1.5-Gbps 2×2 LVDS CROSSPOINT SWITCH

FEATURES

- Designed for Signaling Rates(${ }^{1}$) Up To 1.5 Gbps
- Total Jitter < 65 ps
- Pin-Compatible With SN65LVDS22 and SN65LVDM22
- 25 mV of Receiver Input Threshold Hysteresis Over 0-V to 4-V Common-Mode Range
- Inputs Electrically Compatible With CML, LVPECL and LVDS Signal Levels
- Propagation Delay Times, 900 ps Maximum
- LVDT Integrates 110- Ω Terminating Resistor
- Offered in SOIC and TSSOP

APPLICATIONS

- 10-G (OC-192) Optical Modules
- 622 MHz Central Office Clock Distribution
- Wireless Basestations
- Low Jitter Clock Repeater/Multiplexer
- Protection Switching for Serial Backplanes

DESCRIPTION

The SN65LVDS122 and SN65LVDT122 are crosspoint switches that use low voltage differential signaling (LVDS) to achieve signaling rates as high as 1.5 Gbps. They are pin-compatible speed upgrades to the SN65LVDS22 and SN65LVDM22. The internal signal paths maintain differential signaling for high speeds and low signal skews. These devices have a 0 V to 4 V common-mode input range that accepts LVDS, LVPECL, CML inputs. Two logic pins (S0 and S1) set the internal configuration between the differential inputs and outputs. This allows the flexibility to perform the following configurations: 2×2 crosspoint switch, 2:1 mux, 1:2 splitter or dual repeater/translator within a single device. Additionally, SN65LVDT122 incorporates a 110- Ω termination resistor for those applications where board space is a premium. Although these devices are designed for 1.5 Gbps , some applications at a 2-Gbps data rate can be supported depending on loading and signal quality.

The intended application of this device is ideal for loopback switching for diagnostic routines, fanout buffering of clock/data distribution provide protection in fault-tolerant systems, clock muxing in optical modules, and for overall signal boosting over extended distances.

The SN65LVDS122 and SN65LVDT122 are characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

EYE PATTERNS OF OUTPUTS OPERATING SIMULTANEOUSLY

Horizontal Scale= $\mathbf{2 0 0}$ ps/div

[^0] storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

PACKAGE	TERMINATION RESISTOR	PART NUMBER(1)	SYMBOLIZATION
SOIC	No	SN65LVDS122D	LVDS122
SOIC	Yes	SN65LVDT122D	LVDT122
TSSOP	No	SN65LVDS122PW	LVDS122
TSSOP	Yes	SN65LVDT122PW	LVDT122

(1) Add the suffix R for taped and reeled carrier

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

(1) Stressesbeyondthose listedunder "absolute maximum ratings" may causepermanentdamage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.7.
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

PACKAGE DISSIPATION RATINGS

PACKAGE	$\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ POWER RATING	DERATING FACTOR(1) ABOVE $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ POWER RATING
PW	774 mW	$6.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	402 mW
D	950 mW	$7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	494 mW

[^1]INPUT ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
$\mathrm{V}_{\text {IT }+}$	Positive-going differential input voltage threshold	See Figure 1 and Table 1			100	mV
VIT-	Negative-goingdifferential input voltage threshold	See Figure 1 and Table 1	-100(2)			mV
VID(HYS)	Differential input voltage hysteresis $\left(\mathrm{V}_{\mathrm{IT}+}-\mathrm{V}_{\mathrm{IT}-}\right)$			25		mV
${ }^{\mathrm{IIH}}$	High-level input current	$\mathrm{V}_{\mathrm{IH}}=2$	-10		0	$\mu \mathrm{A}$
			0		20	
IIL	Low-level input current	V IL $=0.8 \mathrm{~V}$	-10		0	$\mu \mathrm{A}$
					20	
ICC	Supply current	$\mathrm{R}_{\mathrm{L}}=100 \Omega$		80	100	mA
		Disabled		35	45	
1	Input current (A or B inputs 'LVDS)	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or 2.4 V , Other input at 1.2 V	-20		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=4 \mathrm{~V}$, Other input at 1.2 V	0		33	
	Input current (A or B inputs 'LVDT)	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or 2.4 V , Other input open	-40		40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=4 \mathrm{~V}$, Other input open	0		66	
${ }_{1}$ (OFF)	Input current (A or B inputs 'LVDS)	$\mathrm{V}_{C C}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } 2.4 \mathrm{~V} \text {, }$ Other input at 1.2 V	-20		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V} \text { or } 4 \mathrm{~V},$ Other input at 1.2 V	0		33	
	Input current (A or B inputs 'LVDT)	$\mathrm{V}_{\mathrm{C}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or 2.4 V , Other input open	-40		40	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=2.4 \mathrm{~V}$ or 4 V , Other input open	0		66	
1 l	Input offset current (\| $\mathrm{I}_{\mathrm{IA}}-\mathrm{I}_{\mathrm{IB}} \mid$) \quad 'LVDS	$\mathrm{V}_{\text {IA }}=\mathrm{V}_{\text {IB }}, 0 \leq \mathrm{V}_{\text {IA }} \leq 4 \mathrm{~V}$	-6		6	$\mu \mathrm{A}$
R_{T}	Termination resistance ('LVDT)		90	110	132	Ω
	Termination resistance ('LVDT with power-off)	$\mathrm{V}_{\mathrm{ID}}=300 \mathrm{mV}$ and 500 mV , $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \quad \mathrm{~V}_{\text {IC }}=0 \mathrm{~V}$ to 2.4 V	90	110	132	
Cl_{1}	Differential input capacitance ('LVDT with power-off)	$\mathrm{V}_{\mathrm{I}}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5 \mathrm{~V}$		3		pF
		Powered down		3		

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $3.3-\mathrm{V}$ supply.
(2) The algebraic convention in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

OUTPUT ELECTRICAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
\|VODI	Differential output voltage magnitude	See Figure 2	247	310	454	
$\Delta \mathrm{V}_{\text {ODI }}$	Change in differential output voltage magnitude between logic states	$V_{I D}= \pm 100 \mathrm{mV}, \mathrm{See}$ Figure 2	-50		50	mV
VOC(SS)	Steady-state common-mode output voltage	See Figure 3	1.125		1.375	V
$\triangle \mathrm{VOC}(\mathrm{SS})$	Change in steady-state common-mode output voltage between logic states		-50		50	mV
V OC(PP)	Peak-to-peak common-mode output voltage			50	150	mV
los	Short-circuit output current	$\mathrm{V}_{\mathrm{O}(\mathrm{Y})}$ or $\mathrm{V}_{\mathrm{O}(\mathrm{Z})}=0 \mathrm{~V}$	-24		24	mA
$\operatorname{los}(\mathrm{D})$	Differential short-circuit output current	$\mathrm{V}_{\mathrm{OD}}=0 \mathrm{~V}$	-12		12	mA
${ }^{\text {loz }}$	High-impedance outputcurrent	$\mathrm{V}_{\mathrm{OD}}=600 \mathrm{mV}$	-1		1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	-1		1	
C_{0}	Differential output capacitance	$\mathrm{V}_{\mathrm{I}}=0.4 \sin (4 \mathrm{E} 6 \pi \mathrm{t})+0.5 \mathrm{~V}$		3		pF

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $3.3-\mathrm{V}$ supply.

TIMING SPECIFICATIONS

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX
UNIT					
tSET	Input to select setup time		0		
tHOLD	Input to select hold time		$n s$		
tSWITCH	Select to switch output		0.5		n

SWITCHING CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	NOM(1)	MAX	UNIT	
tple	Propagation delay time, low-to-high-level output	See Figure 4	400	650	900	ps	
tPHL	Propagation delay time, high-to-low-level output		400	650	900	ps	
tr_{r}	Differential output signal rise time ($20 \%-80 \%$)				280	ps	
tf_{f}	Differential output signal fall time (20\%-80\%)				280	ps	
tsk(p)	Pulse skew (\|tPHL - tPLH) ${ }^{(2)}$			10	50	ps
$\mathrm{t}_{\text {sk(}}$ (pp)	Part-to-partskew(3)	$\mathrm{V}_{\text {ID }}=0.2 \mathrm{~V}$			100	ps	
tjit(per)	Period jitter, rms (1 standard deviation) ${ }^{(4)}$	750 MHz clock input(5)		1	2.2	ps	
tijit(cc)	Cycle-to-cycle jitter (peak) ${ }^{(4)}$	750 MHz clock input(6)		10	17	ps	
tjit(pp)	Peak-to-peakjitter(4)	$\begin{aligned} & \hline 1.5 \text { Gbps } \\ & \text { 223-1 PRBS input } 7 \text {) } \end{aligned}$		33	65	ps	
tjit(det)	Deterministicjitter, peak-to-peak(4)	$\begin{aligned} & \hline 1.5 \text { Gbps } \\ & 2^{7}-1 \text { PRBS input(8) } \end{aligned}$		17	50	ps	
tPHZ	Propagation delay time, high-level-to-high-impedance output	See Figure 5		6	8	ns	
tpLZ	Propagation delay time, low-level-to-high-impedance output	See Figure 5		6	8	ns	
tPZH	Propagation delay time, high-impedance-to-high-level output	See Figure 5		4	6	ns	
tPZL	Propagation delay time, high-impedance-to-low-level output	See Figure 5		4	6	ns	
tsk(0)	Output Skew(9)			15	40	ps	

(1) All typical values are at $25^{\circ} \mathrm{C}$ and with a $3.3-\mathrm{V}$ supply.
(2) $\mathrm{t}_{\mathrm{sk}}(\mathrm{p})$ is the magnitude of the time difference between the TPLH $^{\text {and }} \mathrm{TPHL}^{\text {of }}$ of any output of a single device.
${ }^{(3)} \mathrm{t}_{\mathrm{sk}}(\mathrm{pp})$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
(4) Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.
(5) Input voltage $=V_{I D}=200 \mathrm{mV}, 50 \%$ duty cycle at $750 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{ps}(20 \%$ to $80 \%)$, measured over 1000 samples.
(6) Input voltage $=V_{I D}=200 \mathrm{mV}, 50 \%$ duty cycle at $750 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{ps}(20 \%$ to $80 \%)$.
(7) Input voltage $=V_{I D}=200 \mathrm{mV}, 2^{23}-1$ PRBS pattern at $1.5 \mathrm{Gbps}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{ps}(20 \%$ to $80 \%)$, measured over 200 k samples.
(8) Input voltage $=V_{I D}=200 \mathrm{mV}, 2^{7}-1$ PRBS pattern at $1.5 \mathrm{Gbps}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=50 \mathrm{ps}(20 \%$ to $80 \%)$.
(9) Output skew is the magnitude of the time delay difference between the outputs of a single device with all inputs tied together.

PIN ASSIGNMENTS

```
D OR PW PACKAGE
(TOP VIEW)
```

$1 \mathrm{~B} \square$	10	16	$\square V_{C C}$
1A \square	2	15	$\square V_{C C}$
S0 \square	3	14	$\square 1 \mathrm{Y}$
1DE ■	4	13	$\square 1 \mathrm{C}$
S1 \square	5	12	\square 2DE
2A \square	6	11	$\square 2 Z$
2B \square	7	10	2Y
GND ■	8	9	\square GND

CROSSPOINT LOGIC TABLE

$\mathbf{S 1}$	$\mathbf{S 0}$	$\mathbf{1 Y} / \mathbf{1 Z}$	$\mathbf{2 Y} / \mathbf{2 Z}$	FUNCTION
0	0	$1 \mathrm{~A} / 1 \mathrm{~B}$	$1 \mathrm{~A} / 1 \mathrm{~B}$	splitter
0	1	$2 \mathrm{~A} / 2 \mathrm{~B}$	$2 \mathrm{~A} / 2 \mathrm{~B}$	splitter
1	0	$1 \mathrm{~A} / 1 \mathrm{~B}$	$2 \mathrm{~A} / 2 \mathrm{~B}$	router
1	1	$2 \mathrm{~A} / 2 \mathrm{~B}$	$1 \mathrm{~A} / 1 \mathrm{~B}$	router

PARAMETER MEASUREMENT INFORMATION

Figure 1. Voltage and Current Definitions

Figure 2. Differential Output Voltage (V_{OD}) Test Circuit

NOTE: All input pulses are supplied by a generator having the following characteristics: t_{r} or $\mathrm{t}_{\mathrm{f}} \leq 0.25 \mathrm{~ns}$, pulse repetition rate (PRR) $=0.5 \mathrm{Mpps}$, pulsewidth $=500 \pm 10 \mathrm{~ns} ; \mathrm{R}_{\mathrm{L}}=100 \Omega ; \mathrm{C}_{\mathrm{L}}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the D.U.T.; the measurement of $\mathrm{V}_{\mathrm{OC}}(\mathrm{PP})$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz .

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

NOTE: All input pulses are supplied by a generator having the following characteristics: t_{r} or $\mathrm{t}_{\mathrm{f}} \leq 0.25 \mathrm{~ns}$, pulse repetition rate (PRR) $=0.5 \mathrm{Mpps}$, pulsewidth $=500 \pm 10 \mathrm{~ns} . C_{L}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the D.U.T.

Figure 4. Timing Test Circuit and Waveforms

NOTE:
All input pulses are supplied by a generator having the following characteristics: t_{r} or $t_{f} \leq 1 \mathrm{~ns}$, pulse repetition rate $(P R R)=0.5 \mathrm{Mpps}$, pulsewidth $=500 \pm 10 \mathrm{~ns} . C_{L}$ includes instrumentation and fixture capacitance within $0,06 \mathrm{~mm}$ of the D.U.T.

Figure 5. Enable and Disable Time Circuit and Definitions

Figure 6. Example Switch, Setup, and Hold Times
$\mathrm{t}_{\text {(SET) }}$ and $\mathrm{t}_{\text {(HOLD) }}$ times specify that data must be in a stable state before and after mux control switches.
Table 1. Receiver Input Voltage Threshold Test

APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	OUTPUT
$\mathbf{V}_{\mathbf{I A}}$	$\mathbf{V}_{\mathbf{I B}}$	$\mathbf{V}_{\mathbf{I D}}$	$\mathbf{V}_{\mathbf{I C}}$	
1.25 V	1.15 V	100 mV	1.2 V	H
1.15 V	1.25 V	-100 mV	1.2 V	L
4.0 V	3.9 V	100 mV	3.95 V	H
3.9 V	4.0 V	-100 mV	3.95 V	L
0.1 V	0.0 V	100 mV	0.05 V	H
0.0 V	0.1 V	-100 mV	0.05 V	L
1.7 V	0.7 V	1000 mV	1.2 V	H
0.7 V	1.7 V	-1000 mV	1.2 V	L
4.0 V	3.0 V	1000 mV	3.5 V	H
3.0 V	4.0 V	-1000 mV	3.5 V	L
1.0 V	0.0 V	1000 mV	0.5 V	H
0.0 V	1.0 V	-1000 mV	0.5 V	L

$\mathrm{H}=$ high level, $\mathrm{L}=$ low level

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

INPUT LVDS122

OUTPUT LVDS122

TYPICAL CHARACTERISTICS

Figure 7

Figure 10

PEAK-TO-PEAK JITTER
vs
DATA RATE

Figure 13

DIFFERENTIAL PROPAGATION DELAY
vs
COMMON-MODE INPUT VOLTAGE

Figure 8

PEAK-TO-PEAK JITTER
vs
DATA RATE

Figure 11

PEAK-TO-PEAK JITTER
VS
FREQUENCY

Figure 14

DIFFERENTIAL PROPAGATION DELAY
VS
TEMPERATURE

Figure 9

PEAK-TO-PEAK JITTER
vs
FREQUENCY

Figure 12

PEAK-TO-PEAK JITTER
vS
DATA RATE

Figure 15

Figure 16

LVDS122
622 Mbps, $2{ }^{23}$ - 1 PRBS

Horizontal Scale= $\mathbf{2 0 0} \mathrm{ps} /$ div
LVDS-to-LVDS
Figure 19

LVDS122
1.5 Gbps, 2^{23} - 1 PRBS

Horizontal Scale= $\mathbf{1 0 0} \mathrm{ps} / \mathrm{div}$ LVDS-to-LVDS
Figure 20

Figure 21. Jitter Setup Connections for SN65LVDS122

APPLICATION INFORMATION

TYPICAL APPLICATION CIRCUITS (ECL, PECL, LVDS, ETC.)

Figure 22. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)

Figure 23. Common-Mode Logic (CML)

Figure 24. Single-Ended (LVPECL)

Figure 25. Low-Voltage Differential Signaling (LVDS)

Figure 26. AC-Coupled Between ECL and LVDS or LVPECL

Figure 27. 2×2 Crosspoint

Figure 28. 1:2 Spitter

Figure 29. Dual Repeater

Figure 30. 2:1 MUX

MECHANICAL DATA

D (R-PDSO-G**) PLASTIC SMALL-OUTLINE
PACKAGE
8 PINS SHOWN

PIMS **	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
	0.189 $(4,80)$	0.337 $(8,55)$	0.386 $(9,80)$

4040047/E09/01
NOTES:A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

MECHANICAL DATA

PW (R-PDSO-G**)

PINS **	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
 ${ }^{(1)}$ The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

[^1]: (1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

