SLAS248C - DECEMBER 1999 - REVISED JULY 2002

features

- **14-Bit Resolution**
- 1, 3, and 8 MSPS Speed Grades Available
- Differential Nonlinearity (DNL) ±0.6 LSB Typ
- Integral Nonlinearity (INL) ±1.5 LSB Typ
- **Internal Reference**
- **Differential Inputs**
- **Programmable Gain Amplifier**
- **µP Compatible Parallel Interface**
- Timing Compatible With TMS320C6000 DSP
- 3.3-V Single Supply •
- **Power-Down Mode** •
- **Monolithic CMOS Design**

applications

- **xDSL Front Ends** •
- Communication
- **Industrial Control**
- Instrumentation
- Automotive

(TOP VIEW) IN+ AVDD AGND AGND AGND AVDD DVDD A1 A1 CS CS 48 47 46 45 44 43 42 41 40 39 38 37 WR IN-36 AV_{DD} L OE 35 П 2 VBG [34 Π DGND 3 33 DGND Π CML 4 T CLK REF+ 15 32 REF-31 Π DVDD 6 DV_{DD} 30 AGND 7 Π AGND 8 29 🛛 D0 Π D1 DGND 28 9 OV 10 27 D2 П DV_{DD} D13 11 26 h DGND D12 12 25

> 13 14 15 16 17 18 19 20 21 22 23 24

D1

NC - No internal connection

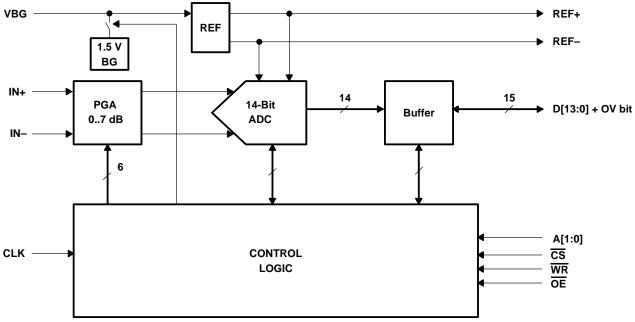
PFB AND PHP PACKAGE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all part

SLAS248C - DECEMBER 1999 - REVISED JULY 2002


description

The THS1401, THS1403, and THS1408 are 14-bit, 1/3/8 MSPS, single supply analog-to-digital converters with an internal reference, differential inputs, programmable input gain, and an on-chip sample and hold amplifier.

Implemented with a CMOS process, the device has outstanding price/performance and power/speed ratios. The THS1401, THS1403, and THS1408 are designed for use with 3.3-V systems, and with a high-speed μP compatible parallel interface, making them the first choice for solutions based on high-performance DSPs like the TI TMS320C6000 series.

The THS1401, THS1403, and THS1408 are available in a TQFP-48 package in standard commercial and industrial temperature ranges. The THS1401, THS1403, and THS1408 are available in a PQFP-48 package in automotive temperature range, and the THS1408 is available in a PQFP-48 package in military temperature range.

functional block diagram

AVAILABLE OPTIONS								
	PACKAGED DEVICE							
TA	TQFP (PFB)	PQFP (Power Pad) (PHP)						
0°C to 70°C	THS1401CPFB, THS1403CPFB, THS1408CPFB,	_						
–40°C to 85°C	THS1401IPFB, THS1403IPFB, THS1408IPFB	_						
-40°C to 125°C	_	THS1401QPHP, THS1403QPHP, THS1408QPHP						
–55°C to 125°C	_	THS1408MPHP						

THS1401, THS1403, THS1408 14-BIT, 1/3/8 MSPS DSP COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE AND PGA SLAS248C – DECEMBER 1999 – REVISED JULY 2002

Terminal Functions

TER	MINAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
A[1:0]	40, 41	Ι	Address input
AGND	7,8, 44, 45, 46		Analog ground
AV _{DD}	2, 43, 47		Analog power supply
CLK	32	-	Clock input
CML	4		Reference midpoint. This pin requires a 0.1-µF capacitor to AGND.
CS	37	-	Chip select input. Active low
DGND	9, 15, 25, 33, 34		Digital ground
DVDD	14, 20, 26, 30, 31, 42		Digital power supply
D[13:0]	11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 27, 28, 29	I/O	Data inputs/outputs
NC	38, 39		No connection, do not use. Reserved
IN+	48	Ι	Positive differential analog input
IN–	1	Ι	Negative differential analog input
OE	35	Ι	Output enable. Active low
OV	10	0	Out of range output
REF+	5	0	Positive reference output. This pin requires a 0.1 - μ F capacitor to AGND.
REF-	6	0	Negative reference output. This pin requires a 0.1 - μ F capacitor to AGND.
VBG	3	I	Reference input. This pin requires a 1-µF capacitor to AGND.
WR	36	Ι	Write signal. Active low

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, (AV _{DD} to AGND)	
Supply voltage, (DV _{DD} to DGND)	4V
Reference input voltage range, VBG – 0	
Analog input voltage range	0.3 V to AV _{DD} + 0.3 V
Digital input voltage range – 0	.3 V to DV _{DD} + 0.3 V
Operating free-air temperature range, T _A : C suffix	0°C to 70°C
I suffix	–40°C to 85°C
Q suffix	–40°C to 125°C
M suffix	–55°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

		TYP	UNIT
Thermel registeries innotion to embient Que	PFB package	85.9	°C/W
Thermal resistance, junction-to-ambient, Θ_{JA}	PHP package	28.8	C/VV
Thermel registeres junction to see Our	PFB package	19.6	°C/W
Thermal resistance, junction-to-case, Θ_{JC}	PHP package	0.79	0/11

[†] Thermal resistance is modeled data, is not production tested, and is given for informational purposes only.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, AV _{DD} , DV _{DD}		3	3.3	3.6	V
High level digital input, V _{IH}		2	3.3		V
Low level digital input, VIL			0	0.8	V
Load capacitance, CL			5	15	pF
	THS1401	0.1	1	1	MHz
Clock frequency, fCLK	THS1403	0.1	3	3	MHz
	THS1408	0.1	8	8	MHz
	C and I suffix	40%	50%	60%	
Clock duty cycle	Q and M suffix	45%	50%	55%	
	C suffix	0	25	70	
Operating free air temperature	I suffix	-40	25	85	°C
Operating free-air temperature	Q suffix	-40	25	125	-0
	M suffix	-55	25	125	

SLAS248C – DECEMBER 1999 – REVISED JULY 2002

electrical characteristics over recommended operating free-air temperature range, $AV_{DD} = DV_{DD} = 3.3 V$ (unless otherwise noted)

	PARAMETE	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Power S	Supply							
IDDA	Analog supply current	AV _{DD} = 3.6 V		81	90	mA		
IDDD	Digital supply current		DV _{DD} = 3.6 V		5	10	mA	
	Power		$AV_{DD} = DV_{DD} = 3.6 V$		270	360	mW	
	Power down current				20		μΑ	
DC Cha	racteristics							
	Resolution				14		Bits	
DNL	Differential nonlinearity				±0.6	±1	LSB	
		THS1401			±1.5	±2.5		
		THS1403C/I			±1.5	±2.5	1	
INL	Integral nonlinearity	THS1403Q	Best fit		±2	±3	LSB	
		THS1408C/I			±3	±5		
		THS1408Q/M			±3.5	±7.5		
	Offset error		IN+ = IN-, PGA = 0 dB			0.3	%FSR	
		C and I suffix	PGA = 0 dB			1	%FSR	
	Gain error	Q and M suffix	PGA = 0 db			1.75	%FSR	
AC Cha	racteristics							
ENOB	Effective number of bits			11.2	11.5		Bits	
		THS1401/3/8	f _i = 100 kHz		-81			
THD	Total harmonic distortion	THS1403/8	f _i = 1 MHz		-78		dB	
		THS1408	f _i = 4 MHz		-77			
		THS1401/3/8	f _i = 100 kHz		72			
SNR	Signal-to-noise ratio	THS1403/8	f _i = 1 MHz	70	72		dB	
		THS1408	f _i = 4 MHz	71]	
		THS1401/3/8	f _i = 100 kHz		70			
SINAD	Signal-to-noise ratio + distortion	THS1403/8	f _i = 1 MHz	69	70		dB	
		THS1408	f _i = 4 MHz	70				
		THS1401/3/8	f _i = 100 kHz		80		dB	
SFDR	Spurious free dynamic range	THS1403C/I, THS1408C/I	f _j = 1 MHz	73	80			
SFUR	Spundus nee dynamic range	THS1403Q, THS1408Q/M		71	80		uв	
		THS1408	f _i = 4 MHz 80		80			
	Analog input bandwidth				140		MHz	

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

electrical characteristics over recommended operating free-air temperature range, $AV_{DD} = DV_{DD} = 3.3 V$ (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Refere	nce Voltage					
	Bandgap voltage, internal mode		1.425	1.5	1.575	V
	Input impedance			40		kΩ
	Positive reference voltage, REF+			2.5		V
	Negative reference voltage, REF-			0.5		V
	Reference difference, ΔREF , REF+ – REF–			2		V
	Accuracy, internal reference			5%		
	Temperature coefficient			40		ppm/°C
	Voltage coefficient			200		ppm/V
Analog	g Inputs					
	Positive analog input, IN+		0		AVDD	V
	Negative analog input, IN–		0		AVDD	V
	Analog input voltage difference	$\Delta Ain = IN + - IN -, V_{ref} = REF + - REF -$	-V _{ref}		Vref	V
	Input impedance			25		kΩ
	PGA range		0		7	dB
	PGA step size			1		dB
	PGA gain error				±0.25	dB
Digital	Inputs					
VIH	High-level digital input		2			V
VIL	Low-level digital input				0.8	V
	Input capacitance			5		рF
	Input current				±1	μA
Digital	Outputs	•				
Vон	High-level digital output	I _{OH} = 50 μA	2.6			V
V _{OL}	Low-level digital output	I _{OL} = 50 μA			0.4	V
loz	Output current, high impedance				±10	μA
	Timing (CS low)		-			-
		THS1401	0.1†	1	1	MHz
fCLK	Clock frequency	THS1403	0.1†	3	3	MHz
		THS1408	0.1†	8	8	MHz
t _d	Output delay time				25	ns
	Latency			9.5		Cycles

[†] This parameter is not production tested for Q and M-suffix devices.

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

PARAMETER MEASUREMENT INFORMATION

sample timing

The THS1401/3/8 core is based on a pipeline architecture with a latency of 9.5 samples. The conversion results appear on the digital output 9.5 clock cycles after the input signal was sampled.

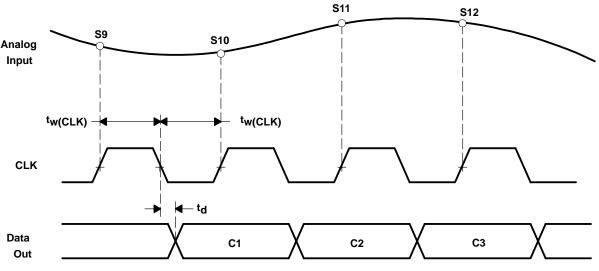


Figure 1. Sample Timing

The parallel interface of the THS1401/3/8 ADC features 3-state buffers, making it possible to directly connect it to a data bus. The output buffers are enabled by driving the OE input low.

Besides the sample results, it is also possible to read back the values of the control register, the PGA register, and the offset register. Which register is read is determined by the address inputs A[1,0]. The ADC results are available at address 0.

The timing of the control signals is described in the following sections.

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

PARAMETER MEASUREMENT INFORMATION

read timing (15-pF load)

	PARAMETER	MIN	TYP	MAX	UNIT
t _{su(OE-ACS)}	Address and chip select setup time	4			ns
t _{en}	Output enable			15	ns
^t dis	Output disable		10		ns
t _{h(A)}	Address hold time	1			ns
^t h(CS)	Chip select hold time	0			ns

NOTE: All timing parameters refer to a 50% level.

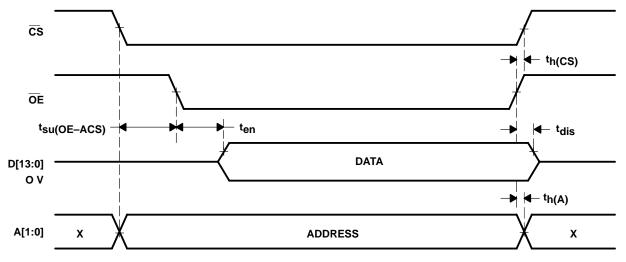
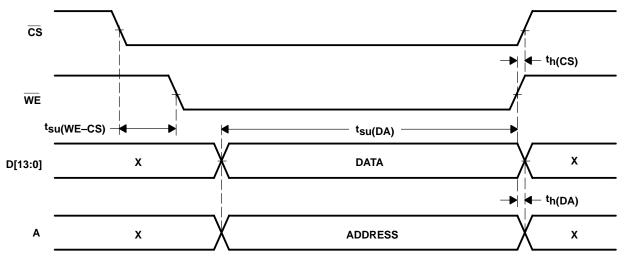


Figure 2. Read Timing


SLAS248C - DECEMBER 1999 - REVISED JULY 2002

PARAMETER MEASUREMENT INFORMATION

write timing (15-pF load)

	PARAMETER	MIN	TYP	MAX	UNIT
t _{su} (WE–CS)	Chip select setup time	4			ns
^t su(DA)	Data and address setup time	29			ns
^t h(DA)	Data and address hold time	0			ns
^t h(CS)	Chip select hold time	0			ns
^t wH(WE)	Write pulse duration high	15			ns

NOTE: All timing parameters refer to a 50% level.

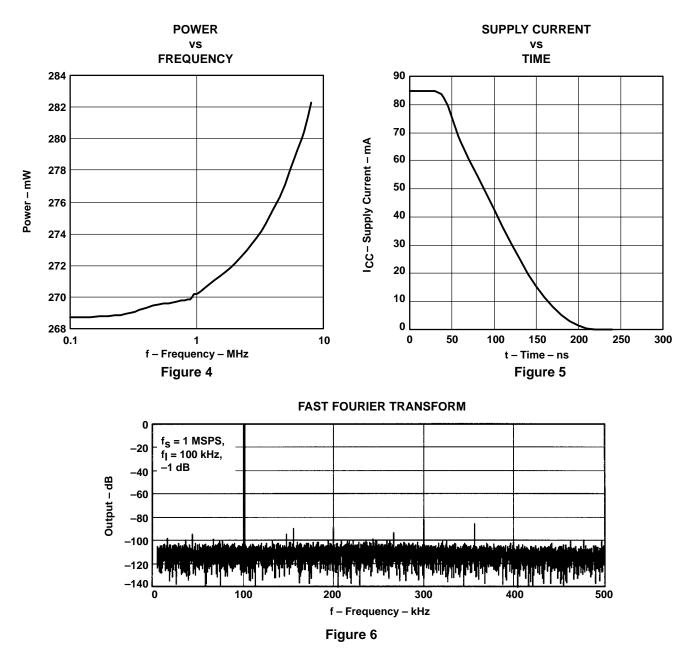
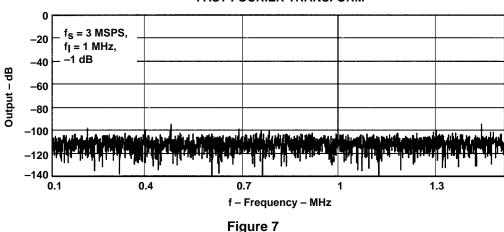
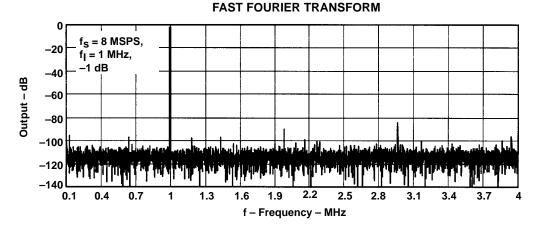


Figure 3. Write Timing

THS1401, THS1403, THS1408 14-BIT, 1/3/8 MSPS DSP COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE AND PGA SLAS248C - DECEMBER 1999 - REVISED JULY 2002


TYPICAL CHARACTERISTICS



SLAS248C - DECEMBER 1999 - REVISED JULY 2002

TYPICAL CHARACTERISTICS

FAST FOURIER TRANSFORM

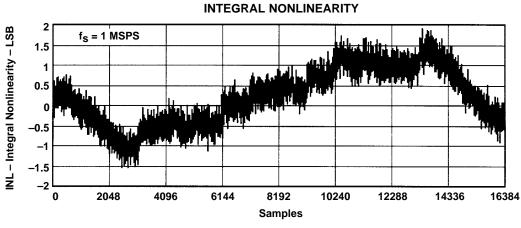


Figure 9

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

TYPICAL CHARACTERISTICS

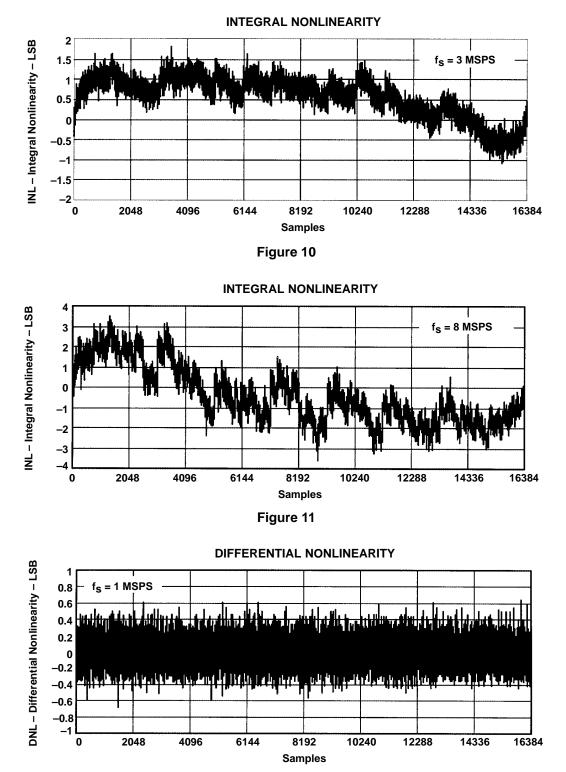


Figure 12

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

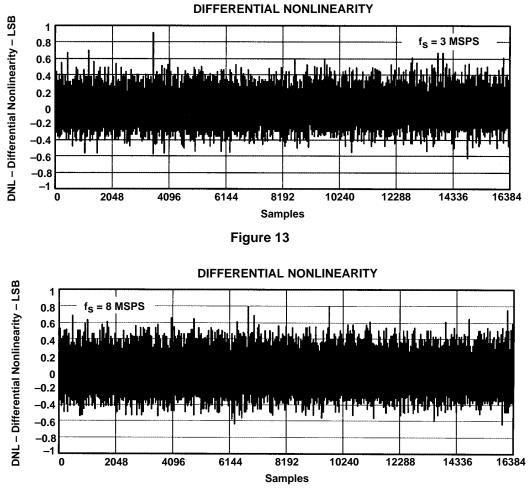
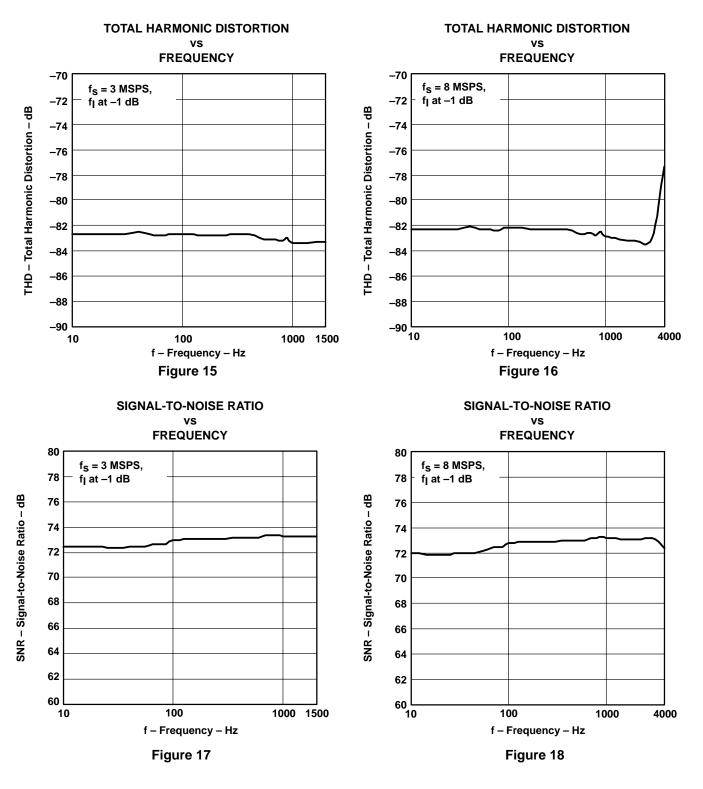



Figure 14

THS1401, THS1403, THS1408 14-BIT, 1/3/8 MSPS DSP COMPATIBLE ANALOG-TO-DIGITAL CONVERTERS WITH INTERNAL REFERENCE AND PGA SLAS248C - DECEMBER 1999 - REVISED JULY 2002

TYPICAL CHARACTERISTICS

SLAS248C – DECEMBER 1999 – REVISED JULY 2002

PRINCIPLES OF OPERATION

registers

The device contains several registers. The A register is selected by the values of bits A1 and A0:

A1	A0	Register
0	0	Conversion result
0	1	PGA
1	0	Offset
1	1	Control

Tables 1 and 2 describe how to read the conversion results and how to configure the data converter. The default values (were applicable) show the state after a power-on reset.

Table 1. Conversion Result Register, Address 0, Read

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	MSB													LSB

The output can be configured for 2s complement or straight binary format (see D11/control register).

The output code is given by:

2s complement:	Straight binary:				
-8192 at $\Delta IN = -\Delta REF$	0 at $\Delta IN = -\Delta REF$				
0 at $\Delta IN = 0$	8192 at ∆IN = 0				
8191 $\Delta IN = -\Delta REF - 1 LSB$	16383 at $\Delta IN = -\Delta REF - 1 LSB$				

 $1 \text{ LSB} = \frac{2\Delta \text{REF}}{16384}$

Table 2. PGA Gain Register, Address 1, Read/Write

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	G2	G1	G0
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The PGA gain is determined by writing to G2–0.

Gain (dB) = $1dB \times G2-0$. max = 7dB. The range of G2-0 is 0 to 7.

Table 3. Offset Register, Address 2, Read/Write

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	Х	Х	Х	Х	Х	Х	MSB							LSB
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The offset correction range is from -128 to 127 LSB. This value is added to the conversion results from the ADC.

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

PRINCIPLES OF OPERATION

Table 4. Control Register, Address 3, Read

BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Function	PWD	REF	FOR	TM2	TM1	TM0	OFF	RES						

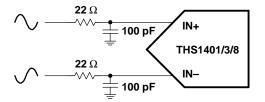
							•									
BIT	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		
Function	PWD	REF	FOR	TM2	TM1	TM0	OFF	RES								
Default	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
PWD: REF:		er down ence se		0 = normal operation 1 = power down 0 = internal reference 1 = external reference												
FOR:	Outpu	ut forma	at	0 = straight binary 1 = 2s complement												
TM2-0:	Test r			000 = normal operation												
				001 = both inputs = REF–												
				010 =	IN+ at	V _{ref} /2, I	N– at R	EF–								
				011 =	IN+ at I	REF+, I	N– at R	EF–								
				100 = normal operation												
				101 =	both in	puts = F	REF+									
	$110 = IN+ at REF-, IN- at V_{ref}/2$															
				111 = IN+ at REF–, IN– at REF+												
OF:	Offse	t correc	tion	0 = enable 1 = disable												
RES	Reserved Must be set to 0.															

Table 5. Control Register, Address 3, Write

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

APPLICATION INFORMATION

driving the analog input


The THS1401/3/8 ADCs have a fully differential input. A differential input is advantageous with respect to SNR, SFDR, and THD performance because the signal peak-to-peak level is 50% of a comparable single-ended input.

There are three basic input configurations:

- Fully differential
- Transformer coupled single-ended to differential
- Single-ended

fully differential configuration

In this configuration, the ADC converts the difference (ΔIN) of the two input signals on IN+ and IN-.

Figure 19. Differential Input

The resistors and capacitors on the inputs decouple the driving source output from the ADC input and also serve as first order low pass filters to attenuate out of band noise.

The input range on both inputs is 0 V to AV_{DD}. The full-scale value is determined by the voltage reference. The positive full-scale output is reached, if Δ IN equals Δ REF, the negative full-scale output is reached, if Δ IN equals $-\Delta$ REF.

∆IN [V]	OUTPUT
–∆REF	– full scale
0	0
ΔREF	+ full scale

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

APPLICATION INFORMATION

transformer coupled single-ended to differential configuration

If the application requires the best SNR, SFDR, and THD performance, the input should be transformer coupled.

The signal amplitude on both inputs of the ADC is one half as high as in a single-ended configuration thus increasing the ADC ac performance.

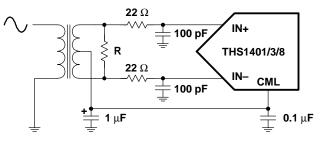


Figure 20. Transformer Coupled

The following table shows the input voltages for negative full-scale output, zero output, and positive full-scale output:

IN [V _{PEAK}]	OUTPUT [PEAK]				
–ΔREF	– full scale†				
0	0				
∆REF + full scale [†]					
† n = 1 (winding ratio)					

The resistor R of the transformer coupled input configuration must be set to match the signal source impedance $R = n^2 Rs$, where Rs is the source impedance and n is the transformer winding ratio.

APPLICATION INFORMATION

single-ended configuration

In this configuration, the input signal is level shifted by $\Delta REF/2$.



Figure 21. Single-Ended With Level Shift

The following table shows the input voltages for negative full-scale output, zero output, and positive full-scale output:

∆ IN+ [V]	OUTPUT
–ΔREF	– full scale
0	0
ΔREF	+ full scale

Note that the resistors of the op-amp and the op-amp all introduce gain and offset errors. Those errors can be trimmed by varying the values of the resistors.

Because of the added offset, the op-amp does not necessarily operate in the best region of its transfer curve (best linearity around zero) and therefore may introduce unacceptable distortion. For ac signals, an alternative is described in the following section.

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

APPLICATION INFORMATION

AC-coupled single-ended configuration

If the application does not require the signal bandwidth to include dc, the level shift shown in Figure 21 is not necessary.

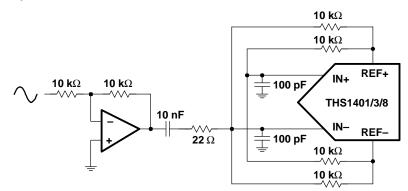


Figure 22. Single-Ended With Level Shift

Because the signal swing on the op-amp is centered around ground, it is more likely that the signal stays within the linear region of the op-amp transfer function, thus increasing the overall ac performance.

IN [V _{PEAK}]	OUTPUT [PEAK]
–∆REF	– full scale
0	0
ΔREF	+ full scale

Compared to the transformer-coupled configuration, the swing on IN- is twice as big, which can decrease the ac performance (SNR, SFD, and THD).

APPLICATION INFORMATION

internal/external reference operation

The THS1401/3/8 ADC can either be operated using the built-in band gap reference or using an external precision reference in case very high dc accuracy is needed.

The REF+ and REF+ outputs are given by:

$$\mathsf{REF} + = \mathsf{VBG}\Big(1 + \frac{2}{3}\Big) \text{ and } \mathsf{REF} - = \mathsf{VBG}\Big(1 - \frac{2}{3}\Big)$$

If the built-in reference is used, VBG equals 1.5 V which results in REF+ = 2.5 V, REF- = 0.5 V and \triangle REF = 2 V.

The internal reference can be disabled by writing 1 to D12 (REF) in the control register (address 3). The band gap reference is then disconnected and can be substituted by a voltage on the VBG pin.

programmable gain amplifier

The on-chip programmable gain amplifier (PGA) has eight gain settings. The gain can be changed by writing to the PGA gain register (address 1). The range is 0 to 7dB in steps of one dB.

out of range indication

The OV output of the ADC indicates an out of range condition. Every time the difference on the analog inputs exceeds the differential reference, this signal is asserted. This signal is updated the same way as the digital data outputs and therefore subject to the same pipeline delay.

offset compensation

With the offset register it is possible to automatically compensate system offset errors, including errors caused by additional signal conditioning circuitry. If the offset compensation is enabled (D7 (OFF) in the control register), the value in the offset register (address 2) is automatically added to the output of the ADC.

In order to set the correct value of the offset compensation register, the ADC result when the input signal is 0 must be read by the host processor and written to the offset register (address 2).

test modes

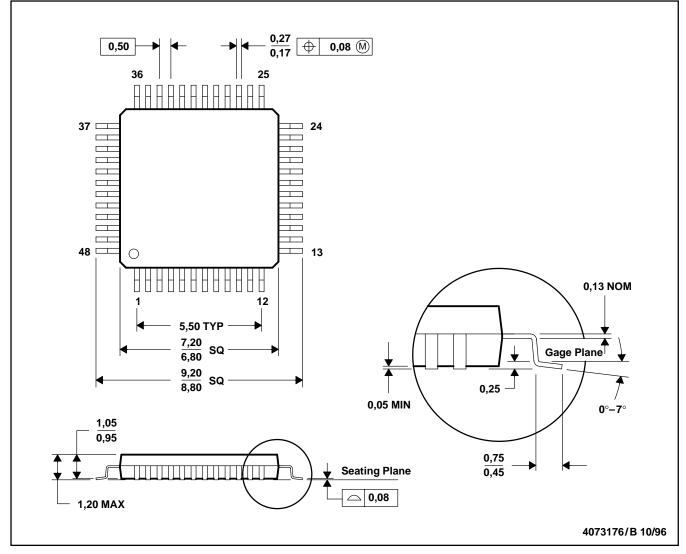
The ADC core operation can be tested by selecting one of the available test modes (see control register description). The test modes apply various voltages to the differential input depending on the setting in the control register.

digital I/O

The digital inputs and outputs of the THS1401/3/8 ADC are 3-V CMOS compatible. In order to avoid current feed back errors, the capacitive load on the digital outputs should be as low as possible (50 pF max). Series resistors (100 Ω) on the digital outputs can improve the performance by limiting the current during output transitions.

The parallel interface of the THS1401/3/8 ADC features 3-state buffers, making it possible to directly connect it to a data bus. The output buffers are enabled by driving the \overline{OE} input low.

Refer to the read and write timing diagrams in the parameter measurement information section for information on read and write access.



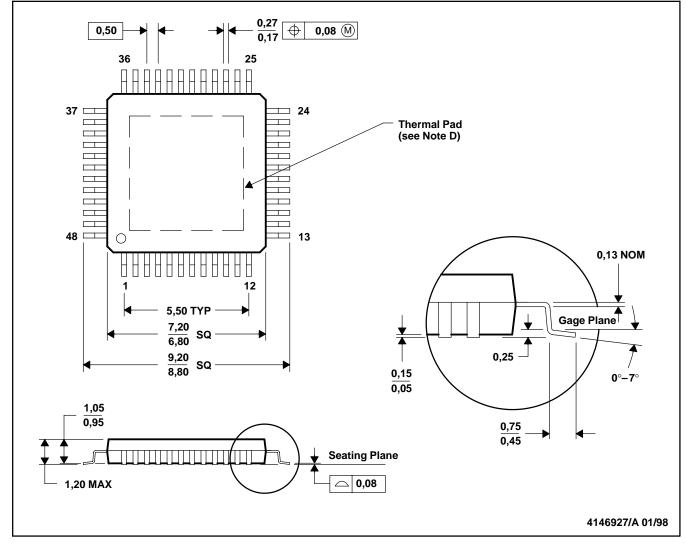
SLAS248C - DECEMBER 1999 - REVISED JULY 2002

MECHANICAL DATA

PFB (S-PQFP-G48)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-026

SLAS248C - DECEMBER 1999 - REVISED JULY 2002

MECHANICAL DATA

PowerPAD[™] PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

PHP (S-PQFP-G48)

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.
 - This pad is electrically and thermally connected to the backside of the die and possibly selected leads.
- E. Falls within JEDEC MS-026

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated