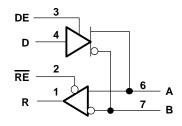


MULTIPOINT-LVDS LINE DRIVER AND RECEIVER

FEATURES


- Low-Voltage Differential 30- Ω to 55- Ω Line Drivers and Receivers for Signaling Rates⁽¹⁾ Up to 200 Mbps
- Type-1 Receivers Incorporate 25 mV of Hysteresis
- Type-2 Receivers Provide an Offset (100 mV) Threshold to Detect Open-Circuit and Idle-Bus Conditions
- Meets or Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
- Power Up/Down Glitch Free
- Controlled Driver Output Voltage Transition Times for Improved Signal Quality
- -1 V to 3.4 V Common-Mode Voltage Range Allows Data Transfer With 2 V of Ground Noise
- Bus Pins High Impedance When Disabled or $V_{CC} \le 1.5 \text{ V}$
- 100-Mbps Devices Available (SN65MLVD200, 202, 204, 205)

APPLICATIONS

 Low-Power High-Speed Short-Reach Alternative to TIA/EIA-485

LOGIC DIAGRAM (POSITIVE LOGIC)

SN65MLVD201, SN65MLVD206

- Backplane or Cabled Multipoint Data and Clock Transmission
- Cellular Base Stations
- Central-Office Switches
- Network Switches and Routers

DESCRIPTION

The SN65MLVD201, 203, 206, and 207 are multipoint-low-voltage differential (M-LVDS) line drivers and receivers, which are optimized to operate at signaling rates up to 200 Mbps. All parts comply with the multipoint low-voltage differential signaling (M–LVDS) standard TIA/EIA-899. These circuits are similar to their TIA/EIA-644 standard compliant LVDS counterparts, with added features to address multipoint applications. The driver output has been designed to support multipoint buses presenting loads as low as 30 Ω and incorporates controlled transition times to allow for stubs off of the backbone transmission line.

These devices have Type-1 and Type-2 receivers that detect the bus state with as little as 50 mV of differential input voltage over a common-mode voltage range of –1 V to 3.4 V. The Type-1 receivers exhibit 25 mV of differential input voltage hysteresis to prevent output oscillations with slowly changing signals or loss of input. Type-2 receivers include an offset threshold to provide a known output state under open-circuit, idle-bus, and other faults conditions. The devices are characterized for operation from –40°C to 85°C.

SN65MLVD203, SN65MLVD207

$$\begin{array}{c|cccc}
D & 5 & 9 & Y \\
\hline
DE & 4 & 10 & Z \\
\hline
RE & 3 & 12 & A \\
R & 2 & 11 & B
\end{array}$$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

(1) The signaling rate of a line, is the number of voltage transitions that are made per second expressed in the units bps (bits per second).

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

PART NUMBER	FOOTPRINT	RECEIVER TYPE	PACKAGE MARKING
SN65MLVD201D	SN75176	Type 1	MF201
SM65MLVD203D	SN75ALS180	Type 1	MLVD203
SN65MLVD206D	SN75176	Type 2	MF206
SM65MLVD207D	SN75ALS180	Type 2	MLVD207

PACKAGE DISSIPATION RATINGS

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING
D(8)	725 mW	5.8 mW/°C	377 mW
D(14)	950 mW	7.6 mW/°C	494 mw

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted(1)

			SN65MLVD201, 203, 206, AND 207	
Supply voltage range(2),	Vcc		–0.5 V to 4 V	
	D, DE, RE		–0.5 V to 4 V	
Input voltage range	A, B (201, 206)	A, B (201, 206)		
	A, B (203, 207)	–4 V to 6 V		
0	R	−0.3 V to 4 V		
Output voltage range	Y, Z, A, or B		–1.8 V to 4 V	
	11	A, B, Y, and Z	±8 kV	
Electrostatic discharge	Human Body Model(3)	All pins	±2 kV	
	Charged-DeviceModel ⁽⁴⁾	All pins	±1500 V	
Continuous power dissipa	ation		See Dissipation Rating Table	
Storage temperature rang	Storage temperature range			

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	3	3.3	3.6	V
High-level input voltage, V _{IH}	2		VCC	V
Low-level input voltage, V _{IL}	GND		0.8	V
Voltage at any bus terminal VA, VB, VY or VZ	-1.4		3.8	V
Magnitude of differential input voltage, V _{ID}	0.05		VCC	V
Operating free-air temperature, T _A	-40		85	°C

⁽²⁾ All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

⁽³⁾ Tested in accordance with JEDEC Standard 22, Test Method A114-A.

⁽⁴⁾ Tested in accordance with JEDEC Standard 22, Test Method C101.

