Test, UL1950 <sup>(1)</sup>           | 1   |         |     | kVrms                  |
| LINE                                     |                                           |     |         |     |                        |
| Regulation                               |                                           |     | 1       |     | %/1% of V <sub>S</sub> |
| SWITCHING/SYNCHRONIZATION                |                                           |     |         |     |                        |
| Oscillator Frequency (f <sub>OSC</sub> ) | Switching Frequency = f <sub>OSC</sub> /2 |     | 800     |     | kHz                    |
| Sync Input Low                           |                                           | 0   |         | 0.4 | V                      |
| Sync Input Current                       | $V_{SYNC} = +2V$                          |     | 75      |     | μΑ                     |
| Disable Time                             |                                           |     | 2       |     | μs                     |
| Capacitance Loading on Sync Pin          | External                                  |     |         | 10  | pF                     |
| RELIABILITY                              |                                           |     |         |     |                        |
| Demonstrated                             | T <sub>A</sub> = +55°C                    | 75  |         |     | FITS                   |
| THERMAL SHUTDOWN                         |                                           |     |         |     |                        |
| IC Temperature at Shutdown               | 1                                         |     | 150     |     | °C                     |
| Shutdown Current                         |                                           |     | 3       |     | mA                     |
| TEMPERATURE RANGE                        |                                           |     |         |     |                        |
| Operating                                | 1                                         | -40 |         | +85 | °C                     |

|                               |      | INPUT  |      |        | OUTPU     |        |                | AD       | NO LOAD        |                | BARRIER                |
|-------------------------------|------|--------|------|--------|-----------|--------|----------------|----------|----------------|----------------|------------------------|
|                               | VC   | DLTAGE | (V)  | VO     | LTAGE     | (V)    | REGULATION (%) |          | CURRENT (mA)   | EFFICIENCY (%) | CAPACITANCE (pF)       |
|                               |      | ٧s     |      |        | $V_{NOM}$ |        |                |          | l <sub>Q</sub> |                | C <sub>ISO</sub>       |
|                               |      |        |      | 75     | 5% LOA    | D(2)   | 10% TO 1       | 00% LOAD | 0% LOAD        | 100% LOAD      | $V_{ISO} = 750V_{RMS}$ |
| PRODUCT                       | MIN  | TYP    | MAX  | MIN    | TYP       | MAX    | TYP            | MAX      | TYP            | TYP            | TYP                    |
| DCP020503P(3), U(3)           | 4.5  | 5      | 5.5  | 3.13   | 3.3       | 3.46   | 19             | 30       | 18             | 74             | 26                     |
| DCP020505P, U <sup>(4)</sup>  | 4.5  | 5      | 5.5  | 4.75   | 5         | 5.25   | 14             | 20       | 18             | 80             | 22                     |
| DCP020507P, U <sup>(4)</sup>  | 4.5  | 5      | 5.5  | 6.65   | 7         | 7.35   | 14             | 25       | 20             | 81             | 30                     |
| DCP020509P, U <sup>(4)</sup>  | 4.5  | 5      | 5.5  | 8.55   | 9         | 9.45   | 12             | 20       | 23             | 82             | 31                     |
| DCP020515DP, U <sup>(4)</sup> | 4.5  | 5      | 5.5  | ±14.25 | ±15       | ±15.75 | 11             | 20       | 27             | 85             | 24                     |
| DCP021205P, U <sup>(4)</sup>  | 10.8 | 12     | 13.2 | 4.75   | 5         | 5.25   | 7              | 15       | 14             | 83             | 33                     |
| DCP021212P                    | 10.8 | 12     | 13.2 | 11.4   | 12        | 12.6   | 7              | 20       | 15             | 87             | 47                     |
| DCP021212DP                   | 10.8 | 12     | 13.2 | ±11.4  | ±12       | ±12.6  | 6              | 20       | 16             | 88             | 35                     |
| DCP021515P                    | 13.5 | 15     | 16.5 | 14.25  | 15        | 15.75  | 6              | 20       | 15             | 88             | 42                     |
| DCP022405P                    | 21.6 | 24     | 26.4 | 4.85   | 5         | 5.35   | 6              | 10       | 13             | 81             | 33                     |
| DCP022405DP                   | 21.6 | 24     | 26.4 | ±4.75  | ±5        | ±5.25  | 6              | 15       | 12             | 80             | 22                     |
| DCP022415DP                   | 21.6 | 24     | 26.4 | ±14.25 | ±15       | ±15.75 | 6              | 20       | 16             | 79             | 44                     |


NOTES: (1) During UL1950 recognition tests only. (2) 100% Load Current = 2W/V<sub>NOM</sub> TYP. (3) DCP020503P and U models available January, 2000. (4) SO-28 version available January, 2000.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.



