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FEATURES
� Unity Gain Stability

� Wide Bandwidth: 1 GHz

� High Slew Rate: 970 V/ µs

� Low Distortion
−  −90 dBc THD at 30 MHz

� High Output Drive, I O = 200 mA

� Excellent Video Performance
−  130 MHz Bandwidth (0.1 dB, G = 2)
−  0.007% Differential Gain
−  0.003° Differential Phase

� Supply Voltages
−  +5 V, ±5 V, +12 V, +15 V

� Power Down Functionality (THS4215)

� Evaluation Module Available

DESCRIPTION

The THS4211 and THS4215 are high slew rate, unity gain
stable voltage feedback amplifiers designed to run from
supply voltages as low as 5 V and as high as 15 V. The
THS4215 offers the same performance as the THS4211
with the addition of power-down capability. The
combination of high slew rate, wide bandwidth, low
distortion, and unity gain stability make the THS4211 and
THS4215 high performance devices across multiple ac
specifications.

APPLICATIONS
� High Linearity ADC Preamplifier

� Differential to Single-Ended Conversion

� DAC Output Buffer

� Active Filtering

� Video Applications 
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Designers using the THS4211 are rewarded with higher
dynamic range over a wider frequency band without the
stability concerns of decompensated amplifiers. The
devices are available in SOIC, MSOP with PowerPAD,
and leadless MSOP with PowerPAD packages.

RELATED DEVICES

DEVICE DESCRIPTION

THS4271 1.4 GHz voltage feedback amplifier

THS4503 Wideband fully differential amplifier

THS3202 Dual, wideband current feedback amplifier

_
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ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range unless otherwise noted(1)

UNIT

Supply voltage, VS 16.5 V

Input voltage, VI ±VS

Output current, IO (2) 100 mA

Continuous power dissipation              See Dissipation Rating Table

Maximum junction temperature, TJ (3) 150°C

Maximum junction temperature, continuous
operation, long term reliability TJ (4) 125°C

Operating free-air temperature range, TA −40°C to 85°C

Storage temperature range, Tstg −65°C to 150°C

Lead temperature
   1,6 mm (1/16 inch) from case for 10 seconds

300°C

HBM 4000 V

ESD ratings: CDM 1500 VESD ratings:

MM 200 V
(1) Stresses above these ratings may cause permanent damage.

Exposure to absolute maximum conditions for extended periods
may degrade device reliability. These are stress ratings only, and
functional operation of the device at these or any other conditions
beyond those specified is not implied.

(2) The THS4211/5 may incorporate a PowerPAD on the underside
of the chip. This acts as a heat sink and must be connected to a
thermally dissipative plane for proper power dissipation. Failure
to do so may result in exceeding the maximum junction
temperature  which could permanently damage the device. See TI
technical briefs SLMA002 and SLMA004 for more information
about utilizing the PowerPAD thermally enhanced package.

(3) The absolute maximum temperature under any condition is
limited by the constraints of the silicon process.

(4) The maximum junction temperature for continuous operation is
limited by package constraints. Operation above this temperature
may result in reduced reliability and/or lifetime of the device.

This integrated circuit can be damaged by ESD. Texas
Instruments recommends that all integrated circuits be
handled with appropriate precautions. Failure to observe

proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to
complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could
cause the device not to meet its published specifications.

PACKAGE DISSIPATION RATINGS

PACKAGE
θJC θJA (1) POWER RATING(2)

PACKAGE
θJC

(°C/W)
θJA (1)

(°C/W) TA ≤ 25°C TA = 85°C

D (8 pin) 38.3 97.5 1.02 W 410 mW

DGN (8 pin) 4.7 58.4 1.71 W 685 mW

DGK (8 pin) 54.2 260 385 mW 154 mW

DRB (8 pin) 5 45.8 2.18 W 873 mW
(1) This data was taken using the JEDEC standard High-K test PCB.
(2) Power rating is determined with a junction temperature of 125°C.

This is the point where distortion starts to substantially increase.
Thermal management of the final PCB should strive to keep the
junction temperature at or below 125°C for best performance and
long term reliability.

RECOMMENDED OPERATING CONDITIONS
MIN MAX UNIT

Supply voltage, Dual supply ±2.5 ±7.5
V

Supply voltage,
(VS+ and VS−) Single supply 5 15

V

Input common-mode voltage
range

VS− + 1.2 VS+ − 1.2 V

PACKAGING/ORDERING INFORMATION

ORDERABLE PACKAGE AND NUMBER

TEMPERATURE PLASTIC
SMALL OUTLINE

LEADLESS MSOP 8 (2) PLASTIC MSOP (1)

PowerPAD
PLASTIC MSOP (1)

TEMPERATURE
SMALL OUTLINE

(D) (1) (DRB)
PACKAGE
MARKING

(DGN)
PACKAGE
MARKING

(DGK)
PACKAGE
MARKING

−40°C to 85°C
THS4211D THS4211DRB BET THS4211DGN BFN THS4211DGK BEJ

−40°C to 85°C
THS4215D THS4215DRB BEU THS4215DGN BFQ THS4215DGK BEZ

(1) All packages are available taped and reeled. The R suffix standard quantity is 2500 (e.g., THS4211DGNR).

(2) All packages are available taped and reeled. The R suffix standard quantity is 3000. The T suffix standard quantity is 250 (e.g., THS4211DBVT).

PIN ASSIGNMENTS
(TOP VIEW) D, DRB, DGK, DGN(TOP VIEW) D, DRB, DGK, DGN
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ELECTRICAL CHARACTERISTICS V S = ±5 V  
RF = 392 Ω, RL = 499 Ω, G = +1, unless otherwise noted.

TYP OVER TEMPERATURE MIN/
PARAMETER TEST CONDITIONS

25°C 25°C
0°C TO
70°C

−40°C
TO 85°C UNITS

MIN/
TYP/
MAX

AC PERFORMANCE

G = 1,     POUT = −7 dBm 1 GHz Typ

G = −1,   POUT = −16 dBm 325 MHz Typ

Small signal  bandwidth G = 2,     POUT = −16 dBm 325 MHz TypSmall signal  bandwidth
G = 5,     POUT = −16 dBm 70 MHz Typ

G = 10,   POUT = −16 dBm 35 MHz Typ

0.1 dB flat bandwidth G = 1,     POUT = −7 dBm 70 MHz Typ

Gain bandwidth product G > 10 ,  f = 1 MHz 350 MHz Typ

Full-power  bandwidth G = −1,   VO = 2 Vp 77 MHz Typ

Slew rate
G = 1,     VO = 2 V Step 970 V/µs Typ

Slew rate
G = −1,   VO = 2 V Step 850 V/µs Typ

Settling time to 0.1% G = −1,   VO = 4 V Step 22 ns Typ

Settling time to 0.01% G = −1,   VO = 4 V Step 55 ns Typ

Harmonic distortion G = 1,    VO = 1 VPP,   f = 30 MHz

Second harmonic distortion
RL = 150 Ω −78 dBc Typ

Second harmonic distortion
RL = 499 Ω −90 dBc Typ

Third harmonic distortion
RL = 150 Ω −100 dBc Typ

Third harmonic distortion
RL = 499 Ω −100 dBc Typ

Harmonic distortion G = 2,    VO = 2 VPP,   f = 30 MHz

Second harmonic distortion
RL = 150 Ω −68 dBc Typ

Second harmonic distortion
RL = 499 Ω −70 dBc Typ

Third harmonic distortion
RL = 150 Ω −80 dBc Typ

Third harmonic distortion
RL = 499 Ω −82 dBc Typ

Third order intermodulation (IMD3)
G = 2,    VO = 2 VPP,   RL = 150 Ω,
f = 70 MHz

−53 dBc Typ

Third order output intercept (OIP3)
G = 2,    VO = 2 VPP,   RL = 150 Ω,
f = 70 MHz

32 dBm Typ

Differential gain (NTSC, PAL) G = 2,    RL = 150 Ω 0.007 % Typ

Differential phase (NTSC, PAL) G = 2,    RL = 150 Ω 0.003 � Typ

Input voltage noise f = 1 MHz 7 nV/√Hz Typ

Input current noise f = 1 MHz 4 pA√Hz Typ

DC PERFORMANCE

Open-loop voltage gain (AOL) VO = ±0.3 V,     RL = 499 Ω 70 65 62 60 dB Min

Input offset voltage VCM = 0 V 3 12 14 14 mV Max

     Average offset voltage drift VCM = 0 V ±40 ±40 µV/°C Typ

Input bias current VCM = 0 V 7 15 18 20 µA Max

     Average bias current drift VCM = 0 V ±10 ±10 nA/°C Typ

Input offset current VCM = 0 V 0.3 6 7 8 µA Max

     Average offset current drift VCM = 0 V ±10 ±10 nA/°C Typ
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ELECTRICAL CHARACTERISTICS V S = ±5 V (continued)
RF = 392 Ω, RL = 499 Ω, G = +1, unless otherwise noted.

TYP OVER TEMPERATURE MIN/
PARAMETER TEST CONDITIONS

25°C 25°C
0°C to
70°C

−40°C to
85°C UNITS

MIN/
TYP/
MAX

INPUT CHARACTERISTICS

Common-mode  input range ±4 ±3.8 ±3.7 ±3.6 V Min

Common-mode  rejection ratio VCM = ± 1 V 56 52 50 48 dB Min

Input  resistance Common-mode 4 MΩ Typ

Input  capacitance Common-mode / differential 0.3 / 0.2 pF Typ

OUTPUT CHARACTERISTICS

Output voltage swing ±4.0 ±3.8 ±3.7 ±3.6 V Min

Output current (sourcing) RL = 10 Ω 220 200 190 180 mA Min

Output current (sinking) RL = 10 Ω 170 140 130 120 mA Min

Output  impedance f = 1 MHz 0.3 Ω Typ

POWER SUPPLY

Specified operating voltage ±5 ±7.5 ±7.5 ±7.5 V Max

Maximum quiescent current 19 22 23 24 mA Max

Minimum quiescent current 19 16 15 14 mA Min

Power supply rejection (+PSRR) VS+ = 5.5 V to 4.5 V, VS− = 5 V 64 58 54 54 dB Min

Power supply rejection (−PSRR) VS+ = 5 V, VS− = −5.5 V to −4.5 V 65 60 56 56 dB Min

POWER-DOWN CHARACTERISTICS (THS4215 ONLY)

REF = 0 V, Enable REF+1.8 V Min

Power-down voltage level

REF = 0 V,
or VS− Power-down REF+1 V Max

Power-down voltage level
REF = VS+ or Enable REF−1 V MinREF = VS+ or
Floating Power-down REF−1.5 V Max

Power-down quiescent current
PD = Ref +1.0 V,   Ref = 0 V 650 850 900 1000 µA Max

Power-down quiescent current
PD = Ref −1.5 V,   Ref = 5 V 450 650 800 900 µA Max

Turnon time delay(t(ON)) 50% of final supply current value 4 µs Typ

Turnoff time delay (t(Off)) 50% of final supply current value 3 µs Typ

Input  impedance 4 GΩ Typ

Output  impedance f = 1 MHz 250 kΩ Typ
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ELECTRICAL CHARACTERISTICS V S = 5 V  
RF = 392 Ω, RL = 499 Ω, G = +1, unless otherwise noted

TYP OVER TEMPERATURE MIN/
PARAMETER TEST CONDITIONS

25°C 25°C
0°C to
70°C

−40°C to
85°C UNITS

MIN/
TYP/
MAX

AC PERFORMANCE

G = 1,    POUT = −7 dBm 980 MHz Typ

G = −1,  POUT = −16 dBm 300 MHz Typ

Small signal  bandwidth G = 2,    POUT = −16 dBm 300 MHz TypSmall signal  bandwidth
G = 5,    POUT = −16 dBm 65 MHz Typ

G = 10,  POUT = −16 dBm 30 MHz Typ

0.1 dB flat bandwidth G = 1,    POUT = −7 dBm 90 MHz Typ

Gain bandwidth product G > 10,  f = 1 MHz 300 MHz Typ

Full-power  bandwidth G = −1,  VO = 2 Vp 64 MHz Typ

Slew rate
G = 1,    VO = 2 V Step 800 V/µs Typ

Slew rate
G = −1,  VO = 2 V Step 750 V/µs Typ

Settling time to 0.1% G = −1,  VO = 2 V Step 22 ns Typ

Settling time to 0.01% G = −1,  VO = 2 V Step 84 ns Typ

Harmonic distortion G = 1,    VO = 1 VPP,   f = 30 MHz

Second harmonic distortion
RL = 150 Ω −60 dBc Typ

Second harmonic distortion
RL = 499 Ω −60 dBc Typ

Third harmonic distortion
RL = 150 Ω −68 dBc Typ

Third harmonic distortion
RL = 499 Ω −68 dBc Typ

Third order intermodulation (IMD3)
G = 1,  VO = 1 VPP  , RL = 150 Ω,
f = 70 MHz

−70 dBc Typ

Third order output intercept (OIP3)
G = 1,   VO = 1 VPP,   RL = 150 Ω,
f = 70 MHz

34 dBm Typ

Input-voltage noise f = 1 MHz 7 nV/√Hz Typ

Input-current noise f = 10 MHz 4 pA/√Hz Typ

DC PERFORMANCE

Open-loop voltage gain (AOL) VO = ± 0.3 V,    RL = 499 Ω 68 63 60 60 dB Min

Input offset voltage VCM = VS/2 3 12 14 14 mV Max

     Average offset voltage drift VCM = VS/2 ±40 ±40 µV/°C Typ

Input bias current VCM = VS/2 7 15 17 18 µA Max

     Average bias current drift VCM = VS/2 ±10 ±10 nA/°C Typ

Input offset current VCM = VS/2 0.3 6 7 8 µA Max

     Average offset current drift VCM = VS/2 ±10 ±10 nA/°C Typ

INPUT CHARACTERISTICS

Common-mode  input range 1 / 4 1.2 / 3.8 1.3 / 3.7 1.4 / 3.6 V Min

Common-mode  rejection ratio VCM = ± 0.5 V,    VO = 2.5 V 54 50 48 45 dB Min

Input  resistance Common-mode 4 MΩ Typ

Input capacitance Common-mode / differential 0.3 / 0.2 pF Typ

OUTPUT CHARACTERISTICS

Output voltage swing 1 / 4 1.2 / 3.8 1.3 / 3.7 1.4 / 3.6 V Min

Output current (sourcing) RL = 10 Ω 230 210 190 180 mA Min

Output current (sinking) RL = 10 Ω 150 120 100 90 mA Min

Output  impedance f = 1 MHz 0.3 Ω Typ
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ELECTRICAL CHARACTERISTICS V S = 5 V (continued)
RF = 392 Ω, RL = 499 Ω, G = +1, unless otherwise noted

TYP OVER TEMPERATURE MIN/
PARAMETER TEST CONDITIONS

25°C 25°C
0°C to
70°C

−40°C to
85°C UNITS

MIN/
TYP/
MAX

POWER SUPPLY

Specified operating voltage 5 15 15 15 V Max

Maximum quiescent current 19 22 23 24 mA Max

Minimum quiescent current 19 16 15 14 mA Min

Power supply rejection (+PSRR) VS+ = 5.5 V to 4.5 V,   VS− = 0 V 63 58 54 54 dB Min

Power supply rejection (−PSRR) VS+ = 5 V,   VS− = −0.5 V to 0.5 V 65 60 56 56 dB Min

POWER-DOWN CHARACTERISTICS (THS4215 ONLY)

REF = 0 V,   or VS−
Enable REF+1.8 V Min

Power-down voltage level

REF = 0 V,   or VS− Power down REF+1 V Max
Power-down voltage level

REF = VS+ or floating
Enable REF−1 V Min

REF = VS+ or floating
Power down REF−1.5 V Max

Power-down quiescent current PD = Ref +1.0 V,       Ref = 0 V 450 650 750 850 µA Max

Power-down quiescent current PD = Ref −1.5 V,       Ref = 5 V 400 650 750 850 µA Max

Turnon-time delay(t(ON)) 50% of final value 4 µs Typ

Turnoff-time delay (t(Off)) 50% of final value 3 µns Typ

Input  impedance 6 GΩ Typ

Output  impedance f = 1 MHz 75 kΩ Typ
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TYPICAL CHARACTERISTICS

Table of Graphs ( ±5 V)
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Turnon and turnoff delay times 38
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TYPICAL CHARACTERISTICS
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TYPICAL CHARACTERISTICS ( ±5 V GRAPHS)
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Figure 10
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Figure 19
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Figure 28
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Figure 37
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TYPICAL CHARACTERISTICS (5 V GRAPHS)

Figure 39
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Figure 48
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Figure 57
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Figure 66
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APPLICATION INFORMATION

HIGH-SPEED OPERATIONAL AMPLIFIERS

The THS4211 and the THS4215 operational amplifiers set
new performance levels, combining low distortion, high
slew rates, low noise, and a unity-gain bandwidth in
excess of 1 GHz. To achieve the full performance of the
amplifier, careful attention must be paid to printed-circuit
board layout and component selection.

The THS4215 provides a power-down mode, providing the
ability to save power when the amplifier is inactive. A
reference pin is provided to allow the user the flexibility to
control the threshold levels of the power-down control pin.

Applications Section Contents

� Wideband, Noninverting Operation
� Wideband, Inverting Gain Operation
� Single Supply Operation
� Saving Power With Power-Down Functionality and

Setting Threshold Levels With the Reference Pin
� Power Supply Decoupling Techniques and

Recommendations
� Using the THS4211 as a DAC Output Buffer
� Driving an ADC With the THS4211
� Active Filtering With the THS4211
� Building a Low-Noise Receiver With the THS4211
� Linearity: Definitions, Terminology, Circuit

Techniques and Design Tradeoffs
� An Abbreviated Analysis of Noise in Amplifiers
� Driving Capacitive Loads
� Printed-Circuit Board Layout Techniques for Optimal

Performance
� Power Dissipation and Thermal Considerations
� Performance vs Package Options
� Evaluation Fixtures, Spice Models, and Applications

Support
� Additional Reference Material
� Mechanical Package Drawings

WIDEBAND, NONINVERTING OPERATION

The THS4211 and the THS4215 are unity gain stable
1-GHz voltage feedback operational amplifiers, with and
without power-down capability, designed to operate from
a single 5-V to 15-V power supply.

Figure 75 is the noninverting gain configuration of 2 V/V
used to demonstrate the typical performance curves. Most
of the curves were characterized using signal sources with

50-Ω source impedance, and with measurement
equipment presenting a 50-Ω load impedance. In
Figure 75, the 49.9-Ω shunt resistor at the VIN terminal
matches the source impedance of the test generator. The
total 499-Ω load at the output, combined with the 784-Ω
total feedback network load, presents the THS4211 and
THS4215 with an effective output load of 305 Ω for the
circuit of Figure 75.

Voltage feedback amplifiers, unlike current feedback
designs, can use a wide range of resistors values to set
their gain with minimal impact on their stability and
frequency response. Larger-valued resistors decrease the
loading effect of the feedback network on the output of the
amplifier, but this enhancement comes at the expense of
additional noise and potentially lower bandwidth.
Feedback resistor values between 392 Ω and 1 kΩ are
recommended for most situations.

_

+

THS4211

Rf

392 Ω

49.9 Ω

100 pF

0.1 µF 6.8 µF

−VS−5 V

Rg

50 Ω Source

+

VI

100 pF 0.1 µF 6.8 µF

+

+VS5 V

VO

499 Ω

392 Ω

Figure 75. Wideband, Noninverting Gain
Configuration

WIDEBAND, INVERTING GAIN OPERATION

Since the THS4211 and THS4215 are general-purpose,
wideband voltage-feedback amplifiers, several familiar
operational amplifier applications circuits are available to
the designer. Figure 76 shows a typical inverting
configuration where the input and output impedances and
noise gain from Figure 75 are retained in an inverting
circuit configuration. Inverting operation is one of the more
common requirements and offers several performance
benefits. The inverting configuration shows improved slew
rates and distortion due to the pseudo-static voltage
maintained on the inverting input.
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+
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5 V
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57.6 Ω
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Figure 76. Wideband, Inverting Gain
Configuration

In the inverting configuration, some key design
considerations must be noted. One is that the gain resistor
(Rg) becomes part of the signal channel input impedance.
If the input impedance matching is desired (which is
beneficial whenever the signal is coupled through a cable,
twisted pair, long PC board trace, or other transmission
line conductors), Rg may be set equal to the required
termination value and Rf adjusted to give the desired gain.
However, care must be taken when dealing with low
inverting gains, as the resultant feedback resistor value
can present a significant load to the amplifier output. For
an inverting gain of 2, setting Rg to 49.9 Ω for input
matching eliminates the need for RM but requires a 100-Ω
feedback resistor. This has an advantage of the noise gain
becoming equal to 2 for a 50-Ω source impedance—the
same as the noninverting circuit in Figure 75. However, the
amplifier output now sees the 100-Ω feedback resistor in
parallel with the external load. To eliminate this excessive
loading, it is preferable to increase both Rg and Rf, values,
as shown in Figure 76, and then achieve the input
matching impedance with a third resistor (RM) to ground.
The total input impedance becomes the parallel
combination of Rg and RM.

The next major consideration is that the signal source
impedance becomes part of the noise gain equation and
hence influences the bandwidth. For example, the RM
value combines in parallel with the external 50-Ω source
impedance (at high frequencies), yielding an effective
source impedance of 50 Ω || 57.6 Ω = 26.8 Ω. This
impedance is then added in series with Rg for calculating
the noise gain. The result is 1.9 for Figure 76, as opposed
to the 1.8 if RM is eliminated. The bandwidth is lower for the
gain of –2 circuit, Figure 76, (NG=+1.9) than for the gain
of +2 circuit in Figure 75.

The last major consideration in inverting amplifier design
is setting the bias current cancellation resistor on the
noninverting input. If the resistance is set equal to the total
dc resistance looking out of the inverting terminal, the
output dc error, due to the input bias currents, is reduced
to (input offset current) multiplied by Rf in Figure 76, the dc
source impedance looking out of the inverting terminal is
392 Ω || (392 Ω + 26.8 Ω) = 200 Ω. To reduce the additional
high-frequency noise introduced by the resistor at the
noninverting input, and power-supply feedback, RT is
bypassed with a capacitor to ground.

SINGLE SUPPLY OPERATION

The THS4211 is designed to operate from a single 5-V to
15-V power supply. When operating from a single power
supply, care must be taken to ensure the input signal and
amplifier are biased appropriately to allow for the
maximum output voltage swing. The circuits shown in
Figure 77 demonstrate methods to configure an amplifier
in a manner conducive for single supply operation.

_
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50 Ω Source
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VO
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392 ΩRg
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2
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+
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VO

Rf

392 Ω

+VS
2

57.6 Ω

Rg

499 Ω

RT

499 Ω
RT

+VS
2

Figure 77. DC-Coupled Single Supply Operation

Saving Power With Power-Down Functionality
and Setting Threshold Levels With the Reference
Pin

The THS4215 features a power-down pin (PD) which
lowers the quiescent current from 19-mA down to 650-µA,
ideal for reducing system power.

The power-down pin of the amplifiers defaults to the
positive supply voltage in the absence of an applied
voltage, putting the amplifier in the power-on mode of
operation. To turn off the amplifier in an effort to conserve
power, the power-down pin can be driven towards the
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negative rail. The threshold voltages for power-on and
power-down are relative to the supply rails and given in the
specification tables. Above the Enable Threshold Voltage,
the device is on. Below the Disable Threshold Voltage, the
device is off. Behavior in between these threshold voltages
is not specified.

Note that this power-down functionality is just that; the
amplifier consumes less power in power-down mode. The
power-down mode is not intended to provide a high-
impedance output. In other words, the power-down
functionality is not intended to allow use as a 3-state bus
driver. When in power-down mode, the impedance looking
back into the output of the amplifier is dominated by the
feedback and gain setting resistors, but the output
impedance of the device itself varies depending on the
voltage applied to the outputs.

The time delays associated with turning the device on and
off are specified as the time it takes for the amplifier to
reach 50% of the nominal quiescent current. The time
delays are on the order of microseconds because the
amplifier moves in and out of the linear mode of operation
in these transitions.

Power-Down Reference Pin Operation

In addition to the power-down pin, the THS4215 also
features a reference pin (REF) which allows the user to
control the enable or disable power-down voltage levels
applied to the PD pin. Operation of the reference pin as it
relates to the power-down pin is described below.

In most split-supply applications, the reference pin will be
connected to ground. In some cases, the user may want
to connect it to the negative or positive supply rail. In either
case, the user needs to be aware of the voltage level
thresholds that apply to the power-down pin. The table
below illustrates the relationship between the reference
voltage and the power-down thresholds.

REFERENCE
POWER-DOWN PIN VOLTAGE

REFERENCE
VOLTAGE DEVICE

DISABLED
DEVICE

ENABLED

VS− to 0.5(VS− + VS+) ≤ Ref + 1.0 V ≥ Ref + 1.8 V

0.5(VS− + VS+) to VS+ ≤ Ref – 1.5 V ≥ Ref – 1 V

The recommended mode of operation is to tie the
reference pin to mid-rail, thus setting the threshold levels
to mid-rail +1.0 V and midrail +1.8 V.

NO. OF CHANNELS PACKAGES

Single (8-pin) THS4215D, THS4215DGN, and
THS4215DRB

Power Supply Decoupling Techniques and
Recommendations

Power supply decoupling is a critical aspect of any
high-performance amplifier design process. Careful
decoupling provides higher quality ac performance (most
notably improved distortion performance). The following
guidelines ensure the highest level of performance.

1. Place decoupling capacitors as close to the power
supply inputs as possible, with the goal of minimizing
the inductance of the path from ground to the power
supply.

2. Placement priority should put the smallest valued
capacitors closest to the device.

3. Use of solid power and ground planes is
recommended to reduce the inductance along power
supply return current paths, with the exception of the
areas underneath the input and output pins.

4. Recommended values for power supply decoupling
include a bulk decoupling capacitor (6.8 to 22 µF), a
mid-range decoupling capacitor (0.1 µF) and a high
frequency decoupling capacitor (1000 pF) for each
supply. A 100 pF capacitor can be used across the
supplies as well for extremely high frequency return
currents, but often is not required.

APPLICATION CIRCUITS

Driving an Analog-to-Digital Converter With the
THS4211

The THS4211 can be used to drive high-performance
analog-to-digital converters. Two example circuits are
presented below.

The first circuit uses a wideband transformer to convert a
single-ended input signal into a differential signal. The
differential signal is then amplified and filtered by two
THS4211 amplifiers. This circuit provides low
intermodulation distortion, suppressed even-order
distortion, 14 dB of voltage gain, a 50-Ω input impedance,
and a single-pole filter at 100 MHz. For applications
without signal content at dc, this method of driving ADCs
can be very useful. Where dc information content is
required, the THS4500 family of fully differential amplifiers
may be applicable.
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THS4211

50 Ω
Source

392 Ω

_

+

−5 V
196 Ω

15 pF

392 Ω

196 Ω 24.9 Ω

15 pF
14-Bit, 62 Msps

ADS5422

(1:4 Ω)
1:2

5 V

24.9 Ω

THS4211

VCM

VCM

Figure 78. A Linear, Low Noise, High Gain
ADC Preamplifier

The second circuit depicts single-ended ADC drive. While
not recommended for optimum performance using
converters with differential inputs, satisfactory perfor-
mance can sometimes be achieved with single-ended
input drive. An example circuit is shown here for reference.

_

+

THS4211

392 Ω

ADS807
12-Bit,

53 Msps

Rf

+5 V

392 Ω

49.9 Ω

VI

Rg

−5 V

50 Ω
Source

RISO 0.1 µF

16.5 Ω 68 pf

0.1 µF

IN

IN

CM

1.82 kΩ

RT

NOTE: For best performance, high-speed ADCs should be driven
differentially. See the THS4500 family of devices for more
information.

Figure 79. Driving an ADC With a 
Single-Ended Input

Using the THS4211 as a DAC Output Buffer

Two example circuits are presented here showing the
THS4211 buffering the output of a digital-to-analog
converter. The first circuit performs a differential to
single-ended conversion with the THS4211 configured as
a difference amplifier. The difference amplifier can double
as the termination mechanism for the DAC outputs as well.

392 Ω

_

+
THS4211

49.9 Ω

100 Ω

392 Ω

100 Ω
+5 V

−5 V

14-Bit,
400 MSps

DAC5675
RF

LO

196 Ω

392 Ω

392 Ω

3.3 V3.3 V

Figure 80. Differential to Single-Ended
Conversion of a High-Speed DAC Output

For cases where a differential signaling path is desirable,
a pair of THS4211 amplifiers can be used as output
buffers. The circuit depicts differential drive into a mixer’s
IF inputs, coupled with additional signal gain and filtering.

392 Ω

_

+

49.9 Ω

100 Ω

100 Ω14-Bit,
400 MSps

DAC5675

3.3 V3.3 V

CF
1 nF

392 Ω 49.9 Ω

1 nF

1 nF
CF

392 Ω

392 Ω

_

+

THS4211

THS4211

RF(out)

IF+

IF−

100 Ω

1 nF

Figure 81. Differential Mixer Drive Circuit Using
the DAC5675 and the THS4211

Active Filtering With the THS4211

High-frequency active filtering with the THS4211 is
achievable due to the amplifier’s high slew-rate, wide
bandwidth, and voltage feedback architecture.  Several
options are available for high-pass, low-pass, bandpass,
and bandstop filters of varying orders. A simple two-pole
low pass filter is presented here as an example, with two
poles at 100 MHz.
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49.9 Ω
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392 Ω

3.9 pF

5 V

−5 V

33 pF

VO

392 Ω

57.6 Ω

VI

Figure 82. A Two-Pole Active Filter With Two
Poles Between 90 MHz and 100 MHz

A Low-Noise Receiver With the THS4211

A combination of two THS4211 amplifiers can create a
high-speed, low-distortion, low-noise differential receiver
circuit as depicted in Figure 83. With both amplifiers
operating in the noninverting mode of operation, the circuit
presents a high load impedance to the source.  The
designer has the option of controlling the impedance
through termination resistors if a matched termination
impedance is desired.

_

+ 49.9 Ω
100 Ω

VO+

VI+

_

+

49.9 Ω

100 Ω

VO−

787 Ω
392 Ω

392 Ω

100 Ω
VI−

Figure 83. A High Input Impedance, Low
Noise, Differential Receiver

A modification on this circuit to include a difference
amplifier turns this circuit into a high-speed instrumenta-
tion amplifier, as shown in Figure 84.
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+
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+

Rg1
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100 Ω

VI−
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Rf2

49.9 ΩRf1

Rg2

Rg2

Rf2

49.9 Ω

THS4211

THS4211

THS4211

Figure 84. A High-Speed Instrumentation
Amplifier
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THEORY AND GUIDELINES
Distortion Performance
The THS4211 provides excellent distortion performance
into a 150-Ω load. Relative to alternative solutions, it
provides exceptional performance into lighter loads, as
well as exceptional performance on a single 5-V supply.
Generally, until the fundamental signal reaches very high
frequency or power levels, the 2nd harmonic will dominate
the total harmonic distortion with a negligible 3rd harmonic
component. Focusing then on the 2nd harmonic,
increasing the load impedance improves distortion
directly. The total load includes the feedback network; in
the noninverting configuration (Figure 75) this is the sum
of Rf and Rg, while in the inverting configuration
(Figure 76), only Rf needs to be included in parallel with
the actual load.

LINEARITY: DEFINITIONS, TERMINOLOGY,
CIRCUIT TECHNIQUES, AND DESIGN
TRADEOFFS
The THS4211 features execllent distortion performance
for monolithic operational amplifiers. This section focuses
on the fundamentals of distortion, circuit techniques for
reducing nonlinearity, and methods for equating distortion
of operational amplifiers to desired linearity specifications
in RF receiver chains.

Amplifiers are generally thought of as linear devices. The
output of an amplifier is a linearly scaled version of the
input signal applied to it. However, amplifier transfer
functions are nonlinear. Minimizing amplifier nonlinearity
is a primary design goal in many applications.

(1)
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Intercept points are specifications long used as key design
criteria in the RF communications world as a metric for the
intermodulation distortion performance of a device in the
signal chain (e.g., amplifiers, mixers, etc.). Use of the
intercept point, rather than strictly the intermodulation
distortion, allows simpler system-level calculations.
Intercept points, like noise figures, can be easily cascaded
back and forth through a signal chain to determine the
overall receiver chain’s intermodulation distortion
performance. The relationship between intermodulation
distortion and intercept point is depicted in Figure 85 and
Figure 86.

Figure 85

IMD3 = PS − PO

PS

POPO

∆fc =  fc − f1

∆fc =  f2 −  fc

PS

fc − 3∆f f1 f c f2 fc + 3∆f

P
ow

er

f − Frequency − MHz

Figure 86

IMD3

OIP3

IIP3

3X

PIN
(dBm)

1X

POUT
(dBm)

PO

PS

Due to the intercept point’s ease of use in system level
calculations for receiver chains, it has become the
specification of choice for guiding distortion-related design
decisions. Traditionally, these systems use primarily
class-A, single-ended RF amplifiers as gain blocks. These
RF amplifiers are typically designed to operate in a 50-Ω
environment. Giving intercept points in dBm implies an
associated impedance (50 Ω).

However, with an operational amplifier, the output does not
require termination as an RF amplifier would. Because
closed-loop amplifiers deliver signals to their outputs
regardless of the impedance present, it is important to
comprehend this when evaluating the intercept point of an
operational amplifier. The THS4211 yields optimum
distortion performance when loaded with 150 Ω to 1 kΩ,
very similar to the input impedance of an analog-to-digital
converter over its input frequency band.

As a result, terminating the input of the ADC to 50 Ω can
actually be detrimental to systems performance.

The discontinuity between open-loop, class-A amplifiers
and closed-loop, class-AB amplifiers becomes apparent
when comparing the intercept points of the two types of
devices. Equations 1 and 2 gives the definition of an
intercept point, relative to the intermodulation distortion.

OIP3 � PO ���IMD3
�

2
� where

PO � 10 log� V2
P

2RL � 0.001
�

NOTE: PO is the output power of a single tone, RL is the load
resistance, and VP is the peak voltage for a single tone.

NOISE ANALYSIS

High slew rate, unity gain stable, voltage-feedback
operational amplifiers usually achieve their slew rate at the
expense of a higher input noise voltage. The 7 nV/√Hz
input voltage noise for the THS4211 and THS4215 is,
however, much lower than comparable amplifiers. The
input-referred voltage noise, and the two input-referred
current noise terms (4 pA/√Hz), combine to give low output
noise under a wide variety of operating conditions.
Figure 87 shows the amplifier noise analysis model with all
the noise terms included. In this model, all noise terms are
taken to be noise voltage or current density terms in either
nV/√Hz or pA/√Hz.

(2)

(3)
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Figure 87. Noise Analysis Model

The total output shot noise voltage can be computed as the
square of all square output noise voltage contributors.
Equation 3 shows the general form for the output noise
voltage using the terms shown in Figure 87:

EO � �E 2
NI � �IBNRS

�2 � 4kTRS�NG2 � �IBIRf
�2 � 4kTRfNG�

Dividing this expression by the noise gain (NG=(1+ Rf/Rg))
gives the equivalent input-referred spot noise voltage at
the noninverting input, as shown in Equation 4:

EO � E 2
NI � �IBNRS

�2 � 4kTRS ��IBIRf

NG
�

2

�
4kTRf

NG
�

Driving Capacitive Loads

One of the most demanding, and yet very common, load
conditions for an op amp is capacitive loading. Often, the
capacitive load is the input of an A/D converter, including
additional external capacitance, which may be
recommended to improve A/D linearity. A high-speed, high
open-loop gain amplifier like the THS4211 can be very
susceptible to decreased stability and closed-loop
response peaking when a capacitive load is placed directly
on the output pin. When the amplifier’s open-loop output
resistance is considered, this capacitive load introduces
an additional pole in the signal path that can decrease the
phase margin. When the primary considerations are
frequency response flatness, pulse response fidelity, or
distortion, the simplest and most effective solution is to
isolate the capacitive load from the feedback loop by
inserting a series isolation resistor between the amplifier
output and the capacitive load. This does not eliminate the
pole from the loop response, but rather shifts it and adds
a zero at a higher frequency. The additional zero acts to
cancel the phase lag from the capacitive load pole, thus
increasing the phase margin and improving stability.

The Typical Characteristics show the recommended
isolation resistor vs capacitive load and the resulting
frequency response at the load. Parasitic capacitive loads
greater than 2 pF can begin to degrade the performance

of the THS4211. Long PC board traces, unmatched
cables, and connections to multiple devices can easily
cause this value to be exceeded. Always consider this
effect carefully, and add the recommended series resistor
as close as possible to the THS4211 output pin (see Board
Layout Guidelines).

The criterion for setting this R(ISO) resistor is a maximum
bandwidth, flat frequency response at the load. For a gain
of +2, the frequency response at the output pin is already
slightly peaked without the capacitive load, requiring
relatively high values of R(ISO) to flatten the response at
the load. Increasing the noise gain also reduces the
peaking.
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R(ISO) = 25 Ω
CL = 10 pF

Figure 88. Isolation Resistor Diagram

BOARD LAYOUT

Achieving optimum performance with a high frequency
amplifier like the THS4211 requires careful attention to
board layout parasitics and external component types.

Recommendations that  optimize performance include the
following:

1. Minimize parasitic capacitance to any ac ground
for all of the signal I/O pins.  Parasitic capacitance on
the output and inverting input pins can cause
instability: on the noninverting input, it can react with
the source impedance to cause unintentional band
limiting. To reduce unwanted capacitance, a window
around the signal I/O pins should be opened in all of
the ground and power planes around those pins.
Otherwise, ground and power planes should be
unbroken elsewhere on the board.

2. Minimize the distance (< 0.25”) from the power
supply pins to high frequency 0.1- µF de-coupling
capacitors.  At the device pins, the ground and power
plane layout should not be in close proximity to the
signal I/O pins. Avoid narrow power and ground traces
to minimize inductance between the pins and the

(4)

(5)
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decoupling capacitors. The power supply connections
should always be decoupled with these capacitors.
Larger (2.2-µF to 6.8-µF) decoupling capacitors,
effective at lower frequency, should also be used on
the main supply pins. These may be placed somewhat
farther from the device and may be shared among
several devices in the same area of the PC board.

3. Careful selection and placement of external
components preserves the high frequency
performance of the THS4211.  Resistors should be a
very low reactance type. Surface-mount resistors
work best and allow a tighter overall layout. Metal-film
and carbon composition, axially-leaded resistors can
also provide good high frequency performance.
Again, keep their leads and PC board trace length as
short as possible. Never use wire-wound type
resistors in a high frequency application. Since the
output pin and inverting input pin are the most
sensitive to parasitic capacitance, always position the
feedback and series output resistor, if any, as close as
possible to the output pin. Other network components,
such as noninverting input-termination resistors,
should also be placed close to the package. Where
double-side component mounting is allowed, place
the feedback resistor directly under the package on
the other side of the board between the output and
inverting input pins. Even with a low parasitic
capacitance shunting the external resistors,
excessively high resistor values can create significant
time constants that can degrade performance. Good
axial metal-film or surface-mount resistors have
approximately 0.2 pF in shunt with the resistor. For
resistor values > 2.0 kΩ, this parasitic capacitance can
add a pole and/or a zero below 400 MHz that can
effect circuit operation. Keep resistor values as low as
possible, consistent with load driving considerations.
A good starting point for design is to set the Rf to
249 Ω for low-gain, noninverting applications. This
setting automatically keeps the resistor noise terms
low and minimizes the effect of their parasitic
capacitance.

4. Connections to other wideband devices on the
board may be made with short direct traces or
through onboard transmission lines.  For short
connections, consider the trace and the input to the
next device as a lumped capacitive load. Relatively
wide traces (50 mils to 100 mils) should be used,
preferably with ground and power planes opened up
around them. Estimate the total capacitive load and
set RISO from the plot of recommended RISO vs
capacitive load. Low parasitic capacitive loads
(<4 pF) may not need an R(ISO), since the THS4211 is
nominally compensated to operate with a 2-pF
parasitic load. Higher parasitic capacitive loads
without an R(ISO) are allowed as the signal gain
increases (increasing the unloaded phase margin). If

a long trace is required, and the 6-dB signal loss
intrinsic to a doubly-terminated transmission line is
acceptable, implement a matched impedance
transmission line using microstrip or stripline
techniques (consult an ECL design handbook for
microstrip and stripline layout techniques). A 50-Ω
environment is normally not necessary onboard, and
in fact a higher impedance environment improves
distortion as shown in the distortion versus load plots.
With a characteristic board trace impedance defined
on the basis of board material and trace dimensions,
a matching series resistor into the trace from the
output of the THS4211 is used as well as a terminating
shunt resistor at the input of the destination device.
Remember also that the terminating impedance is the
parallel combination of the shunt resistor and the input
impedance of the destination device: this total
effective impedance should be set to match the trace
impedance. If the 6-dB attenuation of a doubly
terminated transmission line is unacceptable, a long
trace can be series-terminated at the source end only.
Treat the trace as a capacitive load in this case and set
the series resistor value as shown in the plot of R(ISO)
vs capacitive load. This setting does not preserve
signal integrity or a doubly-terminated line. If the input
impedance of the destination device is low, there is
some signal attenuation due to the voltage divider
formed by the series output into the terminating
impedance.

5. Socketing a high speed part like the THS4211 is
not recommended.  The additional lead length and
pin-to-pin capacitance introduced by the socket can
create a troublesome parasitic network which can
make it almost impossible to achieve a smooth, stable
frequency response. Best results are obtained by
soldering the THS4211 onto the board.

PowerPAD  DESIGN CONSIDERATIONS

The THS4211 and THS4215 are available in a
thermally-enhanced PowerPAD family of packages.
These packages are constructed using a downset
leadframe upon which the die is mounted [see
Figure 89(a) and Figure 89(b)]. This arrangement results
in the lead frame being exposed as a thermal pad on the
underside of the package [see Figure 89(c)]. Because this
thermal pad has direct thermal contact with the die,
excellent thermal performance can be achieved by
providing a good thermal path away from the thermal pad.

The PowerPAD package allows both assembly and
thermal management in one manufacturing operation.

During the surface-mount solder operation (when the
leads are being soldered), the thermal pad can also be
soldered to a copper area underneath the package.
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Through the use of thermal paths within this copper area,
heat can be conducted away from the package into either
a ground plane or other heat dissipating device.

The PowerPAD package represents a breakthrough in
combining the small area and ease of assembly of surface
mount with the heretofore awkward mechanical methods
of heatsinking.

Figure 89. Views of Thermally Enhanced
Package

    DIE

Side View (a)

DIE

End View (b)

Thermal
Pad

Bottom View (c)

Although there are many ways to properly heatsink the
PowerPAD package, the following steps illustrate the
recommended approach.

Figure 90. PowerPAD PCB Etch and Via
Pattern
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68 Mils x 70 Mils
(Via Diameter = 13 Mils)

PowerPAD PCB LAYOUT CONSIDERATIONS

1. Prepare the PCB with a top side etch pattern as shown
in Figure 90. There should be etching for the leads as
well as etch for the thermal pad.

2. Place five holes in the area of the thermal pad. These
holes should be 13 mils in diameter. Keep them small
so that solder wicking through the holes is not a
problem during reflow.

3. Additional vias may be placed anywhere along the
thermal plane outside of the thermal pad area. They
help dissipate the heat generated by the THS4211 and
THS4215 IC. These additional vias may be larger than
the 13-mil diameter vias directly under the thermal
pad. They can be larger because they are not in the
thermal pad area to be soldered, so wicking is not a
problem.

4. Connect all holes to the internal ground plane.

5. When connecting these holes to the ground plane, do
not use the typical web or spoke via connection
methodology. Web connections have a high thermal

resistance connection that is useful for slowing the
heat transfer during soldering operations. This
resistance  makes the soldering of vias that have
plane connections easier. In this application, however,
low thermal resistance is desired for the most efficient
heat transfer. Therefore, the holes under the THS4211
and THS4215 PowerPAD package should make their
connection to the internal ground plane, with a
complete connection around the entire circumference
of the plated-through hole.

6. The top-side solder mask should leave the terminals
of the package and the thermal pad area with its five
holes exposed. The bottom-side solder mask should
cover the five holes of the thermal pad area. This
prevents solder from being pulled away from the
thermal pad area during the reflow process.

7. Apply solder paste to the exposed thermal pad area
and all of the IC terminals.

8. With these preparatory steps in place, the IC is simply
placed in position and run through the solder reflow
operation as any standard surface-mount
component. This results in a part that is properly
installed.

For a given θJA , the maximum power dissipation is shown
in Figure 91 and is calculated by the equation 5:

PD �
Tmax � TA

�JA

where
PD = Maximum power dissipation of THS4211 (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA = Free-ambient temperature (°C)
           θJA = θJC + θCA
θJC = Thermal coefficient from junction to the case
θCA = Thermal coefficient from the case to ambient air
            (°C/W).

The next consideration is the package constraints. The
two sources of heat within an amplifier are quiescent
power and output power. The designer should never forget
about the quiescent heat generated within the device,
especially multi-amplifier devices. Because these devices
have linear output stages (Class AB), most of the heat
dissipation is at low output voltages with high output
currents.

The other key factor when dealing with power dissipation
is how the devices are mounted on the PCB. The
PowerPAD devices are extremely useful for heat
dissipation. But, the device should always be soldered to
a copper plane to fully use the heat dissipation properties
of the PowerPAD. The SOIC package, on the other hand,
is highly dependent on how it is mounted on the PCB. As
more trace and copper area is placed around the device,
θJA decreases and the heat dissipation capability

(6)
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increases. For a single package, the sum of the RMS
output currents and voltages should be used to choose the
proper package.

THERMAL ANALYSIS
The THS4211 device does not incorporate automatic
thermal shutoff protection, so the designer must take care
to ensure that the design does not violate the absolute
maximum junction temperature of the device. Failure may
result if the absolute maximum junction temperature of
150� C is exceeded.

The thermal characteristics of the device are dictated by
the package and the PC board. Maximum power
dissipation for a given package can be calculated using the
following formula:

PDmax �
Tmax–TA

�JA

where
PDmax is the maximum power dissipation in the amplifier (W).
Tmax is the absolute maximum junction temperature (°C).
TA is the ambient temperature (°C).
θJA = θJC + θCA
θJC is the thermal coefficient from the silicon junctions to the
      case (°C/W).
θCA is the thermal coefficient from the case to ambient air
      (°C/W).

For systems where heat dissipation is more critical, the
THS4211 is offered in an 8-pin MSOP with PowerPAD.
The thermal coefficient for the MSOP PowerPAD package
is substantially improved over the traditional SOIC.
Maximum power dissipation levels are depicted in the
graph for the two packages.  The data for the DGN
package assumes a board layout that follows the
PowerPAD layout guidelines referenced above and
detailed in the PowerPAD application notes in the
Additional Reference Material section at the end of the
data sheet.
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When determining whether or not the device satisfies the
maximum power dissipation requirement, it is important to
consider not only quiescent power dissipation, but also
dynamic power dissipation. Often maximum power
dissipation is difficult to quantify because the signal pattern
is inconsistent, but an estimate of the RMS power
dissipation can provide visibility into a possible problem.

DESIGN TOOLS

Performance vs Package Options

The THS4211 and THS4215 are offered in a different
package options. However, performance may be limited
due to package parasitics and lead inductance in some
packages. In order to achieve maximum performance of
the THS4211 and THS4215, Texas Instruments
recommends using the leadless MSOP (DRB) or MSOP
(DGN) packages, in additions to proper high-speed PCB
layout. Figure 92 shows the unity gain frequency response
of the THS4211 using the leadless MSOP, MSOP, and
SOIC package for comparison. Using the THS4211 and
THS4215 in a unity gain with the SOIC package may result

in the device becoming unstable. In higher gain
configurations, this effect is mitigated by the reduced
bandwidth. As such, the SOIC is suitable for application
with gains equal to or higher than +2 V/V or (−1 V/V).

Figure 92. Effects of Unity Gain Frequency
Response for Differential Packages
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Evaluation Fixtures, Spice Models, and
Applications Support

Texas Instruments is committed to providing its customers
with the highest quality of applications support. To support
this goal, evaluation boards have been developed for the
THS4211 operational amplifier. Three evaluation boards
are available: one THS4211 and one THS4215, both
configurable for different gains, and a third for a gain of +1
(THS4211 only). These boards are easy to use, allowing
for straightforward evaluation of the device. These
evaluation boards can be ordered through the Texas
Instruments web site, www.ti.com, or through your local
Texas Instruments sales representative. Schematics for
the evaluation boards are shown below.

The THS4211/THS4215 EVM board shown in Figure 96
through Figure 99 accommodates different gain
configurations. Its default component values are set to
give a gain of 2. The EVM can be configured in a gain of
+1; however, it is strongly not recommended. Evaluating
the THS4211/THS4215 in a gain of +1 using this EVM may
cause the part to become unstable. The stability of the
device can be controlled by adding a large resistor in the
feedback path, but the performance is sacrificed.
Figure 93 shows the small signal frequency response of
the THS4211 with different feedback resistors in the
feedback path. Figure 94 is the small frequency response
of the THS4211 using the gain of +1 EVM.

Figure 93. Frequency Response vs Feedback
Resistor Using the EDGE #6439527 EVM
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The peaking in the frequency response is due to the lead
inductance in the feedback path. Each pad and trace on a
PCB has an inductance associated with it, which in
conjunction with the inductance associated with the
package may cause peaking in the frequency response,
causing the device to become unstable.

In order to achieve the maximum performance of the
device, PCB layout is very critical. Texas Instruments has
developed an EVM for the evaluation of the THS4211 in a
gain of 1. The EVM is shown in Figure 101 through
Figure 104. This EVM is designed to minimize peaking in
the unity gain configuration.

Minimizing the inductance in the feedback path is critical
for reducing the peaking of the frequency response in unity
gain. The recommended maximum inductance allowed in
the feedback path is 4 nH. This inductance can be
calculated by using equation 7:

L(nH) � K	
ln 2	
W � T

� 0.223 W � T
	

� 0.5�

where
W = Width of trace in inches.
   = Length of the trace in inches.
T = Thickness of the trace in inches.
K = 5.08 for dimensions in inches, and K = 2 for dimensions
        in cm.

	

(7)



�������
�������
SLOS400C − SEPTEMBER 2002 − REVISED JANUARY 2004

www.ti.com

30

Figure 95. THS4211/THS4215 EVM Circuit
Configuration
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Figure 96. THS4211/THS4215 EVM Board
Layout (Top Layer)

Figure 97. THS4211/THS4215 EVM Board
Layout (Second Layer, Ground)
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Figure 98. THS4211/THS4215 EVM Board
Layout (Third Layer, Power)

Figure 99. THS4211/THS4215 EVM Board
Layout (Bottom Layer)

Figure 100. THS4211 Unity Gain EVM Circuit
Configuration
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Figure 101. THS4211 Unity Gain EVM Board
Layout (Top Layer)
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Figure 102. THS4211 Unity Gain EVM Board
Layout (Second Layer, Ground)

Figure 103. THS4211 Unity Gain EVM Board
Layout (Third Layer, Power)

Figure 104. THS4211 Unity Gain EVM Board
Layout (Bottom Layer)

Computer simulation of circuit performance using SPICE
is often useful when analyzing the performance of analog
circuits and systems. This is particularly true for video and
RF amplifier circuits, where parasitic capacitance and
inductance can have a major effect on circuit performance.
A SPICE model for the THS4211 is available through
either the Texas Instruments web site (www.ti.com) or as
one model on a disk from the Texas Instruments Product
Information Center (1−800−548−6132). The PIC is also
available for design assistance and detailed product
information at this number. These models do a good job of
predicting small-signal ac and transient performance
under a wide variety of operating conditions. They are not
intended to model the distortion characteristics of the
amplifier, nor do they attempt to distinguish between the
package types in their small-signal ac performance.
Detailed information about what is and is not modeled is
contained in the model file itself.

ADDITIONAL REFERENCE MATERIAL

� PowerPAD Made Easy, application brief (SLMA004)

� PowerPAD Thermally Enhanced Package, technical
brief (SLMA002)
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