DEVICE ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

PARAMETER		TER	TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
		Driver only	RE and DE at V_{CC} , $R_L = 50 \Omega$, All others open		13	22	
ICC Supply current	0	Both enabled	\overline{RE} at V_{CC} , DE at 0 V, R_L = No Load, All others open		1	4	m ^
	Both enabled	RE at 0 V, DE at V_{CC} , $R_L = 50 \Omega$, All others open		16	24	mA	
		Receiver only	RE at 0 V, DE at 0 V, $R_L = 50 \Omega$, All others open		4	13	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

DRIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN(1)	TYP(2)	MAX	UNIT
V _{AB} or V _{YZ}	Differential output voltage magnitude	See Figure 2	480		650	mV
$\Delta V_{AB} $ or $\Delta V_{YZ} $	Change in differential output voltage magnitude between logic states	See Figure 2	-50		50	mV
Vos(ss)	Steady-state common-mode output voltage		0.8		1.2	V
Δ VOS(SS)	Change in steady-state common-mode output voltage between logic states	See Figure 3	-50		50	mV
VOS(PP)	Peak-to-peak common-mode output voltage				150	mV
VY(OC) or VA(OC)	Maximum steady-state open-circuit output voltage	05	0		2.4	V
VZ(OC) or VB(OC)	Maximum steady-state open-circuit output voltage	See Figure 7	0		2.4	V
V _P (H)	Voltage overshoot, low-to-high level output	05			1.2V _{SS}	V
V _{P(L)}	Voltage overshoot, high-to-low level output	See Figure 5	-0.2 V _{SS}			V
ΊΗ	High-level input current (D, DE)	V _{IH} = 2 V	0		10	μΑ
I _I L	Low-level input current (D, DE)	V _{IL} = 0.8 V	0		10	μΑ
I _{OS}	Differential short-circuit output current magnitude	See Figure 4			24	mA
loz	High-impedance state output current (driver only)	$-1.4 \text{ V} \le \text{V}_{\text{Y}} \text{ or V}_{\text{Z}} \le 3.8 \text{ V},$ Other output = 1.2 V	-15		10	μΑ
IO(OFF)	Power-off output current	$-1.4 \text{ V} \leq \text{V} \text{Y or V}_Z \leq 3.8 \text{ V},$ Other output = 1.2 V, $0 \text{ V} \leq \text{V}_{CC} \leq 1.5 \text{ V}$	-10		10	μА
C _Y or C _Z	Output capacitance	V _I = 0.4 sin(30E6πt) + 0.5 V, (3) Other input at 1.2 V, driver disabled		3		pF
C _{YZ}	Differential output capacitance	V _{AB} = 0.4 sin(30E6πt) V, (3) Driver disabled			2.5	pF
C _{Y/Z}	Output capacitance balance, (CY/CZ)		0.99		1.01	

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

⁽²⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

⁽³⁾ HP4194A impedance analyzer (or equivalent)

RECEIVER ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted (1)

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
\/	Positive-going differential input voltage	Type 1				50	mV
V _{IT+}	threshold	Type 2				150	mv
.,	Negative-going differential input voltage	Type 1	See Figure 9 and Table 1 and	-50			\/
V _{IT} _	threshold	Type 2	Table 2	50			mV
\/	Differential input voltage hysteresis, $(V_{IT+} - V_{IT})$	Type 1			25		\
VHYS		Type 2			0		mV
VOH	High-level output voltage		I _{OH} = -8 mA	2.4			V
VOL	Low-level output voltage		I _{OL} = 8 mA			0.4	V
lн	High-level input current (RE)		V _{IH} = 2 V	-10		0	μΑ
IIL	Low-level input current (RE)		V _{IL} = 0.8 V	-10		0	μΑ
loz	High-impedance output current		V _O = 0 V or 3.6 V	-10		15	μΑ
C _A or C _B	B Input capacitance		V _I = 0.4 sin(30E6πt) + 0.5 V,(2) Other input at 1.2 V		3		pF
C _{AB}	Differential input capacitance		$V_{AB} = 0.4 \sin(30E6\pi t) V(2)$			2.5	pF
C _{A/B}	Input capacitance balance, (C _A /C _B)			0.99		1.01	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

BUS INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TE	ST CONDITIONS	MIN	TYP(1)	MAX	UNIT
		V _A = 3.8 V,	$V_B = 1.2 V$,	0		32	
IΑ	Receiver or transceiver with driver	V _A = 0 V or 2.4 V,	V _B = 1.2 V	-20		20	μΑ
	disabled input current	V _A = -1.4 V,	V _B = 1.2 V	-32		0	
		$V_B = 3.8 V$,	V _A = 1.2 V	0		32	
ΙΒ	Receiver or transceiver with driver	$V_B = 0 \text{ V or } 2.4 \text{ V},$	V _A = 1.2 V	-20		20	μΑ
	disabled input current	$V_B = -1.4 V$,	V _A = 1.2 V	-32		0	
I _{AB}	Receiver or transceiver with driver disabled differential input current (IA - IB)	VA = VB,	-1.4≤V _A ≤3.8 V	-4		4	μΑ
	Receiver or transceiver power-off input current	$V_A = 3.8 V$,	$V_B = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	0		32	
IA(OFF)		V _A = 0 V or 2.4 V,	$V_B = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-20		20	μΑ
, ,		V _A = -1.4 V,	$V_B = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-32		0	
		$V_B = 3.8 V$,	$V_A = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	0		32	
I _B (OFF)	Receiver or transceiver power-off input current	$V_B = 0 \text{ V or } 2.4 \text{ V},$	$V_A = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-20		20	μΑ
	Current	$V_B = -1.4 \text{ V},$	$V_A = 1.2 \text{ V}, 0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-32		0	
I _{AB} (OFF)	Receiver input or transceiver power-off differential input current $(I_A - I_B)$	$V_A = V_B$, $0 \text{ V} \leq V_C$	C ≤ 1.5 V, −1.4 ≤ V _A ≤ 3.8 V	-4		4	μΑ
C _A	Transceiver with driver disabled input capacitance	V _A = 0.4 sin (30E6	πt) + 0.5 V (2), $V_B = 1.2 V$		5		pF
СВ	Transceiver with driver disabled input capacitance	V _B = 0.4 sin (30E6	$\pi t) + 0.5 V(2), V_A = 1.2 V$		5		pF

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

⁽²⁾ HP4194A impedance analyzer (or equivalent)

⁽²⁾ HP4194A impedance analyzer (or equivalent)

BUS INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS (continued)

	PARAMETER	TEST CONDITIONS	MIN TYP(1)	MAX	UNIT
C _{AB}	Transceiver with driver disabled differential input capacitance	$V_{AB} = 0.4 \sin (30E6\pi t) V (2)$		3	pF
C _{A/B}	Transceiver with driver disabled input capacitance balance, (C _A /C _B)		0.99	1.01	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

DRIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
^t pLH	Propagation delay time, low-to-high-level output		1	1.5	2.4	ns
^t pHL	Propagation delay time, high-to-low-level output		1	1.5	2.4	ns
t _r	Differential output signal rise time	Saa Fianna F	1		1.6	ns
tf	Differential output signal fall time	See Figure 5	1		1.6	ns
tsk(p)	Pulse skew (t _{pHL} - t _{pLH})			0	100	ps
tsk(pp)	Part-to-part skew				1	ns
^t jit(per)	Period jitter, rms (1 standard deviation) (2)	100 MHz clock input ⁽³⁾		2	3	ps
^t jit(pp)	Peak-to-peakjitter(2)(5)	200 Mbps 2 ¹⁵ –1 PRBS input ⁽⁴⁾		30	130	ps
^t pHZ	Disable time, high-level-to-high-impedance output				7	ns
^t pLZ	Disable time, low-level-to-high-impedance output	Saa Fianna S			7	ns
^t pZH	Enable time, high-impedance-to-high-level output	See Figure 6		•	7	ns
t _{pZL}	Enable time, high-impedance-to-low-level output			•	7	ns

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

RECEIVER SWITCHING CHARACTERISTICS

over recommended operating conditions unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT	
^t pLH	Propagation delay time, low-to-high-level output			2	4	6	ns	
tpHL	Propagation delay time, high-to-low-level output			2	4	6	ns	
t _r	Output signal rise time			1		2.3	ns	
t _f	Output signal fall time		C _L = 15 pF, See Figure 10	1		2.3	ns	
	Dulas alsour/lk Al)	Type 1			100	300	ps	
tsk(p)	sk(p) Pulse skew (ItpHL – tpLHI)		Pulse skew (tpHL - tpLH) Type 2			300	500	ps
tsk(pp)	Part-to-part skew ⁽²⁾					1	ns	
^t jit(per)	Period jitter, rms (1 standard deviation) (3)	_	100 MHz clock input ⁽⁴⁾		4	7	ps	
4	Peak-to-peakjitter(3)(6)	Type 1	200 Mbps 2 ¹⁵ –1 PRBS input(5)		300	700	ps	
^t jit(pp)	Peak-to-peakjitter(©)(©)	Type 2	200 Mbps 210=1 PRBS Input(0)		450	800	ps	
^t pHZ	Disable time, high-level-to-high-impedance output					10	ns	
t _{pLZ}	Disable time, low-level-to-high-impedance output		0 5: 44			10	ns	
^t pZH	Enable time, high-impedance-to-high-level output		See Figure 11			15	ns	
t _{pZL}	Enable time, high-impedance-to-low-level output					15	ns	

⁽¹⁾ All typical values are at 25°C and with a 3.3-V supply voltage.

⁽²⁾ HP4194A impedance analyzer (or equivalent)

⁽²⁾ Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.

⁽³⁾ $t_r = t_f = 0.5 \text{ ns} (10\% \text{ to } 90\%)$, measured over 30 k samples.

⁽⁴⁾ $t_r = t_f = 0.5 \text{ ns}$ (10% to 90%), measured over 100 k samples.

⁽⁵⁾ Peak-to-peak jitter includes jitter due to pulse skew (tsk(p)).

⁽²⁾ HP4194A impedance analyzer (or equivalent)

⁽³⁾ Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.

⁽⁴⁾ $V_{ID} = 200 \text{ mV}_{pp}$ (LVD201, 203), $V_{ID} = 400 \text{ mV}_{pp}$ (LVD206, 207), $V_{cm} = 1 \text{ V}$, $t_r = t_f = 0.5 \text{ ns}$ (10% to 90%), measured over 30 k samples. (5) $V_{ID} = 200 \text{ mV}_{pp}$ (LVD201, 203), $V_{ID} = 400 \text{ mV}_{pp}$ (LVD206, 207), $V_{cm} = 1 \text{ V}$, $t_r = t_f = 0.5 \text{ ns}$ (10% to 90%), measured over 100 k samples. (6) Peak-to-peak jitter includes jitter due to pulse skew ($t_{sk(p)}$).

PARAMETER MEASUREMENT INFORMATION

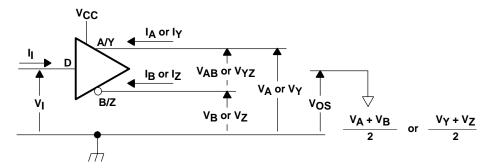
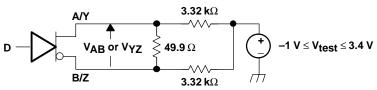



Figure 1. Driver Voltage and Current Definitions

NOTE: All resistors are 1% tolerance.

Figure 2. Differential Output Voltage Test Circuit

- NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{\tilde{f}} \le 1$ ns, pulse frequency = 500 kHz, duty cycle = $50 \pm 5\%$.
 - B. C1, C2 and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.
 - C. R1 and R2 are metal film, surface mount, ±1%, and located within 2 cm of the D.U.T.
 - D. The measurement of VOS(PP) is made on test equipment with a -3 dB bandwidth of at least 1 GHz.

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

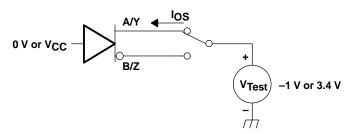
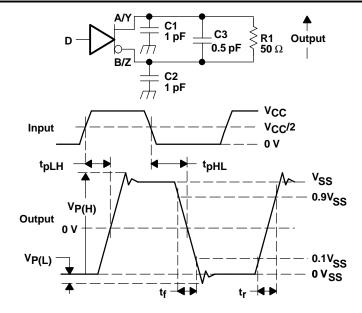
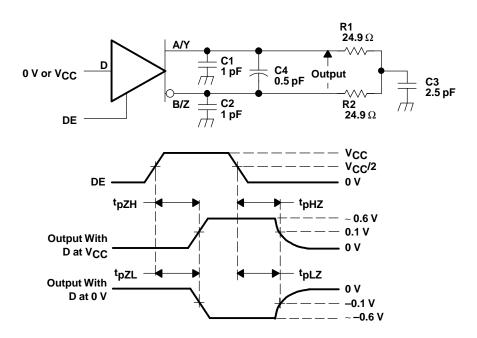



Figure 4. Driver Short-Circuit Test Circuit



NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{f} \le 1$ ns, frequency = 500 kHz, duty cycle = $50 \pm 5\%$.

- B. C1, C2, and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.
- C. R1 is a metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.
- D. The measurement is made on test equipment with a –3 dB bandwidth of at least 1 GHz.

Figure 5. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{f} \le 1$ ns, frequency = 500 kHz, duty cycle = 50 ± 5%.

- B. C1, C2, C3, and C4 includes instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.
- C. R1 and R2 are metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.
- D. The measurement is made on test equipment with a –3 dB bandwidth of at least 1 GHz.

Figure 6. Driver Enable and Disable Time Circuit and Definitions

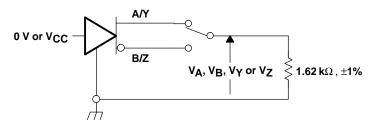
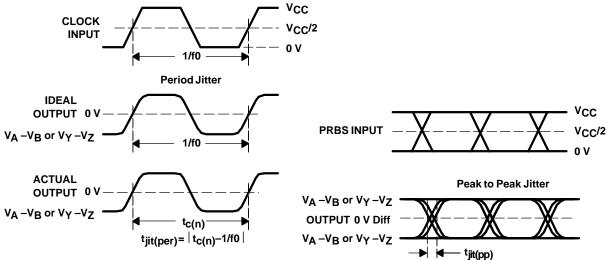



Figure 7. Maximum Steady State Output Voltage

NOTES:A. All input pulses are supplied by an Agilent 8304A Stimulus System.