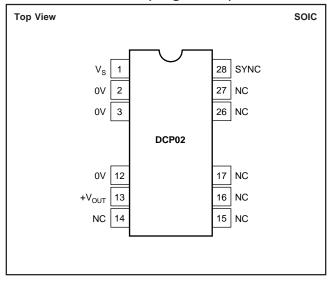

2

### PIN CONFIGURATION (Single-DIP)

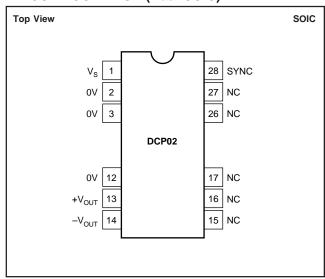


### **PIN CONFIGURATION (Dual-DIP)**




### PIN DEFINITION (Single-DIP)

| PIN#                       | PIN NAME                                                    | DESCRIPTION                                                                                 |
|----------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1<br>2<br>5<br>6<br>7<br>8 | V <sub>S</sub><br>0V<br>0V<br>+V <sub>OUT</sub><br>NC<br>NC | Voltage Input Input Side Common Output Side Common +Voltage Out Not Connected Not Connected |
| 14                         | SYNC                                                        | Synchronization Pin                                                                         |


# **PIN DEFINITION (Dual-DIP)**

| PIN # | PIN NAME          | DESCRIPTION         |  |  |  |
|-------|-------------------|---------------------|--|--|--|
| 1     | Vs                | Voltage Input       |  |  |  |
| 2     | 0V                | Input Side Common   |  |  |  |
| 5     | 0V                | Output Side Common  |  |  |  |
| 6     | +V <sub>OUT</sub> | +Voltage Out        |  |  |  |
| 7     | –V <sub>OUT</sub> | -Voltage Out        |  |  |  |
| 8     | NC                | Not Connected       |  |  |  |
| 14    | SYNC              | Synchronization Pin |  |  |  |
| 14    | SYNC              | Synchronization Pin |  |  |  |

# PIN CONFIGURATION (Single-SOIC)(1)



# PIN CONFIGURATION (Dual-SOIC)(1)



### PIN DEFINITION (Single-SOIC)(1)

| PIN# | PIN NAME          | DESCRIPTION         |  |  |  |
|------|-------------------|---------------------|--|--|--|
| 1    | Vs                | Voltage Input       |  |  |  |
| 2    | οΫ                | Input Side Common   |  |  |  |
| 3    | 0V                | Input Side Common   |  |  |  |
| 12   | 0V                | Output Side Common  |  |  |  |
| 13   | +V <sub>OUT</sub> | +Voltage Out        |  |  |  |
| 14   | NC NC             | Not Connected       |  |  |  |
| 15   | NC                | Not Connected       |  |  |  |
| 16   | NC                | Not Connected       |  |  |  |
| 17   | NC                | Not Connected       |  |  |  |
| 26   | NC                | Not Connected       |  |  |  |
| 27   | NC                | Not Connected       |  |  |  |
| 28   | SYNC              | Synchronization Pin |  |  |  |

# PIN DEFINITION (Dual-SOIC)(1)

| PIN# | PIN NAME          | DESCRIPTION         |
|------|-------------------|---------------------|
| 1    | V <sub>s</sub>    | Voltage Input       |
| 2    | 0V                | Input Side Common   |
| 3    | 0V                | Input Side Common   |
| 12   | 0V                | Output Side Common  |
| 13   | +V <sub>OUT</sub> | +Voltage Out        |
| 14   | -V <sub>OUT</sub> | -Voltage Out        |
| 15   | NC                | Not Connected       |
| 16   | NC                | Not Connected       |
| 17   | NC                | Not Connected       |
| 26   | NC                | Not Connected       |
| 27   | NC                | Not Connected       |
| 28   | SYNC              | Synchronization Pin |

### **ABSOLUTE MAXIMUM RATINGS**

| Input Voltage                     |       |
|-----------------------------------|-------|
| 5V Input Models                   | 7V    |
| 12V Input Models                  | 15V   |
| 15V Input Models                  | 18V   |
| 24V Input Models                  | 29V   |
| Storage Temperature               |       |
| Lead Temperature (soldering, 10s) | 270°C |

### ORDERING INFORMATION

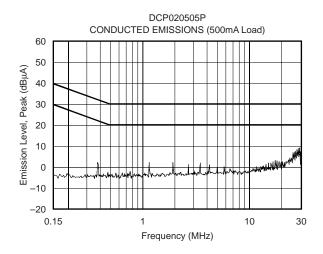
| Basic Model Number: 2W Product— Voltage Input:— 5V In Voltage Output:— 5V Out Dual Output:— | DCP02 | 05 | 05 (D) (_) |
|---------------------------------------------------------------------------------------------|-------|----|------------|
| Package Code:                                                                               |       |    |            |
| P = 14-Pin Plastic DIP<br>U = 28-Lead SOIC <sup>(1)</sup>                                   |       |    |            |

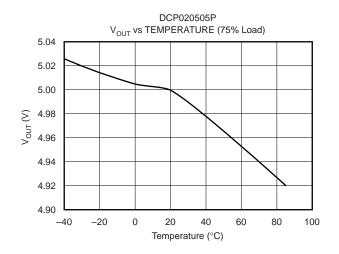
NOTE: (1) SO-28 version available 1Q00.

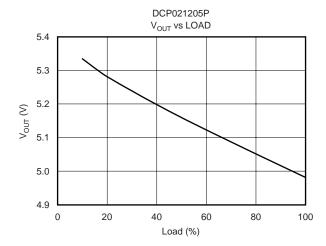
# ELECTROSTATIC DISCHARGE SENSITIVITY

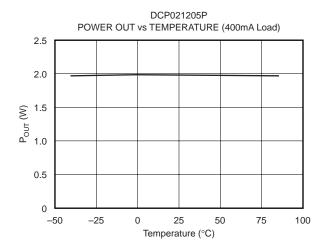
This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

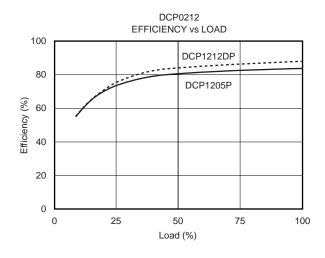
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

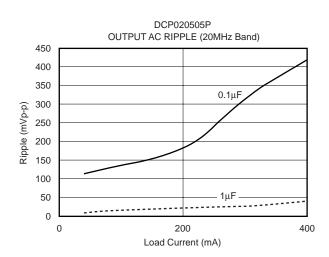

### PACKAGE/ORDERING INFORMATION


| PRODUCT                    | PACKAGE | PACKAGE<br>DRAWING<br>NUMBER | SPECIFIED<br>TEMPERATURE<br>RANGE | PACKAGE<br>MARKING | ORDERING<br>NUMBER <sup>(1)</sup> | TRANSPORT<br>MEDIA |
|----------------------------|---------|------------------------------|-----------------------------------|--------------------|-----------------------------------|--------------------|
| Single                     |         |                              |                                   |                    |                                   |                    |
| DCP020503P(2)              | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP020503P         | DCP020503P                        | Rails              |
| DCP020503U(2)              | SOIC-28 | 217-2                        | -40°C to +85°C                    | DCP020503U         | DCP020503U/1K                     | Tape and Reels     |
| DCP020505P                 | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP020505P         | DCP020505P                        | Rails              |
| DCP020505U <sup>(2)</sup>  | SOIC-28 | 217-2                        | -40°C to +85°C                    | DCP020505U         | DCP020505U/1K                     | Tape and Reels     |
| DCP020507P                 | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP020507P         | DCP020507P                        | Rails              |
| DCP020507U <sup>(2)</sup>  | SOIC-28 | 217-2                        | -40°C to +85°C                    | DCP020507U         | DCP020507U/1K                     | Tape and Reels     |
| DCP020509P                 | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP020509P         | DCP020509P                        | Rails              |
| DCP020509U(2)              | SOIC-28 | 217-2                        | -40°C to +85°C                    | DCP020509U         | DCP020509U/1K                     | Tape and Reels     |
| DCP021205P                 | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP021205P         | DCP021205P                        | Rails              |
| DCP021205U(2)              | SOIC-28 | 217-2                        | -40°C to +85°C                    | DCP021205U         | DCP021205U/1K                     | Tape and Reels     |
| DCP021212P                 | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP021212P         | DCP021212P                        | Rails              |
| DCP021515P                 | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP021515P         | DCP021515P                        | Rails              |
| DCP022405P                 | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP022405P         | DCP022405P                        | Rails              |
| Dual                       |         |                              |                                   |                    |                                   |                    |
| DCP020515DP                | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP020515DP        | DCP020515DP                       | Rails              |
| DCP020515DU <sup>(2)</sup> | SOIC-28 | 217-2                        | -40°C to +85°C                    | DCP020515DU        | DCP020515DU/1K                    | Tape and Reels     |
| DCP021212DP                | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP021212DP        | DCP021212DP                       | Rails              |
| DCP022405DP                | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP022405DP        | DCP022405DP                       | Rails              |
| DCP022415DP                | DIP-14  | 010-1                        | -40°C to +85°C                    | DCP022415DP        | DCP022415DP                       | Rails              |


NOTES: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /1K indicates 1000 devices per reel). Ordering 1000 pieces of "DCP020503U/1K" will get a single 1000-piece Tape and Reel. (2) Shaded models available January, 2000.


# **TYPICAL PERFORMANCE CURVES**


At  $T_A = +25^{\circ}C$ , unless otherwise noted.














# **FUNCTIONAL DESCRIPTION**

### **OVERVIEW**

The DCP02 offers up to 2W of unregulated output power from a 5V, 12V, 15V, or 24V input source with a typical efficiency of up to 89%. This is achieved through highly integrated packaging technology and the implementation of a custom power stage and control IC. The circuit design utilizes an advanced BiCMOS/DMOS process.

### **POWER STAGE**

This uses a push-pull, center-tapped topology switching at 400kHz (divide by 2 from 800kHz oscillator).

### **OSCILLATOR AND WATCHDOG**

The onboard 800kHz oscillator generates the switching frequency via a divide by 2 circuit. The oscillator can be synchronized to other DCP02 circuits or an external source, and is used to minimize system noise.

A watchdog circuit checks the operation of the oscillator circuit. The oscillator can be stopped by pulling the SYNC pin LOW. The output pins will be tri-stated. This will occur in  $2\mu$ s.

### THERMAL SHUTDOWN

The DCP02 is protected by a thermal shutdown circuit. If the on-chip temperature exceeds 150°C, the device will shut down. Once the temperature falls below 150°C, normal operation will resume.

### **SYNCHRONIZATION**

In the event that more than one DC/DC converter is needed onboard, beat frequencies and other electrical interference can be generated. This is due to the variation in switching frequencies between the DC/DC converters.

The DCP02 overcomes this by allowing devices to be synchronized to one another. Up to eight devices can be synchronized by connecting the SYNC pins together, taking care to minimize the capacitance of tracking. Significant stray capacitance (> 10pF) will have the effect of reducing the switching frequency, or even stopping the oscillator circuit. It is also recommended that power and ground lines are star connected.

If synchronized devices are used, it should be noted that, at start up, all devices will draw maximum current simultaneously. This can cause the input voltage to dip and should it dip below the minimum input voltage (4.5V), the devices may not start up. A  $2.2\mu F$  capacitor should be connected close to the input pins.

If more than eight devices are to be synchronized, it is recommended that the SYNC pins are driven by an external device. Details are contained in a separate applications bulletin (AB-153).

### CONSTRUCTION

The DCP02's basic construction is the same as standard ICs. There is no substrate within the molded package. The DCP02 is constructed using an IC, rectifier diodes, and a wound magnetic toroid on a leadframe. As there is no solder within the package, the DCP02 does not require any special PCB assembly processing. This results in an isolated DC/DC converter with inherently high reliability.

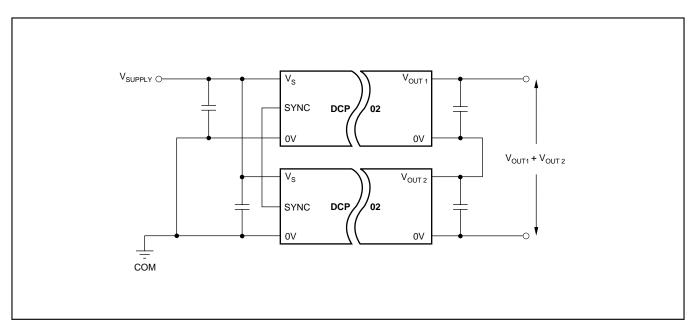



FIGURE 1. Connecting the DCP02 in Series.



# **ADDITIONAL FUNCTIONS**

### **DISABLE/ENABLE**

The DCP02 can be disabled or enabled by driving the SYNC pin using an open drain CMOS gate. If the SYNC pin is pulled low, the DCP02 will be disabled. The disable time depends upon the external loading; the internal disable function is implemented in 2µs. Removal of the pull down will cause the DCP02 to be enabled.

Capacitive loading on the SYNC pin should be minimized in order to prevent a reduction in the oscillator frequency.

### **DECOUPLING**

### **Ripple Reduction**

The high switching frequency of 400kHz allows simple filtering. To reduce ripple, it is recommended that a  $1\mu F$  capacitor is used on  $V_{OUT}.$  Dual outputs should both be decoupled to pin 5. A 2.2 $\mu F$  capacitor on the input is recommended.

### Connecting the DCP02 in Series

Multiple DCP02 isolated 2W DC/DC converters can be connected in series to provide nonstandard voltage rails. This is possible by utilizing the floating outputs provided by the DCP02's galvanic isolation.

Connect the positive  $V_{OUT}$  from one DCP02 to the negative  $V_{OUT}$  (0V) of another (see Figure 1). If the SYNC pins are tied together, the self-synchronization feature of the DCP02 will prevent beat frequencies on the voltage rails. The SYNC feature of the DCP02 allows easy series connection without external filtering, minimizing cost.

The outputs on dual output DCP02 versions can also be connected in series to provide two times the magnitude of  $V_{OUT}$  as shown in Figure 2. For example, a dual 15V DCP022415D could be connected to provide a 30V rail.

### Connecting the DCP02 in Parallel

If the output power from one DCP02 is not sufficient, it is possible to parallel the outputs of multiple DCP02s, as shown in Figure 3. Again, the SYNC feature allows easy synchronization to prevent power-rail beat frequencies at no additional filtering cost.

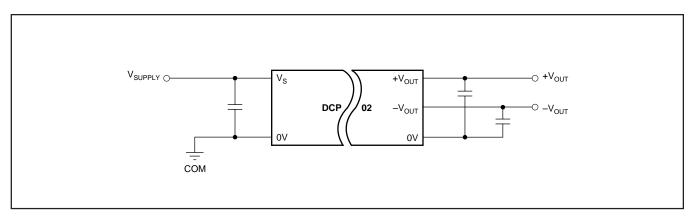



FIGURE 2. Connecting Dual Outputs in Series.

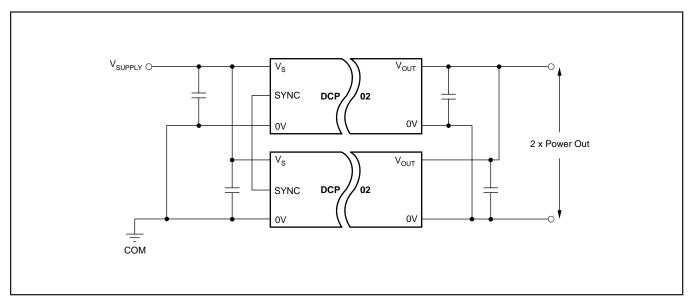



FIGURE 3. Connecting Multiple DCP02s in Parallel.

### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated