

ZHCS290B – SEPTEMBER 2009 – REVISED MARCH 2010

具有集成型 ESD 保护功能的 I²C 控制键区扫描

查询样品: TCA8418

特性

- 工作电源电压范围为 **1.65 V** 至 **3.6 V**
- 支持 QWERTY 键盘操作和 GPIO 扩展
- 可将 18 个 GPIO 配置为 8 个输入和 10 个输出, 以支持一个 8 x 10 的键区阵列 (80 个按钮)
- 在所有 18 个 GPIO 引脚以及非 GPIO 引脚上的 ESD 保护等级均超过了 JESD 22 规范的要求
 - 2000V 人体模型 (A114-A)
 - 1000V 充电器件模型 (C101)
- 低待机(空闲)电流消耗: 3µA
- 揿压一个按钮时的轮询电流消耗为 70µA
- 10 字节 FIFO 用于存储 10 种按键揿压和释放
- 支持 1MHz 快速模式和 I²C 总线
- 漏极开路低态有效中断输出,在揿压和释放按键时 被确定
- 最小防反跳时间: 50µs
- 施密特触发器动作在 SCL 和 SDA 输入端上实现了 缓慢的输入转换和更加优越的开关噪声免疫力:
 1.8V 电压条件下的典型 V_{hvs} 为 1.8V
- 锁断性能超过 200mA (符合 JESD 78 Class II规 范的要求)
- 超小型封装
 - WCSP (YFP): 2mm x 2mm; 0.4mm 间距
 - QFN (RTW): 4mm x 4mm; 0.5mm 间距

应用

- 智能手机
- PDA
- GPS设备
- MP3 播放器
- 数码相机

说明/订购信息

TCA8418 是一款具有集成型ESD保护功能的键区扫描器件。 它能够在 1.65V 至 3.6V 的电压范围内工作,并具有 18 个通用型输入/输出 (GPIO),可用于通过 I²C 接口 [串行时钟 (SCL)、串行数据 (SDA)] 来支持多达 80 个按键。

键区控制器包括一个每 50µs 进行一次防反跳的振荡器,并保持 1 0字节 FIFO 的按键揿压与释放活动,从而可借助溢出打包功能存储多达 10 个按键。可配置中断 (INT) 输出,以实现在按键揿压与释放情况下或上述操作达到最高速率情况下发出警报。 另外,YFP 引脚还具有一个 CAD_INT 引脚,用于指示

CTRL-ALT-DEL (即: 1、11、21) 按键揿压动作的 检测情况。

该器件的主要优势是其可取代处理器对键区进行按键撤 压与释放的扫描,从而节省功率与带宽。此 外,TCA8418还非常适合与GPIO有限的处理器配合使 用。

订购信息

		1 V 1 H 10		
T _A	封装	(1) (2)	可订购部件号	正面标记
40%0 五 95%0	QFN – RTW	卷带	TCA8418RTWR	PZ418
-40 し 主 85 し	WCSP – YFP	卷带	TCA8418YFPR	前瞻性产品

(1) 封装图样、热数据和符号可登录 www.ti.com/packaging 获取。

(2) 如需了解最新的封装及订购信息,请参见本文件结尾处的 "Package Option Addendum (封装选项附录)",或登录 TI 的网站 www.ti.com 进行查询。

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

		-	•	•	
Е	INT	GND	COL5	COL0	ROW3
D	SCL	COL9	COL4	COL4 ROW0	
С	SDA	COL8	COL3	ROW1	ROW5
в	V _{CC}	COL7	COL2	CAD_INT	ROW6
Α	RESET	COL6	COL1	ROW2	ROW7
	5	4	3	2	1

表 1. YFP Package Terminal Assignments

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

表 2. TERMINAL FUNCTIONS

	TERMINA	L		
Ν	10.		TYPE	DESCRIPTION
QFN (RTW)	WCSP (YFP)	NAME		
1	A1	ROW7	I/O	GPIO or row 7 in keypad matrix
2	B1	ROW6	I/O	GPIO or row 6 in keypad matrix
3	C1	ROW5	I/O	GPIO or row 5 in keypad matrix
4	D1	ROW4	I/O	GPIO or row 4 in keypad matrix
5	E1	ROW3	I/O	GPIO or row 3 in keypad matrix
6	A2	ROW2	I/O	GPIO or row 2 in keypad matrix
7	C2	ROW1	I/O	GPIO or row 1 in keypad matrix
8	D2	ROW0	I/O	GPIO or row 0 in keypad matrix
9	E2	COL0	I/O	GPIO or column 0 in keypad matrix
10	A3	COL1	I/O	GPIO or column 1 in keypad matrix
11	B3	COL2	I/O	GPIO or column 2 in keypad matrix
12	C3	COL3	I/O	GPIO or column 3 in keypad matrix
13	D3	COL4	I/O	GPIO or column 4 in keypad matrix
14	E3	COL5	I/O	GPIO or column 5 in keypad matrix
15	A4	COL6	I/O	GPIO or column 6 in keypad matrix
16	B4	COL7	I/O	GPIO or column 7 in keypad matrix
17	C4	COL8	I/O	GPIO or column 8 in keypad matrix
18	D4	COL9	I/O	GPIO or column 9 in keypad matrix
19	E4	GND	-	Ground
20	A5	RESET	I	Active-low reset input. Connect to V_{CC} through a pullup resistor, if no active connection is used.
21	B5	V _{CC}	Pwr	Supply voltage of 1.65 V to 3.6 V
22	C5	SDA	I/O	Serial data bus. Connect to V _{CC} through a pullup resistor.
23	D5	SCL	I	Serial clock bus. Connect to V_{CC} through a pullup resistor.
24	E5	INT	0	Active-low interrupt output. Open drain structure. Connect to V_{CC} through a pullup resistor.
_	B2	CAD_INT	0	Active-low interrupt hardware output for 3-key simultaneous press-event. Open drain structure. Connect to V_{CC} through a pullup resistor.

TEXAS INSTRUMENTS

www.ti.com.cn

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC}	Supply voltage range			-0.5	4.6	V
VI	Input voltage range ⁽²⁾			-0.5	4.6	V
\/	Voltage range applied to any output	t in the high-impedance	or power-off state ⁽²⁾	-0.5	4.6	
vo	Output voltage range in the high or	low state ⁽²⁾		-0.5	4.6	V
I _{IK}	Input clamp current	V ₁ < 0			±20	mA
I _{OK}	Output clamp current	V _O < 0			±20	mA
		P port, SDA	V Oto V		50	
OL	Continuous output Low current	INT	$v_0 = 0.10 v_{CC}$		25	mA
I _{OH}	Continuous output High current	P port	$V_{O} = 0$ to V_{CC}		50	
T _{stg}	Storage temperature range			-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

THERMAL CHARACTERISTICS

over operating free-air temperature range (unless otherwise noted)

			UNIT
θ _{JA} F	Deckage thermal impedance ⁽¹⁾	RTW package 37.8	°C 141
	Package thermal impedance(1)	YFP package TBD	C/W

(1) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.65	3.6	V
VIH	High-level input voltage	SCL, SDA, ROW0–7, COL0–9, RESET	$0.7 \times V_{CC}$	3.6	V
V _{IL}	Low-level input voltage	SCL, SDA, ROW0–7, COL0–9, RESET	-0.5	$0.3 \times V_{CC}$	V
I _{OH}	High-level output current	ROW0–7, COL0–9		10	mA
I _{OL}	Low-level output current	ROW0–7, COL0–9		25	mA
T _A	Operating free-air temperature		-40	85	°C

www.ti.com.cn

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range, V_{CC} = 1.65 V to 3.6 V (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS	, , , , , , , , , , , , , , , , , , ,	V _{CCP}	MIN	TYP	MAX	UNIT
VIK	Input diode clamp voltage	I _I = -18 mA			1.65 V to 3.6 V	-1.2			V
VPOR	Power-on reset voltage	$V_{I} = V_{CCP}$ or GND, $I_{O} = 0$		1.65 V to 3.6 V		1	1.4	V	
		$I_{OH} = -1 \text{ mA}$			1.65 V	1.25			
						1.2			
50000		I _{OH} = -8 mA			2.3 V	1.8			
V _{OH}	ROW0–7, COL0–9 high-level				3 V	2.6			V
	output voltage				1.65 V	1.1			
		I _{OH} = -10 mA			2.3 V	1.7			
					3 V	2.5			
		I _{OL} = 1 mA			1.65 V			0.4	
					1.65 V			0.45	
		I _{OL} = 8 mA			2.3 V			0.25	
V _{OL}	ROW0–7, COL0–9 low-level				3 V			0.25	V
	output voltage				1.65 V			0.6	
		I _{OL} = 10 mA			2.3 V			0.3	
					3 V			0.25	
	SDA	V _{OL} = 0.4 V				3			
IOL	INT and CAD_INT	V _{OL} = 0.4 V				3			mA
I _I	SCL, SDA, ROW0–7, COL0–9, RESET	$V_{I} = V_{CCI}$ or GND			1.65 V to 3.6 V			1	μA
r _{INT}	ROW0-7, COL0-9						105		kΩ
			f _ 0 kHz	Oscillator OFF	1 65 V to 2 6 V			10	
			I _{SCL} = 0 KHZ	Oscillator ON	- 1.65 V to 3.6 V			18	
			f 400 kl la		1.65 V			50	
		V on SDA	$f_{SCL} = 400 \text{ kHz}$	1 1000 00000	3.6 V			90	
		ROW0–7,	£ 1 MI I-	i key press	1.65 V			65	
Icc		$COL0-9 = V_{CC}$ or	$I_{SCL} = 1$ MHZ		3.6 V			153	μA
		$I_0 = 0, I/O =$	$f_{SCL} = 400 \text{ kHz}$	GPI low				55	
		inputs,	f _{SCL} = 1 MHz	(pullup enable) ⁽¹⁾				65	
			$f_{SCL} = 400 \text{ kHz}$	GPI low	1.65 V to 3.6 V			15	
			f _{SCL} = 1 MHz	(pullup disable)	1.05 V 10 5.0 V			24	
			$f_{SCL} = 400 \text{ kHz}$	1 GPO				55	
	1		$f_{SCL} = 1 MHz$	active				65	
CI	SCL	$V_I = V_{CCI}$ or GND			1.65 V to 3.6 V		6	8	pF
C.	SDA				1.65 V to 3.6 V		10	12.5	рF
U10	ROW0–7, COL0–9				1.00 V 10 0.0 V		5	6	۲ י

(1) Assumes that one GPIO is enabled.

I²C INTERFACE TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see 8 13)

		STANDARD I ² C BUS	MODE S	FAST MODE I ² C BUS		FAST MODE PLUS (FM+) I ² C BUS		UNIT
		MIN	MAX	MIN	МАХ	MIN	MAX	
f _{scl}	I ² C clock frequency	0	100	0	400	0	1000	kHz
t _{sch}	I ² C clock high time	4		0.6		0.26		μs
t _{scl}	I ² C clock low time	4.7		1.3		0.5		μs
t _{sp}	I ² C spike time		50		50		50	ns
t _{sds}	I ² C serial data setup time	250		100		50		ns
t _{sdh}	I ² C serial data hold time	0		0		0		ns
t _{icr}	I ² C input rise time		1000	20 + 0.1C _b ⁽¹⁾	300		120	ns
t _{icf}	I ² C input fall time		300	20 + 0.1C _b ⁽¹⁾	300		120	ns
t _{ocf}	I ² C output fall time; 10 pF to 400 pF bus		300	20 + 0.1C _b ⁽¹⁾	300		120	μs
t _{buf}	I ² C bus free time between Stop and Start	4.7		1.3		0.5		μs
t _{sts}	I ² C Start or repeater Start condition setup time	4.7		0.6		0.26		μs
t _{sth}	I ² C Start or repeater Start condition hold time	4		0.6		0.26		μs
t _{sps}	I ² C Stop condition setup time	4		0.6		0.26		μs
t _{vd(data)}	Valid data time; SCL low to SDA output valid		1		0.9		0.45	μs
t _{vd(ack)}	Valid data time of ACK condition; ACK signal from SCL low to SDA (out) low		1		0.9		0.45	μs

(1) C_b = total capacitance of one bus line in pF

RESET TIMING REQUIREMENTS

over recommended operating free-air temperature range (unless otherwise noted) (see 🛽 16)

		STANDARD MODE, FAS MODE, FAST MODE PLU (FM+) I ² C BUS	IS IS	UNIT
		MIN	VAN	
t _W	Reset pulse duration	120 ⁽¹⁾		μs
t _{REC}	Reset recovery time	120 ⁽¹⁾		μs
t _{RESET}	Time to reset	120 ⁽¹⁾		μs

(1) The GPIO debounce circuit uses each GPIO input which passes through a two-stage register circuit. Both registers are clocked by the same clock signal, presumably free-running, with a nominal period of 50uS. When an input changes state, the new state is clocked into the first stage on one clock transition. On the next same-direction transition, if the input state is still the same as the previously clocked state, the signal is clocked into the second stage, and then on to the remaining circuits. Since the inputs are asynchronous to the clock, it will take anywhere from zero to 50 µsec after the input transition to clock the signal into the first stage. Therefore, the total debounce time may be as long as 100 µsec. Finally, to account for a slow clock, the spec further guard-banded at 120 µsec.

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

SWITCHING CHARACTERISTICS

PARAMETER		FROM	то	STANDARD FAST MODE MODE PLUS I ² C BU	MODE, E, FAST S (FM+) IS	UNIT		
					MIN	MAX		
		Key event or Key unlock or Overflow			20	60		
t _{IV}	Interrupt valid time	GPI_INT with Debounce_DIS_Low	ROW0–7,	ROW0–7, INT	INT	40	120	μs
		GPI_INT with Debounce_DIS_High	COL0-9		10	30		
		CAD_INT		INT, CAD_INT	20	60		
	Interrupt react dalay time		SCL	INT		200	20	
ЧR	interrupt reset delay time		SCL	CAD_INT		200	ns	
t _{PV}	Output data valid		SCL	ROW0–7, COL0–9		400	ns	
t _{PS}	Input data setup time		P port	SCL	0		ns	
t _{PH}	Input data hold time		P port	SCL	300		ns	

KEYPAD SWITCHING CHARACTERISTICS

PARAMETER	STANDARD MODE, FAST MODE, FAST MODE PLUS (FM+) I ² C BUS	UNIT	
	MIN MAX		
Key press to detection delay	25	μs	
Key release to detection delay	25	μs	
Keypad unlock timer	7	S	
Keypad interrupt mask timer	31	S	
Debounce	60	ms	

At power on, the GPIOs (ROW0–7 and COL0–9) are configured as inputs with internal 100-k Ω pullups enabled. However, the system master can enable the GPIOs to function as inputs, outputs or as part of the keypad matrix. GPIOs not used for keypad control can be used to support other control features in the application.

ROW7–ROW0 are configured as inputs in GPIO mode with a push-pull structure, at power-on. In keyscan mode, each has an open-drain structure with a $100-k\Omega$ pullup resistor and is used as an input.

COL9–COL0 are configured as inputs in GPIO mode with a push-pull structure, at power on. In keyscan mode, each has an open-drain structure and is used as an output.

The system master can reset the TCA8418 in the event of a timeout or other improper operation by asserting a low in the /RESET input, while keeping the V_{CC} at its operating level.

A reset can be accomplished by holding the $\overrightarrow{\text{RESET}}$ pin low for a minimum of t_w. The TCA8418 registers and I²C/SMBus state machine are changed to their default state once $\overrightarrow{\text{RESET}}$ is low (0). When $\overrightarrow{\text{RESET}}$ is high (1), the I/O levels at the P port can be changed externally or through the master. This input requires a pull-up resistor to VCC, if no active connection is used.

<u>The power-on reset puts the registers in their default state and initializes the I²C/SMB<u>us state</u> machine. The RESET pin causes the same reset/initialization to occur without depowering the part. The RESET pin can also be used as a shutdown pin, if the phone is closed.</u>

The open-drain interrupt (INT) output is used to indicate to the system master that an input state (GPI or ROWs) has changed. INT can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote input can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C bus. Thus, the TCA8418 can remain a simple slave device.

The TCA8418 has key lock capability, which can trigger an interrupt at key presses and releases, if selected

Power-On Reset

When power (from 0 V) is applied to V_{CC} , an internal power-on reset holds the TCA8418 in a reset condition until V_{CC} reaches V_{POR} . At that time, the reset condition is released, and the TCA8418 registers and I²C/SMBus state machine initialize to their default states. After that, V_{CC} must be lowered below 0.2 V and back up to the operating voltage for a power-reset cycle.

Power-On Reset Requirements

In the event of a glitch or data corruption, TCA8418 can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in \mathbb{R} 1 and \mathbb{R} 2.

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

 ${f 8}$ 2. V_{CC} is Lowered Below the POR Threshold, Then Ramped Back Up to V_{CC}

表 3 specifies the performance of the power-on reset feature for TCA8418 for both types of power-on reset.

	PARAMETER		MIN	TYP MAX	
V _{CC_FT}	Fall rate	See 图 1	1	10) ms
V _{CC_RT}	Rise rate	See 图 1	0.01	10) ms
V _{CC_TRR_GND}	Time to re-ramp (when V _{CC} drops to GND)	See 图 1	0.001		ms
V _{CC_TRR_POR50}	Time to re-ramp (when V_{CC} drops to $V_{POR_MIN} - 50$ mV)	See 搔 2	0.001		ms
V _{CC_GH}	Level that V_{CCP} can glitch down to, but not cause a functional disruption when V_{CCX_GW} = 1 μs	See 图 3		1.:	2 V
V _{CC_GW}	Glitch width that will not cause a functional disruption when $V_{CCX_GH} = 0.5 \times V_{CCx}$	See 图 3			μs
V _{PORF}	Voltage trip point of POR on falling V _{CC}		0.767	1.14	t V
V _{PORR}	Voltage trip point of POR on rising V _{CC}		1.033	1.42	3 V

表 3. RECOMMENDED SUPPLY SEQUENCING AND RAMP RATES⁽¹⁾

(1) $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted)

Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width (V_{CC_GW}) and height (V_{CC_GH}) are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. 🛛 3 and $\frac{1}{5}$ 3 provide more information on how to measure these specifications.

图 3. Glitch Width and Glitch Height

 V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the V_{CC} being lowered to or from 0. 🛛 4 and 表 3 provide more details on this specification.

版权 © 2009–2010, Texas Instruments Incorporated

For proper operation of the power-on reset feature, use as directed in the figures and table above.

Interrupt Output

An interrupt is generated by any rising or falling edge of the port inputs in the input mode. After time t_{iv} , the signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting or data is read from the port that generated the interrupt. Resetting occurs in the read mode at the acknowledge (ACK) or not acknowledge (NACK) bit after the rising edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT.

Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur, if the state of the pin does not match the contents of the input port register.

The INT output has an open-drain structure and requires a pullup resistor to V_{CC} depending on the application. If the INT signal is connected back to the processor that provides the SCL signal to the TCA64xxA, then the INT pin has to be connected to V_{CC} . If not, the INT pin can be connected to V_{CCP} .

For more information on the interrupt output feature, see Control Register and Command Byte and Typical Applications.

50 Micro-second Interrupt Configuration

The TCA8418 provides the capability of deasserting the interrupt for 50 µs while there is a pending event. When the INT_CFG bit in Register 0x01 is set, any attempt to clear the interrupt bit while the interrupt pin is already asserted results in a 50 µs deassertion. When the INT_CFG bit is cleared, processor interrupt remains asserted if the host tries to clear the interrupt. This feature is particularly useful for software development and edge triggering applications.

I²C Interface

The bidirectional I^2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply through a pullup resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy.

www.ti.com.cn

 I^2C communication with this device is initiated by a master sending a Start condition, a high-to-low transition on the SDA input/output, while the SCL input is high (see \mathbb{E} 5). After the <u>Start</u> condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/W).

After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. The address (ADDR) input of the slave device must not be changed between the Start and the Stop conditions.

On the I^2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (Start or Stop) (see \mathbb{E} 6).

A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see 8 5).

Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period (see 27). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation.

A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a Stop condition.

图 5. Definition of Start and Stop Conditions

图 6. Bit Transfer

www.ti.com.cn

Device Address

The address of the TCA8418 is shown in 表 4.

TEXAS INSTRUMENTS

www.ti.com.cn

衣 4.

ВҮТЕ				В	IT			
	7 (MSB)	6	5	4	3	2	1	0 (LSB)
I ² C slave address	0	1	1	0	1	0	0	R/W

The last bit of the slave address defines the operation (read or write) to be performed. A high (1) selects a read operation, while a low (0) selects a write operation.

Control Register and Command Byte

Following the successful acknowledgment of the address byte, the bus master sends a command byte, which is stored in the control register in the TCA8418. The command byte indicates the register that will be updated with information. All registers can be read and written to by the system master.

表 5 shows all the registers within this device and their descriptions. The default value in all registers is 0.

ADDRESS	REGISTER NAME	REGISTER DESCRIPTION	7	6	5	4	3	2	1	0
0×00	Reserved	Reserved								
0×01	CFG	Configuration register (interrupt processor interrupt enables)	AI	GPI_E_ CGF	OVR_FL OW_M	INT_ CFG	T_ OVR_F FG EN K_LC GPI_I K_IEN N		GPI_IE N	KE_IEN
0×02	INT_STAT	Interrupt status register	N/A 0	N/A 0	N/A 0	N/A 0	OVR_F LOW_I NT	K_LC K_INT	GPI_ INT	K_ INT
0×03	KEY_LCK_EC	Key lock and event counter register	N/A 0	K_LCK _EN	LCK2	LCK1	KLEC3	KLEC 2	KLEC1	KLEC0
0×04	KEY_EVENT_A	Key event register A	KEA7 0	KEA6 0	KEA5 0	KEA4 0	KEA3 0	KEA2 0	KEA1 0	KEA0 0
0×05	KEY_EVENT_B	Key event register B	KEB7 0	KEB6 0	KEB5 0	KEB4 0	KEB3 0	KEB2 0	KEB1 0	KEB0 0
0×06	KEY_EVENT_C	Key event register C	KEC7 0	KEC6 0	KEC5 0	C5 KEC4 KEC3 KE 0 0 0 0		KEC2 0	KEC1 0	KEC0 0
0×07	KEY_EVENT_D	Key event register D	KED7 0	KED6 0	KED5 0	KED4 0	KED3 0	KED2 0	KED1 0	KED0 0
0×08	KEY_EVENT_E	Key event register E	KEE7 0	KEE6 0	KEE5 0	5 KEE4 KEE3 KEE2 0 0 0		KEE1 0	KEE0 0	
0×09	KEY_EVENT_F	Key event register F	KEF7 0	KEF6 0	KEF5 0	KEF4 0	KEF3 0	KEF2 0	KEF1 0	KEF0 0
0×0A	KEY_EVENT_G	Key event register G	KEG7 0	KEG6 0	KEG5 0	KEG4 0	KEG3 0	KEG2 0	KEG1 0	KEG0 0
0×0B	KEY_EVENT_H	Key event register H	KEH7 0	KEH6 0	KEH5 0	KEH4 0	KEH3 0	KEH2 0	KEH1 0	KEH0 0
0×0C	KEY_EVENT_I	Key event register I	KEI7 0	KEI6 0	KEI5 0	KEI4 0	KEI3 0	KEI2 0	KEI1 0	KEI0 0
0×0D	KEY_EVENT_J	Key event register J	KEJ7 0	KEJ6 0	KEJ5 0	KEJ64 0	KEJ3 0	KEJ2 0	KEJ1 0	KEJ0 0
0×0E	KP_LCK_TIMER	Keypad lock 1 to lock 2 timer	KL7	KL6	KL5	KL4	KL3	KL2	KL1	KL0
0×0F	Unlock1	Unlock key 1	UK1_7	UK1_6	UK1_5	UK1_4	UK1_3	UK1_ 2	UK1_1	UK1_0
0×10	Unlock2	Unlock key2	UK2_7	UK2_6	UK2_5	UK2_4	UK2_3	UK2_ 2	UK2_1	UK2_0
0×11	GPIO_INT_STAT1	GPIO interrupt status	R7IS 0	R6IS 0	R5IS 0	R4IS 0	R3IS 0	R2IS 0	R1IS 0	R0IS 0
0×12	GPIO_INT_STAT2	GPIO interrupt status	C7IS 0	C6IS 0	C5IS 0	C4IS 0	C3IS 0	C2IS 0	C1IS 0	COIS 0

表 5. Register Descriptions

Texas NSTRUMENTS

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

www.ti.com.cn

		衣 5. Regis	ter Dese	cription	5(按下贝	.)				
ADDRESS	REGISTER NAME	REGISTER DESCRIPTION	7	6	5	4	3	2	1	0
0×13	GPIO_INT_STAT3	GPIO interrupt status	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	C9IS 0	C8IS 0
0×14	GPIO_DAT_STAT1 (read twice to clear)	GPIO data status	R7DS	R6DS	R5DS	R4DS	R3DS	R2DS	R1DS	R0DS
0×15	GPIO_DAT_STAT2 (read twice to clear)	GPIO data status	C7DS	C6DS	C5DS	C4DS	C3DS	C2DS	C1DS	CODS
0×16	GPIO_DAT_STAT3 (read twice to clear)	GPIO data status	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	C9DS	C8DS
0×17	GPIO_DAT_OUT1	GPIO data out	R7DO 0	R6DO 0	R5DO 0	R4DO 0	R3DO 0	R2DO 0	R1DO 0	R0DO 0
0×18	GPIO_DAT_OUT2	GPIO data out	C7DO 0	C6DO 0	C5DO 0	C4DO 0	C3DO 0	C2DO 0	C1DO 0	C0DO 0
0×19	GPIO_DAT_OUT3	GPIO data out	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	C9DO 0	C8DO 0
0×1A	GPIO_INT_EN1	GPIO interrupt enable	R7IE 0	R6IE 0	R5IE 0	R4IE 0	R3IE 0	R2IE 0	R1IE 0	R0IE 0
0×1B	GPIO_INT_EN2	GPIO interrupt enable	C7IE 0	C6IE 0	C5IE 0	C4IE 0	C3IE 0	C2IE 0	C1IE 0	C0IE 0
0×1C	GPIO_INT_EN3	GPIO interrupt enable	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	C9IE 0	C8IE 0
0×1D	KP_GPIO1	Keypad or GPIO selection 0: GPIO 1: KP matrix	ROW7 0	ROW6 0	ROW5 0	ROW4 0	ROW3 0	ROW2 0	ROW1 0	ROW0 0
0×1E	KP_GPIO2	Keypad or GPIO selection 0: GPIO 1: KP matrix	COL7 0	COL6 0	COL5 0	COL4 0	COL3 0	COL2 0	COL1 0	COL0 0
0×1F	KP_GPIO3	Keypad or GPIO selection 0: GPIO 1: KP matrix	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	COL9 0	COL8 0
0×20	GPI_EM1	GPI event mode 1	ROW7 0	ROW6 0	ROW5 0	ROW4 0	ROW3 0	ROW2 0	ROW1 0	ROW0 0
0×21	GPI_EM2	GPI event mode 2	COL7 0	COL6 0	COL5 0	COL4 0	COL3 0	COL2 0	COL1 0	COL0 0
0×22	GPI_EM3	GPI event mode 3	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	COL9 0	COL8 0
0×23	GPIO_DIR1	GPIO data direction 0: input 1: output	R7DD 0	R6DD 0	R5DD 0	R4DD 0	R3DD 0	R2DD 0	R1DD 0	R0DD 0
0×24	GPIO_DIR2	GPIO data direction 0: input 1: output	C7DD 0	C6DD 0	C5DD 0	C4DD 0	C3DD 0	C2DD 0	C1DD 0	CODD 0
0×25	GPIO_DIR3	GPIO data direction 0: input 1: output	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	C9DD 0	C8DD 0
0×26	GPIO_INT_LVL 1	GPIO edge/level detect 0: low 1: high	R7IL 0	R6IL 0	R5IL 0	R4IL 0	R3IL 0	R2IL 0	R1IL 0	R0IL 0
0×27	GPIO_INT_LVL 2	GPIO edge/level detect 0: low 1: high	C7IL 0	C6IL 0	C5IL 0	C4IL 0	C3IL 0	C2IL 0	C1IL 0	COIL 0

. .. /+☆┬궄\ ± - - - -..... _

www.ti.com.cn

		20110910			- (12, 1, 2)	/				
ADDRESS	REGISTER NAME	REGISTER DESCRIPTION	7	6	5	4	3	2	1	0
0×28	GPIO_INT_LVL 3	GPIO edge/level detect 0: low 1: high	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	C9IL 0	C8IL 0
0×29	DEBOUNCE_DIS 1	Debounce disable 0: enabled 1: disabled	R7DD 0	R6DD 0	R5DD 0	R4DD 0	R3DD 0	R2DD 0	R1DD 0	R0DD 0
0×2A	DEBOUNCE_DIS 2	Debounce disable 0: enabled 1: disabled	C7DD 0	C6DD 0	C5DD 0	C4DD 0	C3DD 0	C2DD 0	C1DD 0	C0DD 0
0×2B	DEBOUNCE_DIS 3	Debounce disable 0: enabled 1: disabled	N/A			N/A 0	N/A 0	N/A 0	C9DD 0	C8DD 0
0×2C	GPIO_PULL1	GPIO pullup 0: pullup enabled 1: pullup disabled	R7PD 0	R7PD R6PD R5PD 0 0		R4PD 0	R3PD 0	R2PD 0	R1PD 0	R0PD 0
0×2D	GPIO_PULL2	GPIO pullup 0: pullup enabled 1: pullup disabled	C7PD 0	C6PD 0	C5PD 0	C4PD 0	C3PD 0	C2PD 0	C1PD 0	C0PD 0
0×2E	GPIO_PULL3	GPIO pullup 0: pullup enabled 1: pullup disabled	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	N/A 0	C9PD 0	C8PD 0
0×2F	Reserved									

表 5. Register Descriptions (接下页)

Configuration Register (Address 0×01)

BIT	NAME	DESCRIPTION
7	AI	Auto-increment for read and write operations 0 = disabled 1 = enabled
6	GPI_E_CFG	 GPI event mode configuration 0 = GPI events are tracked when keypad is locked 1 = GPI events are not tracked when keypad is locked
5	OVR_FLOW_M	Overflow mode 0 = disabled; overflow data is lost 1 = enabled.
4	INT_CFG	Overflow data shifts with last event pushing first event out interrupt configuration. 0 = processor interrupt remains asserted (or low) if host tries to clear interrupt while there is still a pending key press, key release or GPI interrupt 1 = processor interrupt is deasserted for 50 µs and reassert with pending interrupts
3	OVR_FLOW_IEN	Overflow interrupt enable 0 = disabled 1 = enabled
2	K_LCK_IEN	Keypad lock interrupt enable 0 = disabled 1 = enabled
1	GPI_IEN	 GPI interrupt enable to host processor 0 = disabled 1 = enabled Can be used to mask interrupts

TEXAS INSTRUMENTS

www.ti.com.cn

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

BIT	NAME	DESCRIPTION
0	KE_IEN	Key events interrupt enable to host processor 0 = disabled 1 = enabled Can be used to mask interrupts

Bit 7 in this register is used to determine the programming mode. If it is low, all data bytes are written to the registers defined command byte. If bit 7 is high, the value of the command byte is automatically incremented after the byte is written, and the next data byte is stored in the corresponding register. Registers are written in the sequence shown in 表 5. Once the GPIO_PULL3 register (0×2E) is written to, the command byte returns to 0 (Configuration register). Registers 0 and 2F are reserved and a command byte that references these registers is not acknowledged by the TCA8418.

The keypad lock interrupt enable determines if the interrupt pin is asserted when the key lock interrupt (see Interrupt Status Register) bit is set.

Interrupt Status Register, INT_STAT (Address 0×02)

BIT	NAME	DESCRIPTION
7	N/A	Always 0
6	N/A	Always 0
5	N/A	Always 0
4	CAD_INT	CTRL-ALT-DEL key sequence status. Requires writing a 1 to clear interrupts. 0 = interrupt not detected 1 = interrupt detected
3	OVR_FLOW_INT	Overflow interrupt status. Requires writing a 1 to clear interrupts. 0 = interrupt not detected 1 = interrupt detected
2	K_LCK_INT	Keypad lock interrupt status. This is the interrupt to the processor when the keypad lock sequence is started. Requires writing a 1 to clear interrupts. 0 = interrupt not detected 1 = interrupt detected
1	GPI_INT	 GPI interrupt status. Requires writing a 1 to clear interrupts. 0 = interrupt not detected 1 = interrupt detected Can be used to mask interrupts
0	K_INT	Key events interrupt status. Requires writing a 1 to clear interrupts. 0 = interrupt not detected 1 = interrupt detected

Key Lock and Event Counter Register, KEY_LCK_EC (Address 0×03)

BIT	NAME	DESCRIPTION
7	N/A	Always 0
6	K_LCK_EN	Key lock enable 0 = disabled 1 = enabled
5	LCK2	Keypad lock status 0 = unlock (if LCK1 is 0 too) 1 = locked (if LCK1 is 1 too)
4	LCK1	Keypad lock status 0 = unlock (if LCK2 is 0 too) 1 = locked (if LCK2 is 1 too)
3	KEC3	Key event count, Bit 3

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

BIT	NAME	DESCRIPTION
2	KEC2	Key event count, Bit 2
1	KEC1	Key event count, Bit 1
0	KEC0	Key event count, Bit 0

KEC[3:0]: indicates how many registers have values in it. For example, KS(0000) = 0 events, KS(0001) = 1 event and KS(1010) = 10 events. As interrupts happen (press or release), the count increases accordingly.

Key Event Registers (FIFO), KEY_EVENT_A-J (Address 0×04-0×0D)

ADDRESS	REGISTER NAME ⁽¹⁾	REGISTER DESCRIPTION	BIT							
			7	6	5	4	3	2	1	0
0×04	KEY_EVENT_A	Key event register A	KEA 7 0	KEA6 0	KEA 5 0	KEA4 0	KEA3 0	KEA 2 0	KEA1 0	KEA 0 0

(1) Only KEY_EVENT_A register is shown

These registers – KEY_EVENT_A-J – function as a FIFO stack which can store up to 10 key presses and releases. The user first checks the INT_STAT register to see if there are any interrupts. If so, then the Key Lock and Event Counter Register (KEY_LCK_EC, register 0x03) is read to see how many interrupts are stored. The INT_STAT register is then read again to ensure no new events have come in. The KEY_EVENT_A register is then read as many times as there are interrupts. Each time a read happens, the count in the KEY_LCK_EC register reduces by 1. The data in the FIFO also moves down the stack by 1 too (from KEY_EVENT_J to KEY_EVENT_A). Once all events have been read, the key event count is at 0 and then KE_INT bit can be cleared by writing a '1' to it.

In the KEY_EVENT_A register, KEA[6:0] indicates the key # pressed or released. A value of 0 to 80 indicate which key has been pressed or released in a keypad matrix. Values of 97 to 114 are for GPI events.

Bit 7 or KEA[7] indicate if a key press or key release has happened. A '0' means a key release happened. A '1' means a key has been pressed (which can be cleared on a read).

For example, 3 key presses and 3 key releases are stored as 6 words in the FIFO. As each word is read, the user knows if it is a key press or key release that occurred. Key presses such as CTRL+ALT+DEL are stored as 3 simultaneous key presses. Key presses and releases generate key event interrupts. The KE_INT bit and /INT pin will not cleared until the FIFO is cleared of all events.

All registers can be read but for the purpose of the FIFO, the user should only read KEY_EVENT_A register. Once all the events in the FIFO have been read, reading of KEY_EVENT_A register will yield a zero value.

Keypad Lock1 to Lock2 Timer Register, KP_LCK_TIMER (Address 0×0E)

ADDRESS	DECISTED NAME(1)	REGISTER DESCRIPTION		BIT							
	REGISTER NAME			6	5	4	3	2	1	0	
0×0E	KP_LCK_TIMER	Keypad lock 1 to lock 2 timer	KL7	KL6	KL5	KL4	KL3	KL2	KL1	KL0	

(1) Only KEY_EVENT_A register is shown

KL[2:0] are for the Lock1 to Lock2 timer

KL[7:3] are for the interrupt mask timer

The interrupt mask timer should be set for the time it takes for the LCD to dim or turn off.

Unlock1 and Unlock2 Registers, UNLOCK1/2 (Address o0×0F)

	DECISTED NAME(1)					BI	т					
ADDRESS	REGISTER NAME	REGISTER DESCRIPTION	7	6	5	4	3	2	1 UK1_	0		
0×0F	Unlock1	Unlock key 1	UK1_ 7	UK1_ 6	UK1 _5	UK1_ 4	UK1_ 3	UK1 _2	UK1_ 1	UK1 _0		

(1) Only KEY_EVENT_A register is shown

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

ADDRESS	DECISTED NAME(1)					Bľ	Т			
	REGISTER NAMEY	REGISTER DESCRIPTION	7	6	5	4	3	2	1	0
0×10	Unlock2	Unlock key 2	UK2_ 7	UK2_ 6	UK2 _5	UK2_ 4	UK2_ 3	UK2 _2	UK2_ 1	UK2 _0

UK1[6:0] contains the key number used to unlock key 1

UK2[6:0] contains the key number used to unlock key 2

A '0' in either register means it is disabled. It lasts up to 7 seconds. Needs a second timer up to 31 seconds? The keypad lock interrupt mask timer generates a first interrupt (K_INT) and then waits for a programmed time before generating a second interrupt. A second interrupt can only be generated when a timer is enabled due to an unlock sequence being pressed. The second interrupt is a key lock interrupt. When the interrupt mask timer is disabled ('0'), a key lock interrupt will trigger only when the correct and complete unlock sequence is completed.

GPIO Interrupt Status Registers, GPIO_INT_STAT1-3 (Address 0×11-0×13)

These registers are used to check GPIO interrupt status and are cleared on read.

GPIO Data Status Registers, GPIO_DAT_STAT1-3 (Address 0×14-0×16)

These registers show GPIO state when read for inputs and outputs.

GPIO Data Out Registers, GPIO_DAT_OUT1-3 (Address 0×17-0×19)

These registers contain GPIO data to be written to GPIO out driver; inputs are not affected. This is needed so that the value can be written prior to being set as an output.

GPIO Interrupt Enable Registers, GPIO_INT_EN1-3 (Address 0×1A-0×1C)

These registers enable interrupts for GP inputs only.

Keypad or GPIO Selection Registers, KP_GPIO1-3 (Address 0×1D-0×1F)

A bit value of '0' in any of the unreserved bits puts the corresponding pin in GPIO mode. A '1' in any of these bits puts the pin in keyscan mode and configured as a row or column accordingly.

GPI Event Mode Registers, GPI_EM1-3 (Address 0×20-0×22)

A bit value of '0' in any of the unreserved bits indicates that it is not part of the event FIFO. A '1' in any of these bits means it is part of the event FIFO.

GPIO Data Direction Registers, GPIO_DIR1-3 (Address 0×23-0×25)

A bit value of '0' in any of the unreserved bits sets the corresponding pin as an input. A '1' in any of these bits sets the pin as an output.

GPIO Edge/Level Detect Registers, GPIO_INT_LVL1-3 (Address 0×26-0×28)

A bit value of '0' indicates that interrupt will be triggered on a high-to-low transition for the inputs in GPIO mode. A bit value of '1' indicates that interrupt will be triggered on a low-to-high value for the inputs in GPIO mode.

Debounce Disable Registers, DEBOUNCE_DIS1-3 (Address 0×29-0×2B)

This is for pins configured as inputs. A bit value of '0' in any of the unreserved bits disables the debounce while a bit value of '1' enables the debounce.

	DECISTED NAME(1)					BI	т			
ADDRE55		REGISTER DESCRIPTION	7	6	4	3	2	1	0	
0×2B	DEBOUNCE_DIS 3	Debounce disable 0: enabled 1: disabled		N/A		N/A 0	N/A 0	N/A 0	C9DD 0	C8D D 0

(1) Only KEY_EVENT_A register is shown

STRUMENTS

DEBOUNCE ENABLED

Debounce disable will have the same effect for GPI mode or for rows in keypad scanning mode. The reset line always has a 50-µs debounce time.

The debounce time for inputs is the time required for the input to be stable to be noticed. This time is 50 µs.

The debounce time for the keypad is for the columns only. The minimum time is 25 ms. All columns are scanned once every 25 ms to detect any key presses. Two full scans are required to see if any keys were pressed. If the first scan is done just after a key press, it will take 25 ms to detect the key press. If the first scan is down much later than the key press, it will take 40 ms to detect a key press.

GPIO Pull Disable Register, GPIO_PULL1-3 (Address 0×2C-0×2E)

This register enables or disables pullup registers from inputs.

Typical Application

8 shows an application in which the TCA8418 can be used.

	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9
R0	1	2	3	4	5	6	7	8	9	10
R1	11	12	13	14	15	16	17	18	19	20
R2	21	22	23	24	25	26	27	28	29	30
R3	31	32	33	34	35	36	37	38	39	40
R4	41	42	43	44	45	46	47	48	49	50
R5	51	52	53	54	55	56	57	58	59	60
R6	61	62	63	64	65	66	67	68	69	70
R7	71	72	73	74	75	76	77	78	79	80

图 8. Typical Application

表 6. Key Value Assignment

R771727374757677787980The 18 GPIOs can be configured to support up to 80 keys. The GPIOs are programmed into rows (maximum of 8) and columns (maximum of 10) to support a keypad. This is done through writing to "Keypad or GPIO Selection" registers (0x1D – 0x1F). The keypad in idle mode will be configured as Columns being driven low and Rows as inputs with pull-ups.

When there is a key press or multiple key presses (Short between Column and Row), it will trigger an internal state machine interrupt. The row that has a pressed key can be determined through reading the "GPIO Data Status" registers (0x14-0x16). After that, the state machine starts a keyscan cycle to determine the column of the key that was pressed. The state machine sets one column as an output low and all other columns as high. The state machine will then walk a zero across the applicable row to determine what keys are being pressed.

Once a key has been pressed for 25 ms, the state machine will set the appropriate key/s in the Key Event Status register with the key-pressed bit set (bit 7). If the K_IEN is set it will then set KE_INT and generate an interrupt to the host processor. The state machine will continue to poll while there are keys pressed. If a key/s that was in the key pressed register is released for 25 ms or greater, the state machine will set the appropriate keys in the Key Event Status register with the key pressed bit cleared. If K_IEN is set it will set the K_INT and generate an interrupt to the host processor.

After receiving an interrupt, the host processor will first read the Interrupt Status register to determine what interrupt caused the processor interrupt. It will then read the Key Event Register to see what keys where pressed/released (Bits will then automatically clear on read in those registers). The processor will then write a 1 to the interrupt bit in the interrupt register to clear it and release the host interrupt to the processor. The processor can see the status of what keys are pressed at any point by reading the KEY_EVENT_A register (FIFO).

See Key Event Registers (FIFO) for more information.

When all Key_Event Registers are full, any additional events with set the OVR_FLOW_INT bit to 1. This will also trigger an interrupt to the processor. When the FIFO is not full, new events are added to the next empty Key_Event register in line. The OVR_FLOW_M bit sets the mode of operation during overflows. Clearing this bit will cause new incoming events to be ignored and discarded. Setting this bit will overwrite old data with new data starting with the first event.

Keypad Lock/Unlock

This user can lock the keypad through the lock/unlock feature in this device. Once the keypad is locked, it can prevent the generation of key event interrupts and recorded key events. The unlock keys can be programmed with any value of the keys in the keypad matrix or any GPI values that are part of the key event table. When the keypad lock interrupt mask timer is enabled, the user will need to press two specific keys before an keylock interrupt is generated or keypad events are recorded. After the keypad is locked, a key event interrupt is generated any time a user presses a key. This first interrupt also triggers the processor to turn on the LCD and display the unlock message. The processor will then read the lock status register to see if the keypad is unlocked. The next interrupt (keylock interrupt) will not be generated unless both unlock keys sequences are correct. If correct Unlock keys are not pressed before the mask timer expires, the state machine will start over again.

Ghosting

Supports multiple key presses accurately. Applications requiring three-key combinations (such as <Ctrl><Alt>) must ensure that the three keys are wired in appropriate key positions to avoid ghosting (or appearing like a 4th key has been pressed)

GPI Events

A column or row configured as GPI can be programmed to be part of the Key Event Table, hence becomes also capable of generating Key Event Interrupt. A key Event Interrupt caused by a GPI follow the same process flow as a Key Event Interrupt caused by a Key press.

GPIs configured as part of the Key Event Table allows for single key switches to be monitored as well as other GPI interrupts. As part of the Event Table, GPIs are represented with decimal value of 97 (0x61 or 1100001) and run through decimal value of 114 (0x72 or 1110010).

For a GPI that is set as active high, and is enabled in the Key Event Table, the state-machine will add an event to the event count and event table whenever that GPI goes high. If the GPI is set to active low, a transition from high to low will be considered a press and will also be added to the event count and event table. Once the interrupt state has been met, the state machine will internally set an interrupt for the opposite state programmed in the register to avoid polling for the released state, hence saving current. Once the released state is achieved, it will add it to the event table. The press and release will still be indicated by bit 7 in the event register.

The GPI Events can also be used as unlocked sequences. When the GPI_EM bit is set, GPI events will not be tracked when the keypad is locked. GPI_EM bit must be cleared for the GPI events to be tracked in the event counter and table when the keypad is locked.

Bus Transactions

Data is exchanged between the master and TCA8418 through write and read commands.

Writes

Data is transmitted to the TCA8418 by sending the device address and setting the least significant bit (LSB) to a logic 0. The command byte is sent after the address and determines which register receives the data that follows the command byte. There is no limitation on the number of data bytes sent in one write transmission.

TEXAS INSTRUMENTS

www.ti.com.cn

Reads

The bus master first must send the TCA8418 address with the LSB set to a logic 0. The command byte is sent after the address and determines which register is accessed. After a restart, the device address is sent again but, this time, the LSB is set to a logic 1. Data from the register defined by the command byte then is sent by the TCA8418 (see 图 11 and 图 12). Data is clocked into the register on the rising edge of the ACK clock pulse.

图 12. Read From Input Port Register

www.ti.com.cn

TYPICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$ (unless otherwise noted)

TEXAS INSTRUMENTS

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

www.ti.com.cn

ZHCS290B-SEPTEMBER 2009-REVISED MARCH 2010

PARAMETER MEASUREMENT INFORMATION

SDA LOAD CONFIGURATION

BYTE	DESCRIPTION
1	I ² C address
2	Input register port data

- A. C_L includes probe and jig capacitance. t_{ocf} is measured with C_L of 10 pF or 400 pF.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.
- C. All parameters and waveforms are not applicable to all devices.

图 13. I²C Interface Load Circuit and Voltage Waveforms

INTERRUPT LOAD CONFIGURATION

A. C_L includes probe and jig capacitance.

B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.

C. All parameters and waveforms are not applicable to all devices.

图 14. Interrupt Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (接下页) Pn **500** Ω DUT ~~~~ $2 \times V_{CCP}$ C_L = 50 pF **500** Ω ≶ (see Note A) **P-PORT LOAD CONFIGURATION** $0.7\times V_{CCP}$ SCL **P**3 P0 $0.3 \times V_{CCI}$ Slave ACK SDA t_{pv} (see Note B) Pn Last Stable Bit Unstable Data WRITE MODE $(R/\overline{W} = 0)$ $0.7 \times V_{CCI}$ SCL **P0 P**3 $0.3\times V_{\text{CCI}}$ t_{ph} t_{ps}-Pn $0.5 \times V_{\text{CCP}}$ READ MODE (R/W = 1)A. C_L includes probe and jig capacitance. B. t_{pv} is measured from 0.7 × V_{CC} on SCL to 50% I/O (Pn) output.

- C. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $t_r/t_f \leq$ 30 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

图 15. P Port Load Circuit and Timing Waveforms

www.ti.com.cn

- A. C_L includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r/t_f \leq 30 ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. I/Os are configured as inputs.
- E. All parameters and waveforms are not applicable to all devices.

图 16. Reset Load Circuits and Voltage Waveforms

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TCA8418EYFPR	ACTIVE	DSBGA	YFP	25	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	
TCA8418RTWR	ACTIVE	WQFN	RTW	24	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

REEL DIMENSIONS

Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TCA8418EYFPR	DSBGA	YFP	25	3000	180.0	8.4	2.07	2.07	0.65	4.0	8.0	Q1
TCA8418RTWR	WQFN	RTW	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

28-Aug-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TCA8418EYFPR	DSBGA	YFP	25	3000	220.0	220.0	34.0
TCA8418RTWR	WQFN	RTW	24	3000	367.0	367.0	35.0

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-Leads (QFN) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 F. Falls within JEDEC M0-220.

<u>RTW (S-PWQFN-</u>N24)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTES: A. All linear dimensions are in millimeters

RTW (S-PWQFN-N24)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

MECHANICAL DATA

YFP (S-XBGA-N25)

DIE-SIZE BALL GRID ARRAY

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.
- The package size (Dimension D and E) of a particular device is specified in the device Product Data Sheet version of this drawing, in case it cannot be found in the product data sheet please contact a local TI representative.
- E. Reference Product Data Sheet for array population.
- 2 x 2 matrix pattern is shown for illustration only.
- F. This package contains Pb-free balls.

NanoFree is a trademark of Texas Instruments

重要声明

德州仪器(TI)及其下属子公司有权在不事先通知的情况下,随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权随时中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的 销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI保证其所销售的硬件产品的性能符合TI标准保修的适用规范。仅在TI保证的范围内,且TI认为有必要时才会使用测试或其它质量控制技术。除非政府做出了硬性规定,否则没有必要对每种产品的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何TI专利权、版权、屏蔽作品权或其它与使用了TI产品或服务的组合设备、机器、流程相关的TI知识产权中授予的直接或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从TI获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是TI的专利权或其它知识产权方面的许可。

对于TI的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制信息的过程中对内容的篡改属于非法的、欺诈性商业行为。TI对此类篡改过的文件不承担任何责任。

在转售TI产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关TI产品或服务的明示或暗示授权,且这是非法的、 欺诈性商业行为。TI对此类虚假陈述不承担任何责任。

TI 产品未获得用于关键的安全应用中的授权,例如生命支持应用(在该类应用中一旦TI产品故障将预计造成重大的人员伤亡),除 非各方官员已经达成了专门管控此类使用的协议。购买者的购买行为即表示,他们具备有关其应用安全以及规章衍生所需的所有专业 技术和知识,并且认可和同意,尽管任何应用相关信息或支持仍可能由TI 提供,但他们将独力负责满足在关键安全应用中使用其产品及TI 产品所需的所有法律、法规和安全相关要求。此外,购买者必须全额赔偿因在此类关键安全应用中使用TI产品而对TI 及其代表造成的损失。

TI 产品并非设计或专门用于军事/航空应用,以及环境方面的产品,除非TI 特别注明该产品属于"军用"或"增强型塑料"产品。只有TI 指定的军用产品才满足军用规格。购买者认可并同意,对TI 未指定军用的产品进行军事方面的应用,风险由购买者单独承担, 并且独力负责在此类相关使用中满足所有法律和法规要求。

TI 产品并非设计或专门用于汽车应用以及环境方面的产品,除非TI 特别注明该产品符合ISO/TS 16949 要求。购买者认可并同意,如果他们在汽车应用中使用任何未被指定的产品,TI 对未能满足应用所需要求不承担任何责任。

可访问以下URL 地址以获取有关其它TI 产品和应用解决方案的信息:

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP® 产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	www.ti.com.cn/microcontrollers		
RFID 系统	www.ti.com.cn/rfidsys		
OMAP 机动性处理器	www.ti.com/omap		
无线连通性	www.ti.com.cn/wirelessconnectivity		
	德州仪器在线技术支持社区	www.deyisupport.com	

邮寄地址: 上海市浦东新区世纪大道 1568 号,中建大厦 32 楼 邮政编码: 200122 Copyright © 2012 德州仪器 半导体技术(上海)有限公司