- B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
- C. Period jitter is measured using a 100 MHz 50 \pm 1% duty cycle clock input.
- D. Peak-to-peak jitter is measured using a 200Mbps 2¹⁵–1 PRBS input.

Figure 8. Driver Jitter Measurement Waveforms

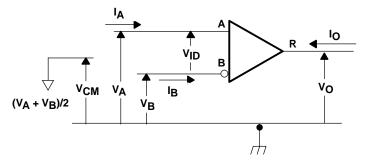
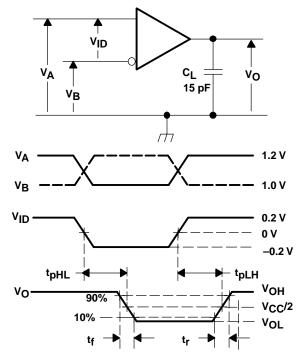


Figure 9. Receiver Voltage and Current Definitions

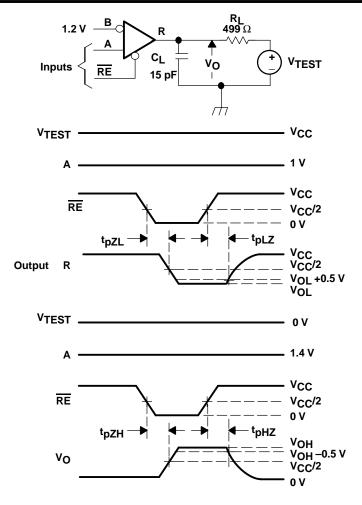
Table 1. Type-1 Receiver Input Threshold T	Test Voltage:	S
--	---------------	---


APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	RECEIVER
VIA	V _{IB}	v_{ID}	V _{IC}	OUTPUT
2.400	0.000	2.400	1.200	Н
0.000	2.400	-2.400	1.200	L
3.800	3.750	0.050	3.775	Н
3.750	3.800	-0.050	3.775	L
-1.350	-1.400	0.050	-1.375	Н
-1.400	-1.350	-0.050	-1.375	L

NOTE: H= high level, L = low level, output state assumes receiver is enabled ($\overline{RE} = L$)

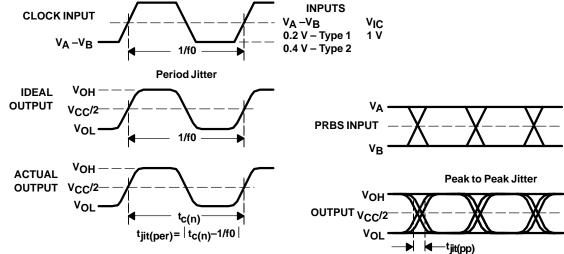
Table 2. Type-2 Receiver Input Threshold Test Voltages

APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	RECEIVER OUTPUT
VIA	V _{IB}	V_{ID}	V _{IC}	001701
2.400	0.000	2.400	1.200	Н
0.000	2.400	-2.400	1.200	L
3.800	3.650	0.150	3.725	Н
3.800	3.750	0.050	3.775	L
-1.250	-1.400	0.150	-1.325	Н
-1.350	-1.400	0.050	-1.375	L


NOTE: H= high level, L = low level, output state assumes receiver is enabled ($\overline{RE} = L$)

NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_r or t_f ≤ 1 ns, frequency = 50 MHz, duty cycle = 50 ± 5%. C_L is a combination of a 20%-tolerance, low-loss ceramic, surface-mount capacitor and fixture capacitance within 2 cm of the D.U.T. B. The measurement is made on test equipment with a –3 dB bandwidth of at least 1 GHz.

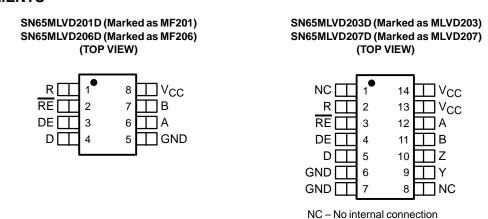
Figure 10. Receiver Timing Test Circuit and Waveforms



NOTES:A. All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 1$ ns, frequency = 500 kHz, duty cycle = $50 \pm 5\%$.

- B. R_L is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T.
 C. R_L is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T.
- D. C_L is the instrumentation and fixture capacitance within 2 cm of the DUT and $\pm 20\%$.

Figure 11. Receiver Enable/Disable Time Test Circuit and Waveforms



- NOTES:A. All input pulses are supplied by an Agilent 8304A Stimulus System.
 - B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
 - C. Period jitter is measured using a 100 MHz 50 \pm 1% duty cycle clock input.
 - D. Peak-to-peak jitter is measured using a 200 Mbps 2¹⁵–1 PRBS input.

Figure 12. Receiver Jitter Measurement Waveforms

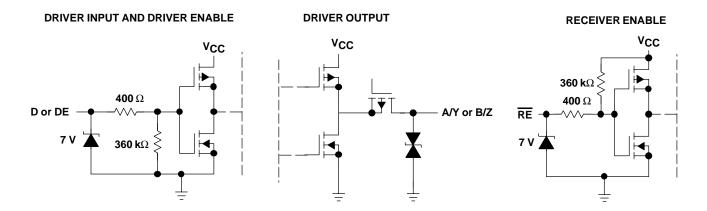
PIN ASSIGNMENTS

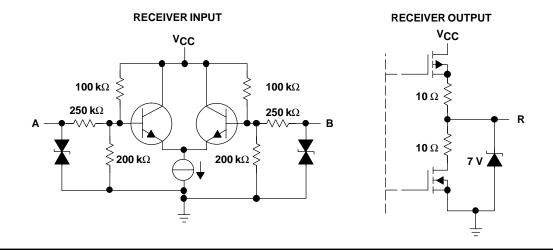
DEVICE FUNCTION TABLE

TYPE-1 RECEIVER (201, 203)

INPUTS	OUTPUT		
$V_{ID} = V_A - V_B$	RE	R	
V _{ID} ≥ 50 mV	L	Н	
$-50 \text{ mV} < \text{V}_{\text{ID}} < 50 \text{ mV}$	L	?	
$V_{ID} \le -50 mV$	L	L	
X	Н	Z	
X	Open	Z	
Open Circuit	L	?	

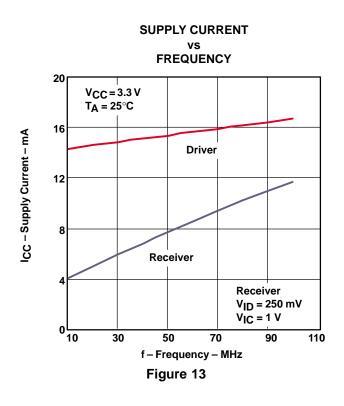
TYPE-2 RECEIVER (206, 207)

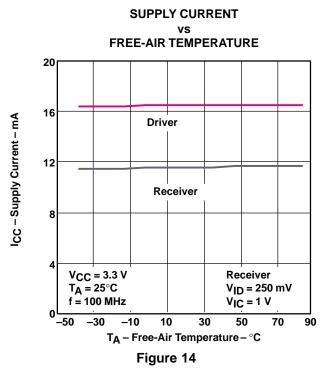

INPUTS	OUTPUT	
$V_{ID} = V_A - V_B$	RE	R
V _{ID} ≥ 150 mV	L	Н
50 mV < V _{ID} < 150 mV	L	?
$V_{ID} \le 50 mV$	L	L
X	Н	Z
X	Open	Z
Open Circuit	L	L

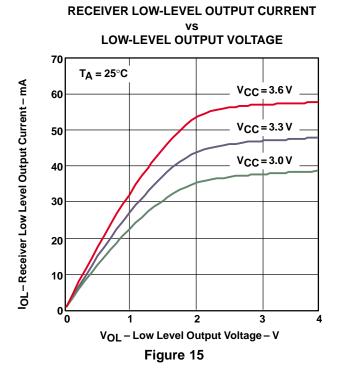

DRIVER

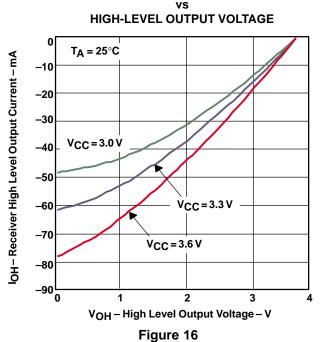
INPUT	ENABLE	OUTPUTS	
D	DE	A OR Y	B OR Z
L	Н	L	Н
Н	Н	Н	L
OPEN	Н	L	Н
Х	OPEN	Z	Z
Х	L	Z	Z

H = high level, L = low level, Z = high impedance, X = Don't care, ? = indeterminate

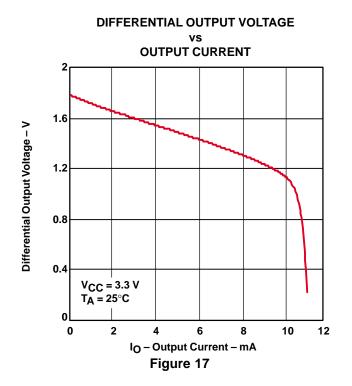

EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

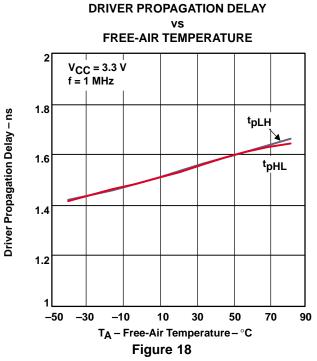


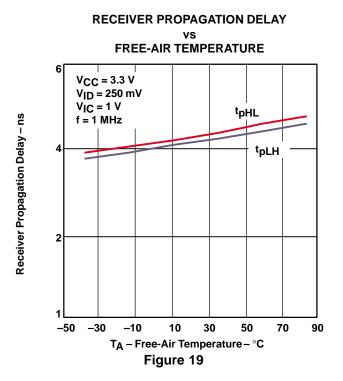


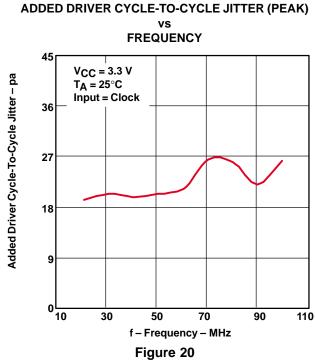


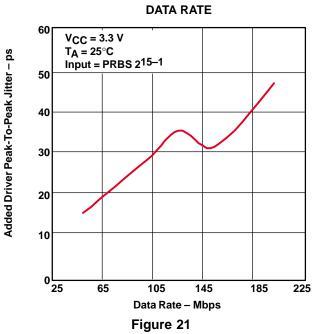
TYPICAL CHARACTERISTICS

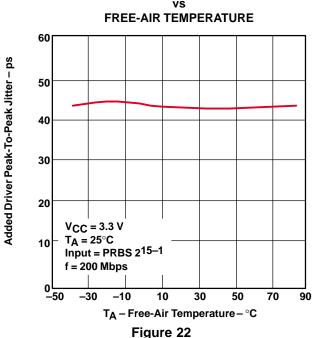


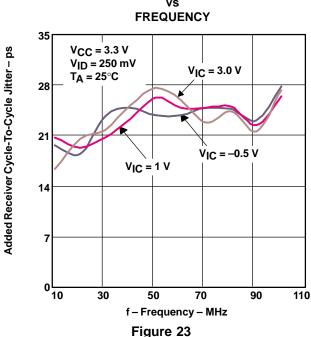


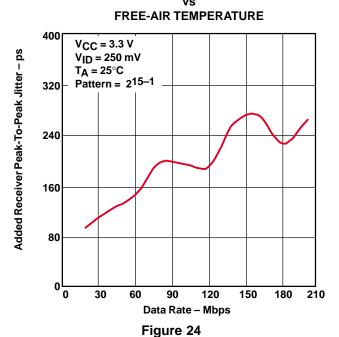



RECEIVER HIGH-LEVEL OUTPUT CURRENT

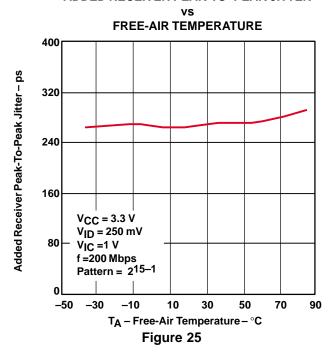




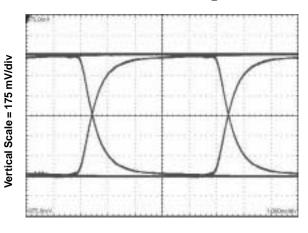

ADDED DRIVER PEAK-TO-PEAK JITTER vs

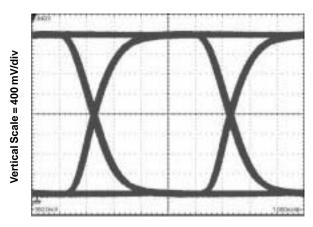

ADDED DRIVER PEAK-TO-PEAK JITTER

ADDED RECEIVER CYCLE-TO-CYCLE JITTER vs



ADDED RECEIVER PEAK-TO-PEAK JITTER




SN65MLVD201 DRIVER OUTPUT EYE PATTERN 200 Mbps, 2^{15–1} PRBS, R_L = 50 Ω

Horizontal Scale = 1 ns/div

Figure 26

SN65MLVD201 RECEIVER OUTPUT EYE PATTERN 200 Mbps, 2^{15-1} PRBS, $C_L = 15~pF$

Horizontal Scale = 1 ns/div

Figure 27

APPLICATION INFORMATION

COMPARISON OF MLVD TO TIA/EIA-485

Receiver Input Threshold (Failsafe)

The MLVD standard defines a type 1 and type 2 receiver. Type 1 receivers include no provisions for failsafe and have their differential input voltage thresholds near zero volts. Type 2 receivers have their differential input voltage thresholds offset from zero volts to detect the absence of a voltage difference. The impact to receiver output by the offset input can be seen in Table 3 and Figure 28.

Table 3. Receiver Input Voltage Threshold Requirements

RECEIVER TYPE	OUTPUT LOW	OUTPUT HIGH
Type 1	$-2.4 \text{ V} \le \text{V}_{1D} \le -0.05 \text{ V}$	$0.05 \text{ V} \le \text{V}_{1D} \le 2.4 \text{ V}$
Type 2	$-2.4 \text{ V} \le \text{V}_{1D} \le 0.05 \text{ V}$	$0.15 \text{ V} \le \text{V}_{1D} \le 2.4 \text{ V}$

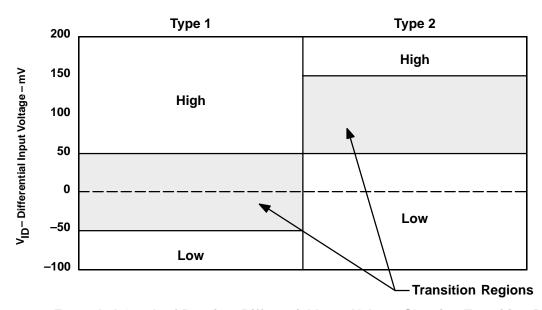
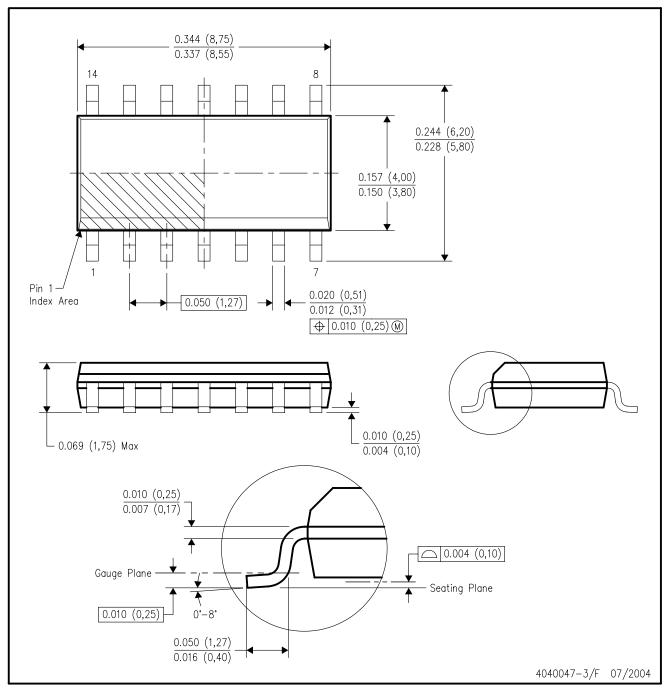
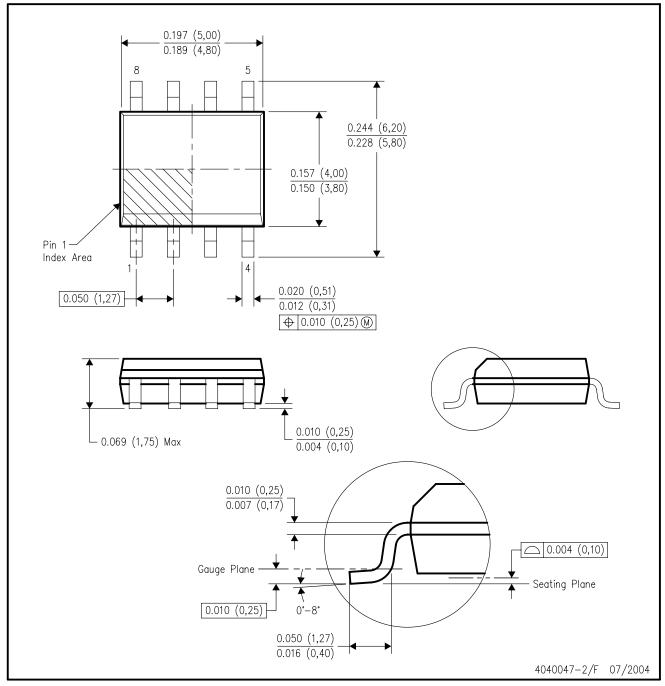



Figure 28. Expanded Graph of Receiver Differential Input Voltage Showing Transition Region

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated