
TLV2721, TLV2721Y Advanced LinCMOS™ RAIL-TO-RAIL VERY LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS197A - AUGUST1997 - REVISED MARCH 2001

- Output Swing Includes Both Supply Rails
- Low Noise . . . 19 nV/ \sqrt{Hz} Typ at f = 1 kHz
- Low Input Bias Current . . . 1 pA Typ
- Fully Specified for Single-Supply 3-V and 5-V Operation
- Very Low Power . . . 110 μA Typ
- Common-Mode Input Voltage Range Includes Negative Rail
- Wide Supply Voltage Range 2.7 V to 10 V
- Macromodel Included

DBV PACKAGE

description

The TLV2721 is a single low-voltage operational amplifier available in the SOT-23 package. It offers a compromise between the ac performance and output drive of the TLV2731 and the micropower TLV2711.

It consumes only 150 μ A (max) of supply current and is ideal for battery-powered applications. The device exhibits rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLV2721 is fully characterized at 3 V and 5 V and is optimized for low-voltage applications.

The TLV2721, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs).

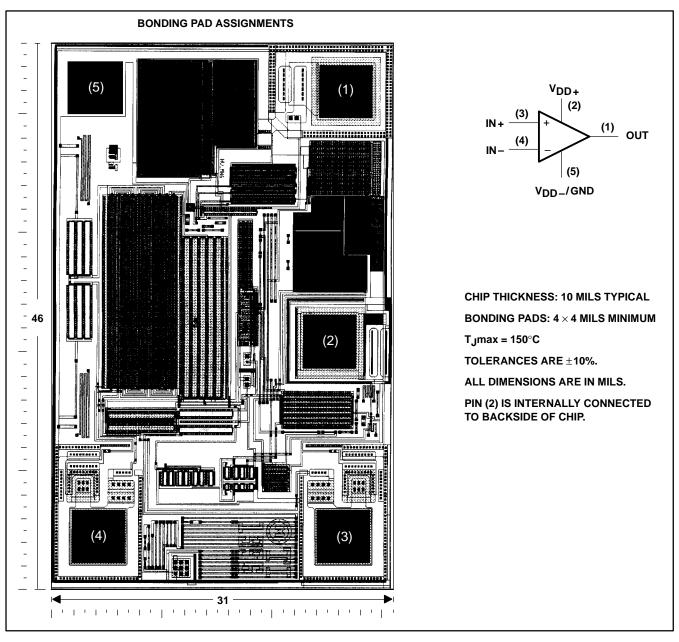
With a total area of 5.6mm², the SOT-23 package only requires one third the board space of the standard 8-pin SOIC package. This ultra-small package allows designers to place single amplifiers very close to the signal source, minimizing noise pick-up from long PCB traces.

AVAILABLE OPTIONS

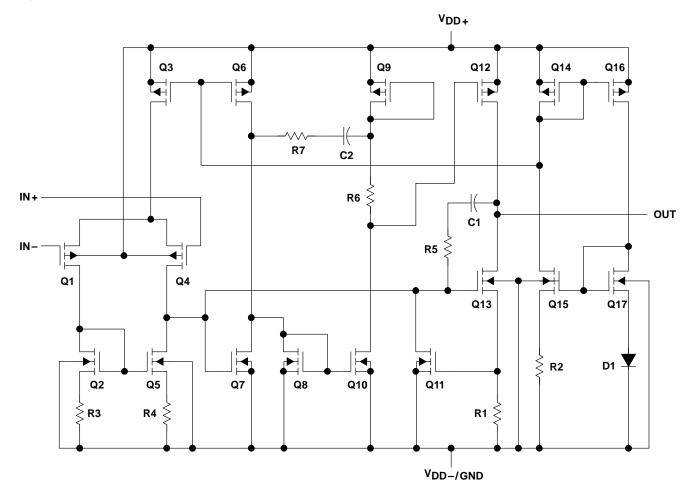
т.	V _{IO} max AT 25°C	PACKAGED DEVICES	SYMBOL	CHIP FORM‡
T _A	VIOIIIAX AT 25 C	SOT-23 (DBV) [†]	STWIBOL	(Y)
0°C to 70°C	3 mV	TLV2721CDBV	VAKC	TLV2721Y
-40°C to 85°C	3 mV	TLV2721IDBV	VAKI	ILVZIZII

[†] The DBV package available in tape and reel only.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Advanced LinCMOS is a trademark of Texas Instruments.

[‡] Chip forms are tested at T_A = 25°C only.


TLV2721Y chip information

This chip, when properly assembled, displays characteristics similar to the TLV2721C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.

equivalent schematic

COMPONENT COUNT						
Transistors	23					
Diodes	5					
Resistors	11					
Capacitors	2					

† Includes both amplifiers and all ESD, bias, and trim circuitry

TLV2721, TLV2721Y Advanced LinCMOS™ RAIL-TO-RAIL VERY LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS197A - AUGUST1997 - REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	12 V
Differential input voltage, V _{ID} (see Note 2)	±V _{DD}
Input voltage range, V _I (any input, see Note 1)	0.3 V to V _{DD}
Input current, I _I (each input)	±5 mA
Output current, I _O	±50 mA
Total current into V _{DD+}	±50 mA
Total current out of V _{DD}	±50 mA
Duration of short-circuit current (at or below) 25°C (see Note 3)	unlimited
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : TLV2721C	0°C to 70°C
TLV2721I	40°C to 85°C
Storage temperature range, T _{stq}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DBV package	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to V_{DD} _.
 - 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below V_{DD} = 0.3 V.
 - 3. The output can be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DBV	150 mW	1.2 mW/°C	96 mW	78 mW

recommended operating conditions

	TL	.V2721C	ΤL	UNIT	
	MIN MAX		MIN	MAX	UNII
Supply voltage, V _{DD} (see Note 1)	2.7	10	2.7	10	V
Input voltage range, V _I	V _{DD} -	V _{DD+} -1.3	V_{DD-}	V _{DD+} -1.3	V
Common-mode input voltage, V _{IC}	V _{DD} -	V _{DD+} -1.3	V _{DD} _	V _{DD+} -1.3	V
Operating free-air temperature, T _A	0	70	-40	85	°C

NOTE 1: All voltage values, except differential voltages, are with respect to VDD -.

electrical characteristics at specified free-air temperature, $V_{\mbox{\scriptsize DD}}$ = 3 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS TAT		Т	LV27210	;	TLV2721I			LINUT		
	PARAMETER	TEST CON	DITIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
VIO	Input offset voltage					0.5	3		0.5	3	mV	
αΛΙΟ	Temperature coefficient of input offset voltage			Full range		1			1		μV/°C	
	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 1.5 \text{ V},$ $V_{O} = 0,$	$V_{IC} = 0$, R _S = 50 Ω	25°C		0.003			0.003		μV/mo	
IIO	Input offset current			25°C		0.5	60		0.5	60	pА	
10	input onset current			Full range			150			150	PΛ	
I _{IB}	Input bias current			25°C		1	60		1	60	pА	
'ID	mpar sido carroni			Full range			150			150	Ρ, .	
VICR	Common-mode input	R _S = 50 Ω,	V _O ≤5 mV	25°C	0 to 2	-0.3 to 2.2		0 to 2	-0.3 to 2.2		V	
TICK	voltage range	113 = 00 22,	V O =0 IIIV	Full range	0 to 1.7			0 to 1.7			•	
		$I_{OH} = -100 \mu A$		25°C		2.97			2.97			
۷он	High-level output voltage	I _{OH} = -400 μA		25°C		2.88			2.88		V	
	- Tollago	ΙΟΗ = -400 μΑ		Full range	2.6			2.6				
	Laural autout	$V_{IC} = 1.5 V$,	$I_{OL} = 50 \mu A$	25°C		15			15			
V_{OL}	Low-level output voltage	V _{IC} = 1.5 V,	I _{OL} = 500 μA	25°C		150			150		mV	
		VIC = 1.0 V,	-10L = 000 μ/ι	Full range			500			500		
	Large-signal	V _{IC} = 1.5 V,	$R_L = 2 k\Omega^{\ddagger}$	25°C	2	3		2	3			
AVD	differential voltage	$V_0 = 1.5 \text{ V},$ $V_0 = 1 \text{ V to 2 V}$		Full range	1			1			V/mV	
	amplification	Ŭ	$R_L = 1 M\Omega^{\ddagger}$	25°C		250			250			
^r id	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω	
r _{ic}	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω	
c _{ic}	Common-mode input capacitance	f = 10 kHz		25°C		6			6		pF	
z _o	Closed-loop output impedance	f = 10 kHz,	A _V = 10	25°C		90			90		Ω	
CMRR	Common-mode	$V_{IC} = 0 \text{ to } 1.7 \text{ V},$		25°C	70	82		70	82		dB	
CIVIER	rejection ratio	$V_0 = 1.5 \text{ V},$	$R_S = 50 \Omega$	Full range	65			65			ub	
ksvr	Supply voltage rejection ratio	$V_{DD} = 2.7 \text{ V to 8}$		25°C	80	95		80	95		dB	
	$(\Delta V_{DD} / \Delta V_{IO})$	VIC = VDD/2,	$_{\text{C}} = V_{\text{DD}}/2$, No load Full	Full range	80			80				
I _{DD}	Supply current	V _O = 1.5 V,	No load	25°C		100	150		100	150	μΑ	
טטי		10 1.0 4,	. 10 1000	Full range			200			200	, m	

[†] Full range for the TLV2721C is 0°C to 70°C. Full range for the TLV2721I is – 40°C to 85°C.

[‡]Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2721, TLV2721Y Advanced LinCMOS™ RAIL-TO-RAIL VERY LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS197A - AUGUST1997 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 3 V$

DADAMETED		TEST CONDITIONS		- +	Т	LV27210	;	-	ΓLV2721		UNIT
	PARAMETER	I EST COND	ITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNII
	Slew rate at unity	V _O = 1.1 V to 1.9 V,	p. akot	25°C	0.1	0.25		0.1	0.25		
SR	gain	$C_L = 100 \text{ pF}^{\ddagger}$	KL = 2 KS2+,	Full range	0.05			0.05			V/μs
Vn	Equivalent input	f = 10 Hz		25°C		120			120		nV/√Hz
۷n	noise voltage	f = 1 kHz		25°C		20			20		nv/√Hz
VALCED	Peak-to-peak equivalent input	f = 0.1 Hz to 1 Hz		25°C	680			680		mV	
V _{N(PP)}	noise voltage	f = 0.1 Hz to 10 Hz		25°C	860			860		IIIV	
In	Equivalent input noise current			25°C		0.6			0.6		fA/√ Hz
	Total harmonic	$V_0 = 1 \text{ V to 2 V},$ f = 20 kHz,	A _V = 1	25°C		2.52%			2.52%		
THD+N		otal harmonic $R_L = 2 k\Omega^{\ddagger}$	A _V = 10	25 C		7.01%			7.01%		
I HD+N	distortion plus noise	$V_0 = 1 \text{ V to 2 V},$	A _V = 1	25°C		0.076%			0.076%		
		f = 20 kHz, $R_L = 2 \text{ k}\Omega$ §	A _V = 10	25.0	0.147%		0.147%				
	Gain-bandwidth product	f = 1 kHz, C _L = 100 pF [‡]	$R_L = 2 k\Omega^{\ddagger}$,	25°C		480			480		kHz
ВОМ	Maximum output-swing bandwidth	$V_O(PP) = 1 V$, $R_L = 2 k\Omega^{\ddagger}$,	A _V = 1, C _L = 100 pF [‡]	25°C		30			30		kHz
	Settling time	$A_V = -1$, Step = 1 V to 2 V,	To 0.1%	25°C		4.5			4.5		μs
t _S	Setting time	$R_L = 2 k\Omega^{\ddagger},$ $C_L = 100 pF^{\ddagger}$	To 0.01%	25°C		6.8			6.8		μs
φm	Phase margin at unity gain	$R_L = 2 k\Omega^{\ddagger}, \qquad C_L = 100 pF^{\ddagger}$		25°C		53°			53°		
	Gain margin	1	<u> </u>	25°C		12			12		dB

[†] Full range is –40°C to 85°C.

[‡]Referenced to 1.5 V

[§] Referenced to 0 V

electrical characteristics at specified free-air temperature, $V_{DD} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS TAT MIN. TYPE		LV27210	•	٦	Γ LV2721 Ι	l	UNIT			
	FARAWILTER	TEST CON	DITIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
۷ _{IO}	Input offset voltage					0.5	3		0.5	3	mV	
αVIO	Temperature coefficient of input offset voltage			Full range		1			1		μV/°C	
	Input offset voltage long-term drift (see Note 4)	$V_{DD\pm} = \pm 2.5 \text{ V},$ $V_{O} = 0,$		25°C		0.003			0.003		μV/mo	
Ιο	Input offset current			25°C		0.5	60		0.5	60	pА	
'IO	input onset current			Full range			150			150	PΛ	
I _{IB}	Input bias current			25°C		1	60		1	60	pА	
'ID	input blub current			Full range			150			150	Ρ/ (
\/.op	Common-mode input	Po = 50 O	$_{\rm S} = 50 \ \Omega,$ $ V_{\rm O} \le 5 \ {\rm mV}$		0 to 4	-0.3 to 4.2		0 to 4	-0.3 to 4.2		V	
VICR	voltage range	$KS = 50 \Omega$	IAIOI ₹2 IIIA	Full range	0 to 3.5			0 to 3.5			V	
M	High-level output	I _{OH} = -500 μA		0500	4.75	4.88		4.75	4.88			
VOH	voltage	I _{OH} = -1 mA		25°C	4.6	4.76		4.6	4.76		V	
		V _{IC} = 2.5 V,	I _{OL} = 50 μA	25°C		12			12			
V_{OL}	Low-level output voltage	V 2 5 V	I _{OL} = 500 μA	25°C		120			120		mV	
	vollago	$V_{IC} = 2.5 V,$	ΙΟΓ = 200 μν	Full range			500			500		
	Large-signal	V 0.5.V	$R_L = 2 k\Omega^{\ddagger}$	25°C	3	5		3	5			
A_{VD}	differential voltage	$V_{IC} = 2.5 \text{ V},$ $V_{O} = 1 \text{ V to 4 V}$	KL = 2 K22+	Full range	1			1			V/mV	
	amplification		$R_L = 1 M\Omega^{\ddagger}$	25°C		800			800			
r _{id}	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω	
r _{ic}	Common-mode input resistance			25°C		10 ¹²			1012		Ω	
c _{ic}	Common-mode input capacitance	f = 10 kHz		25°C		6			6		pF	
z ₀	Closed-loop output impedance	f = 10 kHz,	A _V = 10	25°C		70			70		Ω	
CMPP	Common-mode	V _{IC} = 0 to 2.7 V,	V _O = 1.5 V,	25°C	70	85		70	85		dВ	
CMRR	rejection ratio	$R_S = 50 \Omega$		Full range	65			65			dB	
ksvr	Supply voltage rejection ratio	V _{DD} = 4.4 V to 8		25°C	80	95		80	95		dB	
	(ΔV _{DD} /ΔV _{IO})	vIC = vDD/2,	$C = V_{DD}/2$, No load Full	Full range	80			80				
lDD	Supply current	V _O = 2.5 V,	No load	25°C		110	150		110	150	μА	
-טט	Cappi) carroin	. U = 2.5 v,		Full range			200			200	μι	

[†] Full range for the TLV2721C is 0°C to 70°C. Full range for the TLV2721I is – 40°C to 85°C.

[‡]Referenced to 2.5 V

NOTE 5: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2721, TLV2721Y Advanced LinCMOS™ RAIL-TO-RAIL VERY LOW-POWER SINGLE OPERATIONAL AMPLIFIERS

SLOS197A - AUGUST1997 - REVISED MARCH 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST CONDITIONS		T _A †	Т	LV27210	;	1	ΓLV2721		UNIT
	PARAMETER	TEST CONDITIONS		'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNII
	Slew rate at unity	V _O = 1.5 V to 3.5 V,	$R_1 = 2 k\Omega^{\ddagger}$	25°C	0.1	0.25		0.1	0.25		
SR	gain	$C_L = 100 \text{ pF}^{\ddagger}$	KL = 2 K12+,	Full range	0.05			0.05			V/μs
Vn	Equivalent input	f = 10 Hz		25°C		90			90		nV/√ Hz
٧n	noise voltage	f = 1 kHz		25°C		19			19		IIV/∀⊓Z
\/\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Peak-to-peak equivalent input	f = 0.1 Hz to 1 Hz		25°C		800			800		mV
V _{N(PP)}	noise voltage	f = 0.1 Hz to 10 Hz		25°C	960				960		IIIV
In	Equivalent input noise current			25°C		0.6			0.6		fA/√ Hz
		$V_0 = 1.5 \text{ V to } 3.5 \text{ V},$	A _V = 1	25°C		2.45%			2.45%		
TUDAN	Total harmonic	f = 20 kHz, $R_L = 2 k\Omega^{\ddagger}$	A _V = 10	25.0		5.54%			5.54%		
THD+N	distortion plus noise	V _O = 1.5 V to 3.5 V,	A _V = 1	0500		0.142%			0.142%		
		$f = 20 \text{ kHz},$ $R_L = 2 \text{ k}\Omega$	A _V = 10	25°C		0.257%			0.257%		
	Gain-bandwidth product	f = 1 kHz, C _L = 100 pF [‡]	$R_L = 2 k\Omega^{\ddagger}$,	25°C		510			510		kHz
ВОМ	Maximum output- swing bandwidth	$V_{O(PP)} = 1 \text{ V},$ $R_L = 2 \text{ k}\Omega^{\ddagger},$	$A_V = 1$, $C_L = 100 \text{ pF}^{\ddagger}$	25°C		40			40		kHz
t-	Settling time	$A_V = -1$, Step = 1.5 V to 3.5 V,	To 0.1%	25°C		6.8			6.8		μs
t _S	Octaining time	$R_L = 2 k\Omega^{\ddagger},$ $C_L = 100 pF^{\ddagger}$	To 0.01%	25°C		9.2			9.2		μο
φm	Phase margin at unity gain	$R_L = 2 k\Omega^{\ddagger}$,	$R_{I} = 2 k\Omega^{\ddagger},$ $C_{I} = 100 pF^{\ddagger}$			53°			53°		
	Gain margin	<u> </u>		25°C		12			12		dB

[†]Full range is -40°C to 85°C.

[‡]Referenced to 2.5 V

[§] Referenced to 0 V

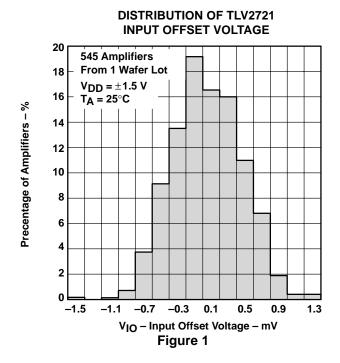
electrical characteristics at V_{DD} = 3 V, T_{A} = 25°C (unless otherwise noted)

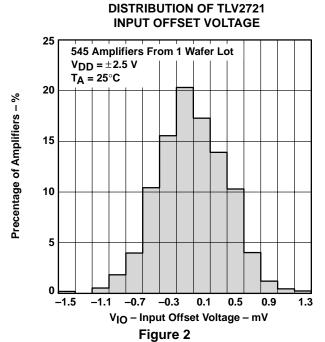
	PARAMETER	TEST C	ONDITIONS		TI	LV2721Y	•	LINUT
	PARAMETER	lesi c	CNDITIONS		MIN	TYP	MAX	UNIT
VIO	Input offset voltage					620		μV
I _{IO}	Input offset current	$V_{DD} \pm = \pm 1.5 \text{ V},$ $R_{S} = 50 \Omega$	VIC = 0,	VO = 0,		0.5	60	pА
I _{IB}	Input bias current	115 = 30 22				1	60	pА
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	R _S = 50 Ω			-0.3 to 2.2		V
Vон	High-level output voltage	I _{OH} = -100 μA				2.97		V
V	Low level output veltage	V _{IC} = 1.5 V,	I _{OL} = 50 μ/	A		15		mV
VOL	Low-level output voltage	V _{IC} = 1.5 V,	I _{OL} = 500 µ	ιA		150		IIIV
	Large-signal differential	V 4.V/1- 0.V/	$R_L = 2 k\Omega^{\dagger}$			3		\
AVD	voltage amplification	$V_O = 1 \text{ V to 2 V}$ $R_L = 1 \text{ M}\Omega^{\dagger}$		250		V/mV		
r _{id}	Differential input resistance					1012		Ω
r _{ic}	Common-mode input resistance					1012		Ω
c _{ic}	Common-mode input capacitance	f = 10 kHz				6		pF
z _O	Closed-loop output impedance	f = 10 kHz,	A _V = 10			90		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 1.7 \text{ V},$	V _O = 0,	R _S = 50 Ω		82		dB
ksvr	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 2.7 \text{ V to 8 V},$	V _{IC} = 0,	No load		95		dB
I _{DD}	Supply current	$V_{O} = 0,$	No load			100		μΑ

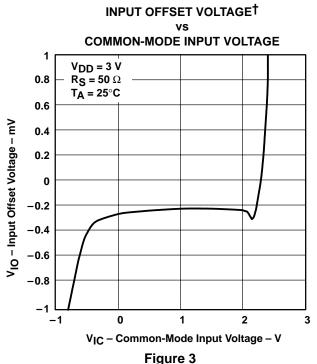
[†] Referenced to 1.5 V

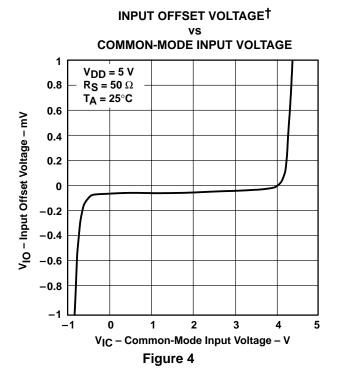
electrical characteristics at V_{DD} = 5 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS		TI	LV2721Y	•	
	PARAMETER	15310	CNDITIONS		MIN	TYP	MAX	UNIT
VIO	Input offset voltage					610		μV
ΙΟ	Input offset current	$V_{DD} \pm = \pm 1.5 \text{ V},$ RS = 50 Ω	VIC = 0,	$V_O = 0$,		0.5	60	pА
I _{IB}	Input bias current	115 = 30 22				1	60	pA
VICR	Common-mode input voltage range	V _{IO} ≤5 mV,	R _S = 50 Ω			-0.3 to 4.2		٧
Vон	High-level output voltage	I _{OH} = -500 μA				4.88		V
V	Low lovel output valtage	V _{IC} = 2.5 V,	I _{OL} = 50 μ/	4		12		\/
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 500 µ	ιΑ		120		mV
	Large-signal differential	V 4.V45.4.V	$R_L = 2 k\Omega^{\dagger}$			5		\//\/
AVD	voltage amplification	$V_O = 1 \text{ V to 4 V}$	$R_L = 1 M\Omega$	†		800		V/mV
rid	Differential input resistance					1012		Ω
r _{ic}	Common-mode input resistance					1012		Ω
c _{ic}	Common-mode input capacitance	f = 10 kHz				6		pF
z _o	Closed-loop output impedance	f = 10 kHz,	A _V = 10			70		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0 \text{ to } 1.7 \text{ V},$	$V_{O} = 0$,	$R_S = 50 \Omega$		85		dB
ksvr	Supply voltage rejection ratio (ΔV _{DD} /ΔV _{IO})	$V_{DD} = 2.7 \text{ V to 8 V},$	V _{IC} = 0,	No load		95		dB
I _{DD}	Supply current	V _O = 0,	No load			110		μΑ


[†] Referenced to 2.5 V




Table of Graphs


			FIGURE
VIO	Input offset voltage	Distribution vs Common-mode input voltage	1, 2 3, 4
αVIO	Input offset voltage temperature coefficient	Distribution	5, 6
I _{IB} /I _{IO}	Input bias and input offset currents	vs Free-air temperature	7
VI	Input voltage	vs Supply voltage vs Free-air temperature	8 9
Vон	High-level output voltage	vs High-level output current	10, 13
VOL	Low-level output voltage	vs Low-level output current	11, 12, 14
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	15
IOS	Short-circuit output current	vs Supply voltage vs Free-air temperature	16 17
٧o	Output voltage	vs Differential input voltage	18, 19
A _{VD}	Differential voltage amplification	vs Load resistance	20
A _{VD}	Large signal differential voltage amplification	vs Frequency vs Free-air temperature	21, 22 23, 24
z _o	Output impedance	vs Frequency	25, 26
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	27 28
kSVR	Supply-voltage rejection ratio	vs Frequency vs Free-air temperature	29, 30 31
I _{DD}	Supply current	vs Supply voltage	32
SR	Slew rate	vs Load capacitance vs Free-air temperature	33 34
٧o	Inverting large-signal pulse response		35, 36
٧o	Voltage-follower large-signal pulse response		37, 38
٧o	Inverting small-signal pulse response		39, 40
Vo	Voltage-follower small-signal pulse response		41, 42
٧n	Equivalent input noise voltage	vs Frequency	43, 44
	Input noise voltage (referred to input)	Over a 10-second period	45
THD + N	Total harmonic distortion plus noise	vs Frequency	46
	Gain-bandwidth product	vs Free-air temperature vs Supply voltage	47 48
φm	Phase margin	vs Frequency vs Load capacitance	21, 22 51, 52
	Gain margin	vs Load capacitance	49, 50
B ₁	Unity-gain bandwidth	vs Load capacitance	53, 54

 \dagger For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

TYPICAL CHARACTERISTICS

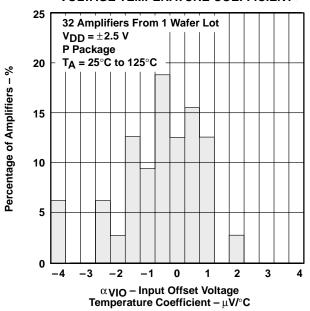
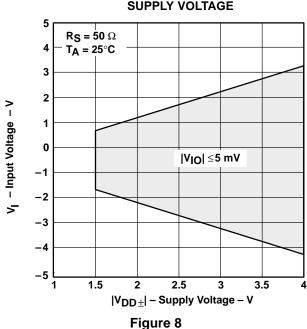
DISTRIBUTION OF TLV2721 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT[†] 25 32 Amplifiers From 1 Wafer Lot $V_{DD} = \pm 1.5 \text{ V}$ P Package 20 $T_A = 25^{\circ}C$ to $125^{\circ}C$ Percentage of Amplifiers – % 15 10 5 0 $\alpha_{\mbox{VIO}}$ – Input Offset Voltage

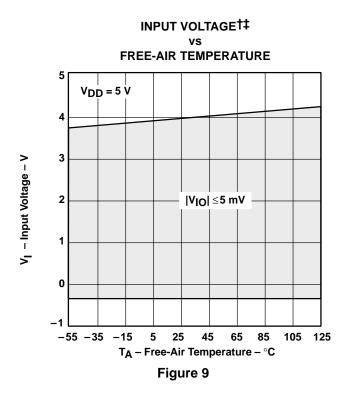
Temperature Coefficient − μV/°C Figure 5

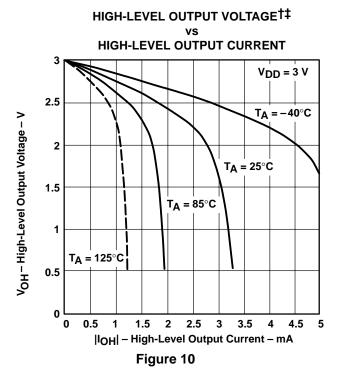
INPUT BIAS AND INPUT OFFSET CURRENTS

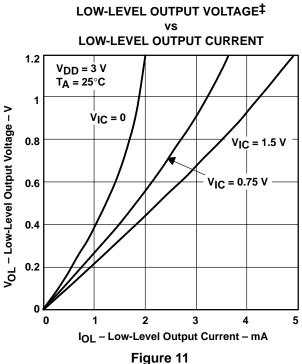
vs FREE-AIR TEMPERATURE IB and I to - Input Bias and Input Offset Currents - pA 100 $V_{DD\pm} = \pm 2.5 \text{ V}$ 90 $V_{IC} = 0$ $V_0 = 0$ 80 $R_S = 50 \Omega$ 70 60 50 40 30 lΒ 20 10 llo 25 85 125 T_A – Free-Air Temperature – $^{\circ}C$ Figure 7

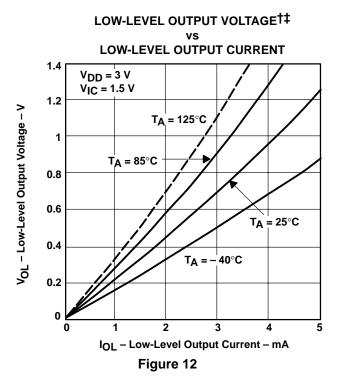
DISTRIBUTION OF TLV2721 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT[†]

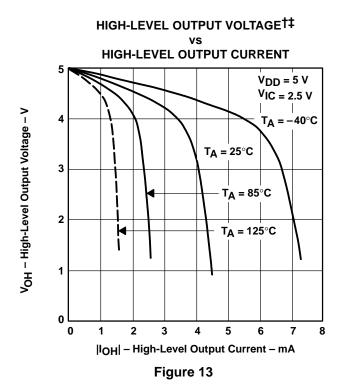



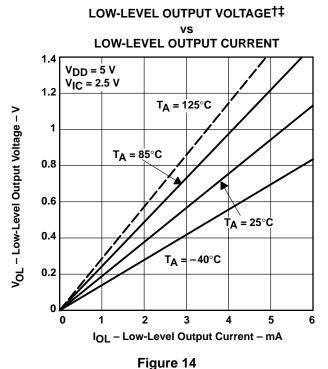

Figure 6


INPUT VOLTAGE vs SUPPLY VOLTAGE

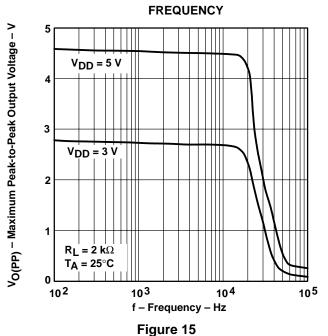


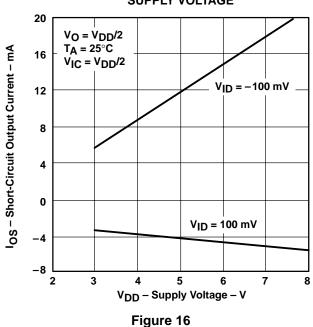

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.





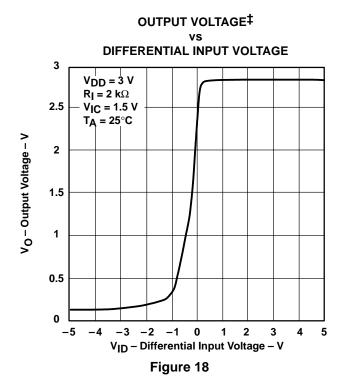
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

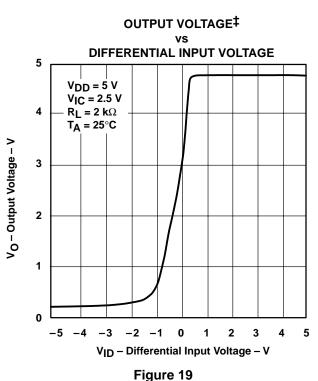

‡ For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

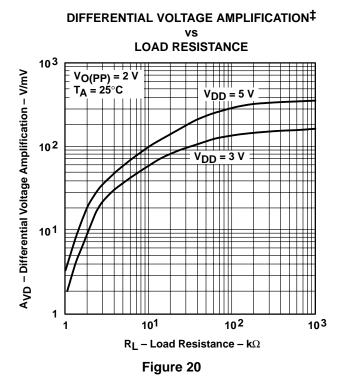


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE‡

SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE




[†]Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.


[‡] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

SHORT-CIRCUIT OUTPUT CURRENT †‡ FREE-AIR TEMPERATURE 20 $V_{DD} = 5 V$ $V_{1C} = 2.5 \text{ V}$ IOS - Short-Circuit Output Current - mA 16 $V_0 = 2.5 \text{ V}$ 12 $V_{ID} = -100 \text{ mV}$ 8 0 $V_{ID} = 100 \text{ mV}$ -50 50 100 -75 -25 25 75 125 T_A - Free-Air Temperature - °C Figure 17

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[‡] For all curves where $V_{DD} = 5$ V, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3$ V, all loads are referenced to 1.5 V.

LARGE-SIGNAL DIFFERENTIAL VOLTAGE[†] AMPLIFICATION AND PHASE MARGIN

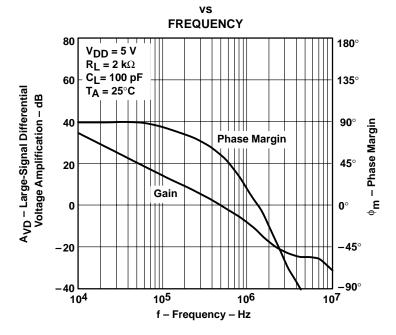


Figure 21

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN[†]

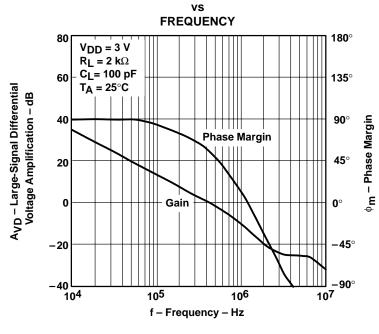


Figure 22

† For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.

LARGE-SIGNAL DIFFERENTIAL LARGE-SIGNAL DIFFERENTIAL **VOLTAGE AMPLIFICATION†**‡ VOLTAGE AMPLIFICATION†‡ vs FREE-AIR TEMPERATURE FREE-AIR TEMPERATURE 103 104 $V_{DD} = 5 V$ $V_{DD} = 3 V$ V_{IC} = 1.5 V V_O = 0.5 V to 2.5 V V_{IC} = 2.5 V V_O = 1 V to 4 V A_{VD} - Large-Signal Differential Voltage A_{VD} - Large-Signal Differential Voltage $R_L = 1 M\Omega$ $R_L = 1 M\Omega$ 103 10² Amplification - V/mV Amplification - V/mV 10² 101 $R_L = 2 k\Omega$ 101 $R_L = 2 k\Omega$ -50 -75 -25 0 25 50 75 100 125 -75 -50-25 0 25 50 75 100 125 T_A – Free-Air Temperature – °C T_A - Free-Air Temperature - °C Figure 23 Figure 24 **OUTPUT IMPEDANCE**‡ **OUTPUT IMPEDANCE**‡ ٧S **FREQUENCY FREQUENCY** 1000 1000 $V_{DD} = 3 V$ $V_{DD} = 5 V$ T_A = 25°C T_A = 25°C $\mathbf{z_0}$ – Output Impedance – Ω 100 $\mathbf{z_0}$ – Output Impedance – Ω 100 $A_{V} = 100$ $A_{V} = 100$ 10 $A_{V} = 10$ 10 $A_{V} = 10$ $A_V = 1$ $A_V = 1$ 0.1

10⁵

10²

101

10³

f- Frequency - Hz

Figure 25

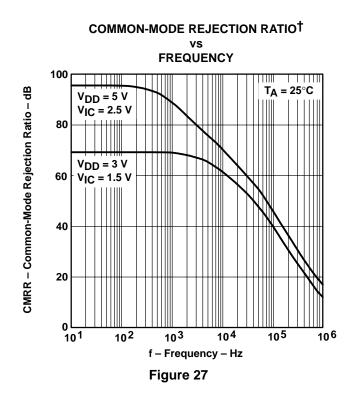
10⁴

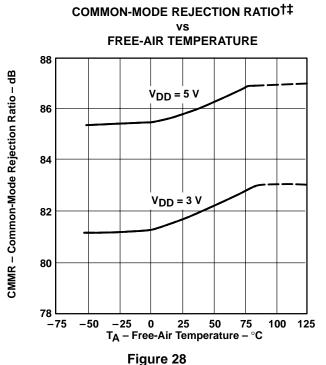
[‡] For all curves where V_{DD} = 5 V, all loads are referenced to 2.5 V. For all curves where V_{DD} = 3 V, all loads are referenced to 1.5 V.

102

101

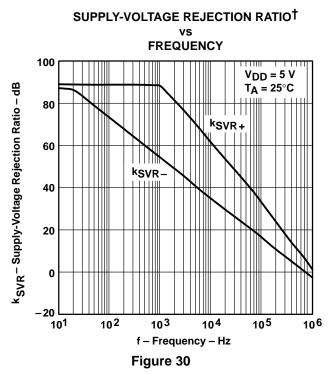
103


f- Frequency - Hz


Figure 26

104

105


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SUPPLY-VOLTAGE REJECTION RATIO[†] **FREQUENCY** 100 $V_{DD} = 3 V$ k_{SVR} - Supply-Voltage Rejection Ratio - dB T_A = 25°C 80 ksvR+ 60 ksvr. 40 20 0 105 101 102 104 106 f - Frequency - Hz

Figure 29

[†] For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.

[‡] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SUPPLY-VOLTAGE REJECTION RATIO[†] FREE-AIR TEMPERATURE 100 $V_{DD} = 2.7 \text{ V to 8 V}$ k_{SVR} - Supply-Voltage Rejection Ratio - dB $V_{IC} = V_O = V_{DD}/2$ 98 96 94 92 90 -50-25 25 50 75 100 125 T_A – Free-Air Temperature – °C

Figure 31

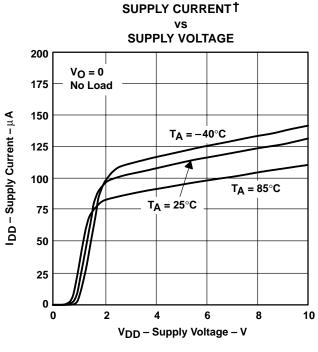
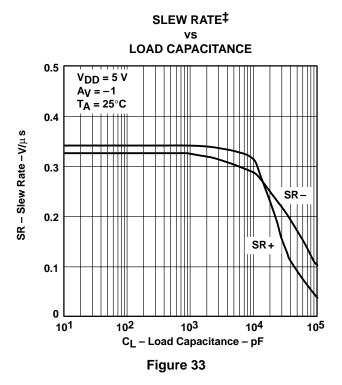
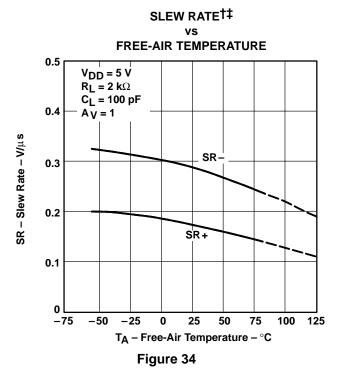




Figure 32

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[‡] For all curves where $V_{DD} = 5$ V, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3$ V, all loads are referenced to 1.5 V.

TYPICAL CHARACTERISTICS

INVERTING LARGE-SIGNAL PULSE RESPONSE[†]

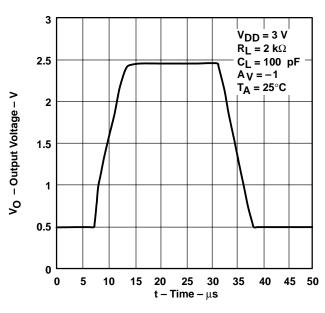


Figure 35

- Output Voltage - V

<u>ہ</u>

- Output Voltage - V

°

INVERTING LARGE-SIGNAL PULSE RESPONSE†

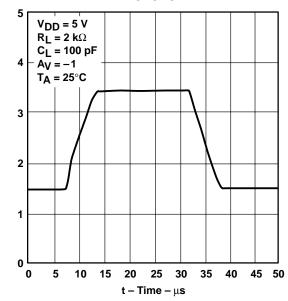


Figure 36

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE[†]

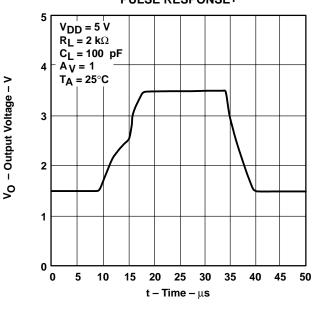


Figure 37

VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE[†]

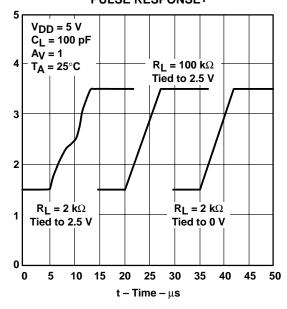


Figure 38

† For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.

INVERTING SMALL-SIGNAL PULSE RESPONSE† 0.82 $V_{DD} = 3 V$ $R_L = 2 k\Omega$ $C_L = 100 pF$ 8.0 $A_V = -1$ V_O - Output Voltage - V $T_A = 25^{\circ}C$ 0.78 0.76 0.74 0.72 0.7 0.5 1 1.5 2 2.5 3 3.5 4 4.5 $t - Time - \mu s$

Figure 39

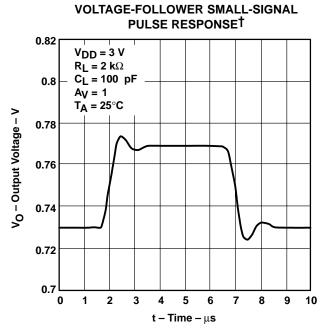
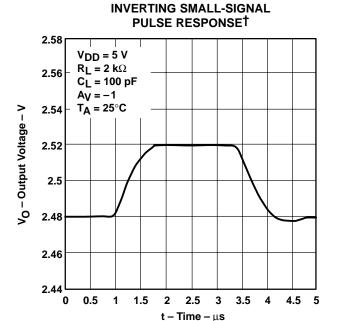
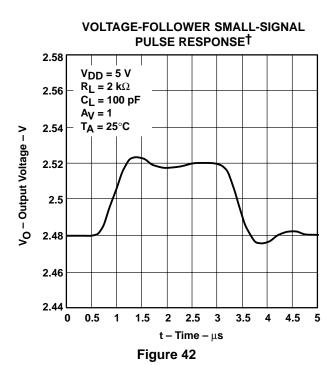
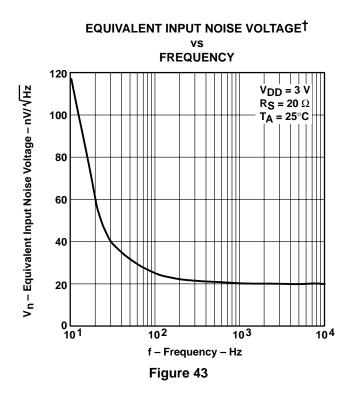
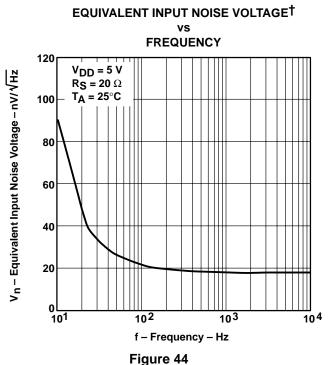
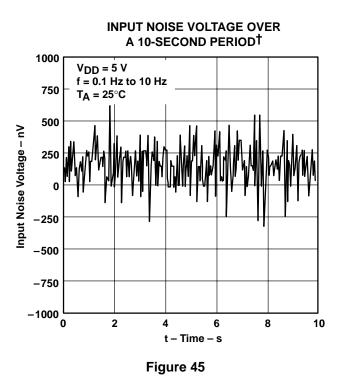


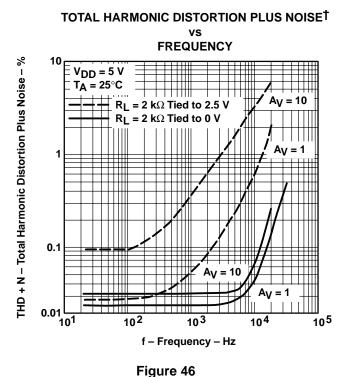
Figure 41

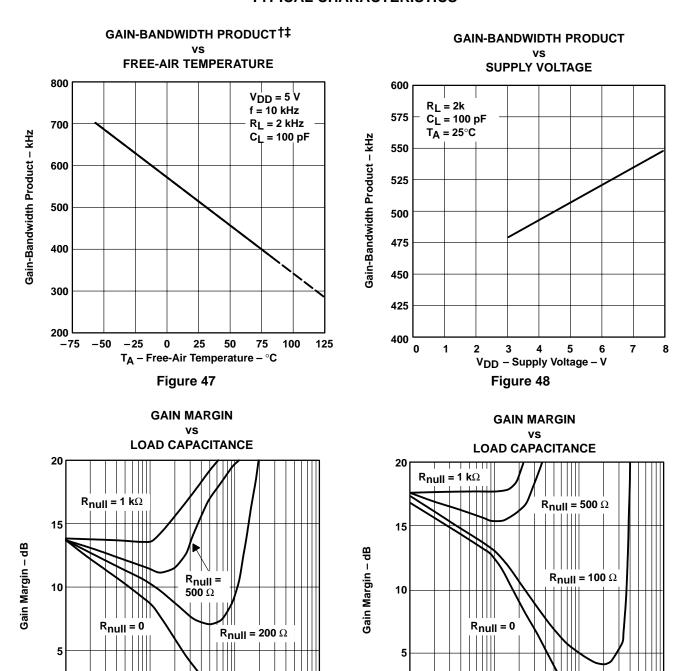

Figure 40




† For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.



TYPICAL CHARACTERISTICS



† For all curves where $V_{DD} = 5 \text{ V}$, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3 \text{ V}$, all loads are referenced to 1.5 V.

104

103

C_L - Load Capacitance - pF

Figure 49

T_A = 25°C

 $R_L = \infty$

101

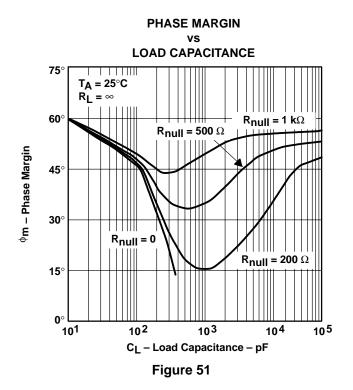
 $[\]ddagger$ For all curves where $V_{DD} = 5$ V, all loads are referenced to 2.5 V. For all curves where $V_{DD} = 3$ V, all loads are referenced to 1.5 V.

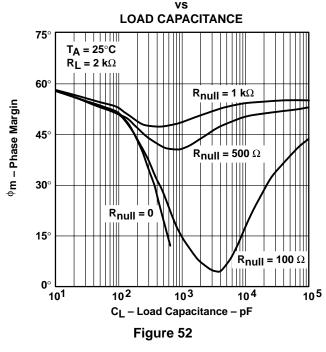
T_A = 25°C

 $R_L = 2 k\Omega$

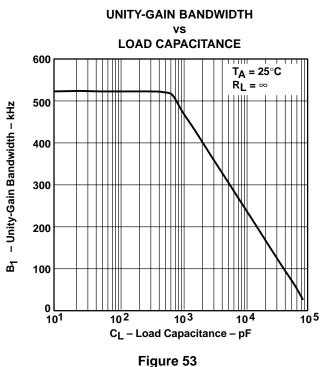
101

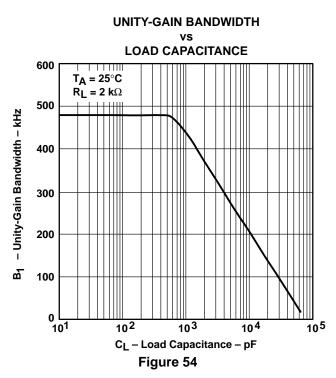
102


C_L - Load Capacitance - pF


Figure 50

103


104


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

PHASE MARGIN

APPLICATION INFORMATION

driving large capacitive loads

The TLV2721 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 49 through Figure 54 illustrate its ability to drive loads greater than 100 pF while maintaining good gain and phase margins (R_{null} = 0).

A small series resistor (R_{null}) at the output of the device (Figure 55) improves the gain and phase margins when driving large capacitive loads. Figure 49 through Figure 52 show the effects of adding series resistances of $100\,\Omega$, $200\,\Omega$, $500\,\Omega$, and $1\,k\Omega$. The addition of this series resistor has two effects: the first effect is that it adds a zero to the transfer function and the second effect is that it reduces the frequency of the pole associated with the output load in the transfer function.

The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the approximate improvement in phase margin, equation 1 can be used.

$$\Delta \phi_{m1} = tan^{-1} \left(2 \times \pi \times UGBW \times R_{null} \times C_L \right)$$
 Where :

 $\Delta \phi_{m1}$ = Improvement in phase margin

UGBW = Unity-gain bandwidth frequency

R_{null} = Output series resistance

 C_1 = Load capacitance

The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (Figure 53 and Figure 54). To use equation 1, UGBW must be approximated from Figure 54 and Figure 55.

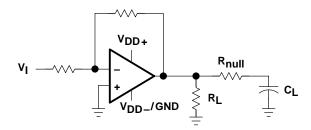


Figure 55. Series-Resistance Circuit

The TLV2721 is designed to provide better sinking and sourcing output currents than earlier CMOS rail-to-rail output devices. This device is specified to sink 500 μ A and source 1 mA at V_{DD} = 5 V at a maximum quiescent I_{DD} of 200 μ A. This provides a greater than 80% power efficiency.

When driving heavy dc loads, such as $2 \text{ k}\Omega$, the positive edge under slewing conditions can experience some distortion. This condition can be seen in Figure 37. This condition is affected by three factors:

- Where the load is referenced. When the load is referenced to either rail, this condition does not occur. The distortion occurs only when the output signal swings through the point where the load is referenced. Figure 38 illustrates two 2-k Ω load conditions. The first load condition shows the distortion seen for a 2-k Ω load tied to 2.5 V. The third load condition in Figure 38 shows no distortion for a 2-k Ω load tied to 0 V.
- Load resistance. As the load resistance increases, the distortion seen on the output decreases. Figure 38 illustrates the difference seen on the output for a 2-k Ω load and a 100-k Ω load with both tied to 2.5 V.
- Input signal edge rate. Faster input edge rates for a step input result in more distortion than with slower input edge rates.

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 6) and subcircuit in Figure 56 are generated using the TLV2721 typical electrical and operating characteristics at $T_A = 25$ °C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

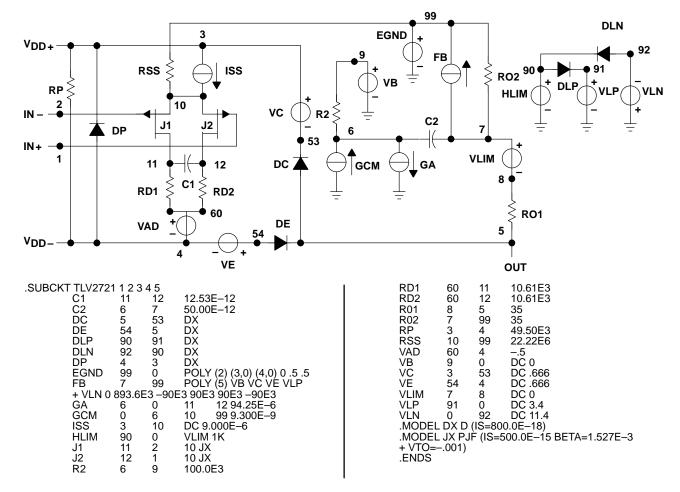
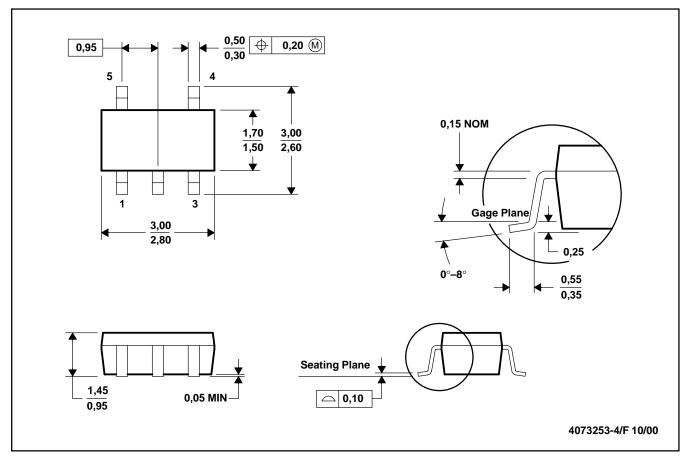


Figure 56. Boyle Macromodel and Subcircuit


PSpice and Parts are trademark of MicroSim Corporation.

MECHANICAL INFORMATION

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-178

com 18-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TLV2721CDBV	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI
TLV2721CDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2721CDBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2721CDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2721CDBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2721IDBV	OBSOLETE	SOT-23	DBV	5		TBD	Call TI	Call TI
TLV2721IDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2721IDBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2721IDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2721IDBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated