AUTOSWITCHING POWER MULTIPLEXER

FEATURES

- Two-Input, One-Output Power Multiplexer With Low $\mathrm{r}_{\mathrm{DS}(o n)}$ Switches:
- 84 m Ω Typ (TPS2115)
- 120 m Ω Typ (TPS2114)
- Reverse and Cross-Conduction Blocking
- Wide Operating Voltage Range: 2.8 V to 5.5 V
- Low Standby Current: $0.5 \mu \mathrm{~A}$ Typical
- Low Operating Current: $55 \mu \mathrm{~A}$ Typical
- Adjustable Current Limit
- Controlled Output Voltage Transition Times, Limits Inrush Current and Minimizes Output Voltage Hold-Up Capacitance
- CMOS and TTL Compatible Control Inputs
- Manual and Auto-Switching Operating Modes
- Thermal Shutdown
- Available in a TSSOP-8 Package

APPLICATIONS

- PCs
- PDAs
- Digital Cameras
- Modems
- Cell phones
- Digital Radios
- MP3 Players

DESCRIPTION

The TPS211x family of power multiplexers enables seamless transition between two power supplies, such as a battery and a wall adapter, each operating at $2.8-5.5 \mathrm{~V}$ and delivering up to 1 A . The TPS211x family includes extensive protection circuitry, including user-programmable current limiting, thermal protection, inrush current control, seamless supply transition, cross-conduction blocking, and reverse-conduction blocking. These features greatly simplify designing power multiplexer applications.

TYPICAL APPLICATION

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

FEATURE		TPS2110	TPS2111	TPS2112	TPS2113	TPS2114	TPS2115
Current limit adjustment range	$0.31-0.75 \mathrm{~A}$	$0.63-1.25 \mathrm{~A}$	$0.31-0.75 \mathrm{~A}$	$0.63-1.25 \mathrm{~A}$	$0.31-0.75 \mathrm{~A}$	$0.63-1.25 \mathrm{~A}$	
Switching modes	Manual	Yes	Yes	No	No	Yes	Yes
	Automatic	Yes	Yes	Yes	Yes	Yes	Yes
Switch status output	No	No	Yes	Yes	Yes	Yes	
Package	TSSOP-8	TSSOP-8	TSSOP-8	TSSOP-8	TSSOP-8	TSSOP-8	

ORDERING INFORMATION

$\mathbf{T}_{\mathbf{A}}$	PACKAGE	ORDERING NUMBER $^{(1)}$	MARKINGS
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	TSSOP-8 (PW)	TPS2114PW	2114
		TPS2115PW	2115

(1) The PW package is available taped and reeled. Add an R suffix to the device type (e.g., TPS2114PWR) to indicate tape and reel.

PACKAGE DISSIPATION RATINGS

PACKAGE	DERATING FACTOR ABOVE $\mathbf{T}_{\mathbf{A}}=25^{\circ} \mathbf{C}$	$\mathbf{T}_{\mathbf{A}} \leq \mathbf{2 5}{ }^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{7 0}{ }^{\circ} \mathbf{C}$ POWER RATING	$\mathbf{T}_{\mathbf{A}}=\mathbf{8 5}{ }^{\circ} \mathbf{C}$ POWER RATING
TSSOP-8 (PW)	$3.87 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	386.84 mW	212.76 mW	154.73 mW

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted ${ }^{(1)}$

			TPS2114, TPS2115
V_{1}	Input voltage range	IN1, IN2, D0, D1, ILIM ${ }^{(2)}$	-0.3 V to 6 V
V_{O}	Output voltage range ${ }^{(2)}$	OUT, STAT	-0.3 V to 6 V
Io	Output sink current	STAT	5 mA
		TPS2114	0.9 A
Io	Continuous output current	TPS2115	1.5 A
	Continuous total power diss	pation	See Dissipation Rating Table
T_{J}	Operating virtual junction te	mperature range	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
	Lead temperature soldering	$1,6 \mathrm{~mm}$ (1/16 inch) from case for 10 seconds	$260^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
		$\mathrm{V}_{1(\mathrm{IN} 2)} \geq 2.8 \mathrm{~V}$	1.5	5.5	
V_{1}	Input voltage at $\mathbb{N} 1$	$\mathrm{V}_{1(\mathrm{IN} 2)}<2.8 \mathrm{~V}$	2.8	5.5	v
		$\mathrm{V}_{1\left(1 N_{1}\right)} \geq 2.8 \mathrm{~V}$	1.5	5.5	V
V_{1}	Input voltage at IN2	$\mathrm{V}_{1(\mathrm{IN} 1)}<2.8 \mathrm{~V}$	2.8	5.5	V
V_{1}	Input voltage at D0, D1		0	5.5	V
		TPS2114	0.31	0.75	
O_{O} (OUT)	Current limit adjustment range	TPS2115	0.63	1.25	A
T_{J}	Operating virtual junction temper		-40	125	${ }^{\circ} \mathrm{C}$

ELECTROSTATIC DISCHARGE (ESD) PROTECTION

	MIN	MAX
Human body model		2
CDM	kV	

ELECTRICAL CHARACTERISTICS

over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN} 1)}=\mathrm{V}_{\mathrm{l}(\mathrm{IN} 2)}=5.5 \mathrm{~V}, \mathrm{R}_{(\mathrm{LIIM})}=400 \Omega$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		TPS2114			TPS2115			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
POWER SWITCH									
Drain-source on-state resistance (INx-OUT)	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{1(\mathrm{~N} 1)}=\mathrm{V}_{1(\mathrm{IN} 2)}=5.0 \mathrm{~V}$		120	140		84	110	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{l}(\mathrm{N} 1)}=\mathrm{V}_{\mathrm{l}(\mathrm{IN} 2)}=3.3 \mathrm{~V}$		120	140		84	110	
		$\mathrm{V}_{\mathrm{l}(\mathrm{IN} 1)}=\mathrm{V}_{\mathrm{l}(\mathrm{IN} 2)}=2.8 \mathrm{~V}$		120	140		84	110	
	$\begin{aligned} & \mathrm{T}_{J}=125^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{l}(\mathrm{IN} 1)}=\mathrm{V}_{1(\mathrm{IN} 2)}=5.0 \mathrm{~V}$			220			150	$\mathrm{m} \Omega$
		$\mathrm{V}_{1(\mathrm{~N} 1)}=\mathrm{V}_{1(\mathrm{I} 2)}=3.3 \mathrm{~V}$			220			150	
		$\mathrm{V}_{\mathrm{l}(\mathrm{IN} 1)}=\mathrm{V}_{\mathrm{l}(\mathrm{IN} 2)}=2.8 \mathrm{~V}$			220			150	

[^0]TPS2115
SLVS447A-DECEMBER 2002-REVISED MARCH 2004

ELECTRICAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

[^1]
ELECTRICAL CHARACTERISTICS (continued)

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	TPS2115			UNIT
		MIN	TYP	MAX	
UNDERVOLTAGE LOCKOUT					
IN1 and IN2 UVLO	Falling edge	1.15	1.25		V
	Rising edge		1.30	1.35	
IN1 and IN2 UVLO hysteresis ${ }^{(2)}$		30	57	65	mV
Internal V_{DD} UVLO (the higher of IN1 and IN2)	Falling edge	24	2.53		V
	Rising edge		2.58	2.8	
Internal V_{DD} UVLO hysteresis ${ }^{(2)}$		30	50	75	mV
UVLO deglitch for IN1, IN2 ${ }^{(2)}$	Falling edge		110		$\mu \mathrm{s}$
REVERSE CONDUCTION BLOCKING					
$\Delta \mathrm{V}_{\text {O(I_block) }} \begin{aligned} & \text { Minimum output-to-input voltage } \\ & \text { difference to block switching }\end{aligned}$	$\mathrm{D} 0=\mathrm{D} 1=$ high, $\mathrm{V}_{\mathrm{I}(\mathrm{INx})}=3.3 \mathrm{~V}$. Connect OUT to a 5 V supply through a series $1-\mathrm{k} \Omega$ resistor. Let $\mathrm{DO}=$ low. Slowly decrease the supply voltage until OUT connects to IN1.	80	100	120	mV
THERMAL SHUTDOWN					
Thermal shutdown threshold ${ }^{(2)}$	TPS211x is in current limit.	135			${ }^{\circ} \mathrm{C}$
Recovery from thermal shutdown ${ }^{(2)}$	TPS211x is in current limit.	125			
Hysteresis ${ }^{(2)}$			10		
IN2-IN1 COMPARATORS					
Hysteresis of IN2-IN1 comparator		0.1		0.2	V
Deglitch of IN2-IN1 comparator, (both $\uparrow \downarrow$) ${ }^{(2)}$		90	150	220	$\mu \mathrm{s}$
STAT OUTPUT					
Leakage current	$\mathrm{V}_{\text {(STAT) }}=5.5 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$
Saturation voltage	$\mathrm{I}_{(\text {STAT })}=2 \mathrm{~mA}, \mathrm{IN} 1$ switch is on		0.13	0.4	V
Deglitch time (falling edge only)			150		$\mu \mathrm{s}$

(2) Not tested in production.

TPS2115

SWITCHING CHARACTERISTICS

over recommended operating junction temperature range, $\mathrm{V}_{\mathrm{I}(\mathrm{IN} 1)}=\mathrm{V}_{\mathrm{I}(\mathrm{IN} 2)}=5.5 \mathrm{~V}, \mathrm{R}_{(\mathrm{LLIM})}=400 \Omega$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		TPS2114			TPS2115			UNIT		
		MIN	TYP	MAX	MIN	TYP	MAX					
POWER SWITCH												
tr_{r}	Output rise time from an enable ${ }^{(1)}$			$\mathrm{V}_{\mathrm{l}(\mathrm{IN} 1)}=\mathrm{V}_{\mathrm{l}(\mathrm{IN} 2)}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \\ & \mathrm{~L}_{\mathrm{L}}=500 \mathrm{~mA}, \\ & \text { See Figure 1 } \end{aligned}$	0.5	1.0	1.5	1	1.8	3	ms
t_{f}	Output fall time from a disable ${ }^{(1)}$	$\mathrm{V}_{\mathrm{l}(\mathrm{IN} 1)}=\mathrm{V}_{\mathrm{l}(\mathrm{IN} 2)}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA}, \\ & \text { See Figure } 1 \text { (a) } \end{aligned}$	0.35	0.5	0.7	0.5	1	2	ms		
t_{t}	Transition time ${ }^{(1)}$	IN1 to IN2 transition, $\mathrm{V}_{1(1 \mathrm{~N} 1)}=3.3 \mathrm{~V},$ $\mathrm{V}_{1(\mathrm{I} 2)}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA} \text { [Measure } \\ & \text { transition time as } \\ & 10-90 \% \text { rise time or } \\ & \text { from } 3.4 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \\ & \text { on } \mathrm{V} \text { مenur) } \\ & \text { Se Eigure } 1 \text { (b) } \end{aligned}$		40	60		40	60	$\mu \mathrm{s}$		
		IN2 to IN1 transition, $\mathrm{V}_{l(I N 1)}=5 \mathrm{~V},$ $\mathrm{V}_{(\mid(\mathrm{N} 2)}=3.3 \mathrm{~V}$			40	60		40	60			
$\mathrm{t}_{\text {PLH1 }}$	Turnon propagation delay from enable ${ }^{(1)}$	$V_{1(\mathbb{N} 1)}=\mathrm{V}_{1(\mathrm{IN} 2)}=5 \mathrm{~V}$, Measured from enable to 10% of $\mathrm{V}_{\text {O(OUT) }}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \\ & \mathrm{I}_{\mathrm{L}}=500 \mathrm{~mA}, \\ & \text { See Eigure }-1(\mathrm{a}) \end{aligned}$		0.5			1		ms		
$\mathrm{t}_{\text {PHL1 }}$	Turnoff propagation delay from a disable ${ }^{(1)}$	$\mathrm{V}_{\mathrm{l}(\mathrm{N} 1)}=\mathrm{V}_{\mathrm{l}(\mathrm{IN} 2)}=5 \mathrm{~V}$, Measured from disable to 90% of $\mathrm{V}_{\text {O(OUT) }}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{L}}=500 \mathrm{~mA}, \\ & \text { See Figure-11(a) } \\ & \hline \end{aligned}$		3			5		ms		
$\mathrm{t}_{\text {PLH2 }}$	Switch-over rising propagation delay ${ }^{(1)}$	Logic 1 to Logic 0 transition on D1, $\mathrm{V}_{\text {(IN1) }}=1.5 \mathrm{~V}$, $V_{1(\mathbb{N} 2)}=5 \mathrm{~V}$, $V_{1(D)}=0 \mathrm{~V}$, Measured from D1 to 10% of $\mathrm{V}_{\text {O(OUT) }}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \\ & \mathrm{~L}_{\mathrm{L}}=500 \mathrm{~mA} \text {. } \\ & \text { See Figure } 1 \text { (c) } \end{aligned}$		0.17	1		0.17	1	ms		
$\mathrm{t}_{\text {PHL2 }}$	Switch-over falling propagation delay ${ }^{(1)}$	Logic 0 to Logic 1 transition on D1, $\mathrm{V}_{\mathrm{I}(\mathrm{N} 1)}=1.5 \mathrm{~V}$, $V_{1(\mathrm{~N} 2)}=5 \mathrm{~V}$, $\mathrm{V}_{1(\mathrm{DO})}=0 \mathrm{~V}$, Measured from D1 to 90% of $\mathrm{V}_{\mathrm{O} \text { (OUT) }}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=10 \mu \mathrm{~F}, \\ & \mathrm{~L}_{\mathrm{L}}=500 \mathrm{~mA}, \\ & \text { See Figure_1(c) } \end{aligned}$	2	3	10	2	5	10	ms		

(1) Not tested in production.

TRUTH TABLE

D1	D0	$\mathrm{V}_{\mathbf{I}(\mathrm{IN} 2)}>\mathrm{V}_{\text {(İN1) }}$	STAT	OUT ${ }^{(1)}$
0	0	X	Hi-Z	IN2
0	1	No	0	IN1
0	1	Yes	Hi-Z	IN2
1	0	X	0	IN1
1	1	X	0	Hi-Z

(1) The under-voltage lockout circuit causes the output OUT to go Hi-Z if the selected power supply does not exceed the IN1/IN2 UVLO, or if neither of the supplies exceeds the internal $V_{D D}$ UVLO.

Terminal Functions

TERM NAME	NAL NO.	1/0	DESCRIPTION
D0	2	1	TTL and CMOS compatible input pins. Each pin has a $1-\mu \mathrm{A}$ pullup resistor. The truth table shown above illustrates the functionality of D0 and D1.
D1	3	1	
GND	5	1	Ground
IN1	8	I	Primary power switch input. The IN1 switch can be enabled only if the IN1 supply is above the UVLO threshold and at least one supply exceeds the internal V_{DD} UVLO.
IN2	6	I	Secondary power switch input. The IN2 switch can be enabled only if the IN2 supply is above the UVLO threshold and at least one supply exceeds the internal V_{DD} UVLO.
ILIM	4	I	A resistor $\mathrm{R}_{\text {(IIIM) }}$ from ILIM to GND sets the current limit I_{L} to $250 / \mathrm{R}_{\text {(IIM) }}$ and $500 / \mathrm{R}_{\text {(LIM) }}$ for the TPS2114 and TPS2115, respectively.
OUT	7	O	Power switch output
STAT	1	O	STAT is an open-drain output that is Hi-Z if the IN2 switch is ON. STAT pulls low if the IN1 switch is ON or if OUT is $\mathrm{Hi}-\mathrm{Z}$ (i.e., $\overline{\mathrm{EN}}$ is equal to logic 0).

FUNCTIONAL BLOCK DIAGRAM

PARAMETER MEASUREMENT INFORMATION

Figure 1. Propagation Delays and Transition Timing Waveforms

TYPICAL CHARACTERISTICS

Output Switchover Response Test Circuit
Figure 2.

Output Turnon Response Test Circuit

Figure 3.

TYPICAL CHARACTERISTICS (continued)

Output Switchover Voltage Droop Test Circuit
t - Time - $\mathbf{4 0} \mu \mathrm{s} / \mathrm{div}$
Figure 4.

TYPICAL CHARACTERISTICS (continued)

Output Switchover Voltage Droop Test Circuit
Figure 5.

TYPICAL CHARACTERISTICS (continued)

Output Capacitor Inrush Current Test Circuit
Figure 6.

TYPICAL CHARACTERISTICS (continued)

Figure 7.

Figure 9.

Figure 8.

Figure 10.

TYPICAL CHARACTERISTICS (continued)

Figure 11.

Figure 12.

APPLICATION INFORMATION

The circuit in Figure-13 allows one or two battery packs to power a system. Two battery packs allow a longer run time. The TPS2114/5 cycles between the battery packs until both packs are drained.

Figure 13. Running a System From Two Battery Packs
In Figure 14, the multiplexer selects between two power supplies based upon the D1 logic signal. OUT connects to IN1 if D1 is logic 1, otherwise OUT connects to IN2. The logic thresholds for the D1 terminal are compatible with both TTL and CMOS logic.

Figure 14. Manually Switching Power Sources

DETAILED DESCRIPTION

AUTO-SWITCHING MODE

D0 equal to logic 1 and D1 equal to logic 0 selects the auto-switching mode. In this mode, OUT connects to the higher of IN1 and IN2.

MANUAL SWITCHING MODE

D0 equal to logic 0 selects the manual-switching mode. In this mode, OUT connects to IN1 if D1 is equal to logic 1, otherwise OUT connects to IN2.

N-CHANNEL MOSFETs

Two internal high-side power MOSFETs implement a single-pole double-throw (SPDT) switch. Digital logic selects the IN1 switch, IN2 switch, or no switch (Hi-Z state). The MOSFETs have no parallel diodes so output-to-input current cannot flow when the FET is off. An integrated comparator prevents turnon of a FET switch if the output voltage is greater than the input voltage.

CROSS-CONDUCTION BLOCKING

The switching circuitry ensures that both power switches never conduct at the same time. A comparator monitors the gate-to-source voltage of each power FET and allows a FET to turn on only if the gate-to-source voltage of the other FET is below the turnon threshold voltage.

REVERSE-CONDUCTION BLOCKING

When the TPS211x switches from a higher-voltage supply to a lower-voltage supply, current can potentially flow back from the load capacitor into the lower-voltage supply. To minimize such reverse conduction, the TPS211x does not connect a supply to the output until the output voltage has fallen to within 100 mV of the supply voltage. Once a supply has been connected to the output, it remains connected regardless of output voltage.

CHARGE PUMP

The higher of supplies $\operatorname{IN} 1$ and $\operatorname{IN} 2$ powers the internal charge pump. The charge pump provides power to the current limit amplifier and allows the output FET gate voltage to be higher than the IN1 and IN2 supply voltages. A gate voltage that is higher than the source voltage is necessary to turn on the N -channel FET.

CURRENT LIMITING

A resistor $\mathrm{R}_{\text {(LIM) }}$ from ILIM to GND sets the current limit to $250 / \mathrm{R}_{\text {(ILIM) }}$ and $500 / \mathrm{R}_{\text {(LIM) }}$ for the TPS2114 and TPS2115, respectively. Setting resistor $\mathrm{R}_{(\text {(LIM) }}$ equal to zero is not recommended as that disables current limiting.

OUTPUT VOLTAGE SLEW-RATE CONTROL

The TPS2114/5 slews the output voltage at a slow rate when OUT switches to IN1 or IN2 from the Hi-Z state (see Truth Table). A slow slew rate limits the inrush current into the load capacitor. High inrush currents can adversely effect the voltage bus and cause a system to hang up or reset. It can also cause reliability issues-like pit the connector power contacts, when hot plugging a load like a PCI card. The TPS2114/5 slews the output voltage at a much faster rate when OUT switches between IN1 and IN2. The fast rate minimizes the output voltage droop and reduces the output voltage hold-up capacitance requirement.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated

[^0]: (1) The TPS211x can switch a voltage as low as 1.5 V as long as there is a minimum of 2.8 V at one of the input power pins. In this specific case, the lower supply voltge has no effect on the IN1 and IN2 switch on-resistances.

[^1]: (1) Not tested in production.

