Ultra Low Power Stereo Audio Codec With Embedded miniDSP

FEATURES

- Stereo Audio DAC with 100dB SNR
- 4.1mW Stereo 48ksps DAC Playback
- Stereo Audio ADC with 93dB SNR
- 6.1mW Stereo 48ksps ADC Record
- PowerTune ${ }^{\text {TM }}$
- Extensive Signal Processing Options
- Embedded miniDSP
- Six Single-Ended or Three Fully-Differential Analog Inputs
- Stereo Analog and Digital Microphone Inputs
- Stereo Headphone Outputs
- Stereo Line Outputs
- Very Low-Noise PGA
- Low Power Analog Bypass Mode
- Programmable Microphone Bias
- Programmable PLL
- Integrated LDO
- $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ 32-pin QFN Package

APPLICATIONS

- Portable Navigation Devices (PND)
- Portable Media Player (PMP)
- Mobile Handsets
- Communication
- Portable Computing
- Advanced DSP algorithms

DESCRIPTION

The TLV320AIC3254 (sometimes referred to as the AIC3254) is a flexible, low-power, low-voltage stereo audio codec with programmable inputs and outputs, PowerTune capabilities, fully-programmable miniDSP, fixed predefined and parameterizable signal processing blocks, integrated PLL, integrated LDOs and flexible digital interfaces.

Figure 1. Simplified Block Diagram

[^0] appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DESCRIPTION (CONTINUED)

The TLV320AIC3254 features two fully-programmable miniDSP cores that support application-specific algorithms in the record and-or the playback path of the device. The miniDSP cores are fully software controlled with advanced DSP filtering loaded into the device after power-up.
Extensive register-based control of power, IO channel configuration, gains, effects, pin-multiplexing and clocks is included, allowing the device to be precisely targeted to its application. Combined with the advanced PowerTune technology, the device can cover operations from 8 kHz mono voice playback to audio stereo 192 kHz DAC playback, making it ideal for portable battery-powered audio and telephony applications.
The record path of the TLV320AIC3254 covers operations from 8 kHz mono to 192 kHz stereo recording, and contains programmable input channel configurations covering single-ended and differential setups, as well as floating or mixing input signals. It also includes a digitally-controlled stereo microphone preamplifier and integrated microphone bias. Digital signal processing blocks can remove audible noise that may be introduced by mechanical coupling, such as optical zooming in a digital camera.

The playback path offers signal-processing blocks for filtering and effects, and supports flexible mixing of DAC and analog input signals as well as programmable volume controls. The playback path contains two high-power output drivers as well as two fully-differential outputs. The high-power outputs can be configured in multiple ways, including stereo and mono BTL.

The integrated PowerTune technology allows the device to be tuned to an optimum power-performance trade-off. Mobile applications frequently have multiple use cases requiring very low power operation while being used in a mobile environment. When used in a docked environment power consumption typically is less of a concern, while minimizing noise is important. With PowerTune, the TLV320AIC3254 addresses both cases.
The voltage supply range for the TLV320AIC3254 for analog is $1.5 \mathrm{~V}-1.95 \mathrm{~V}$, and for digital it is $1.26 \mathrm{~V}-1.95 \mathrm{~V}$. To ease system-level design, LDOs are integrated to generate the appropriate analog or digital supply from input voltages ranging from 1.8 V to 3.6 V . Digital IO voltages are supported in the range of $1.1 \mathrm{~V}-3.6 \mathrm{~V}$.
The required internal clock of the TLV320AIC3254 can be derived from multiple sources, including the MCLK pin, the BCLK pin, the GPIO pin or the output of the internal PLL, where the input to the PLL again can be derived from the MCLK pin, the BCLK or GPIO pins. Although using the PLL ensures the availability of a suitable clock signal, it is not recommended for the lowest power settings. The PLL is highly programmable and can accept available input clocks in the range of 512 kHz to 50 MHz .

The device is available in the $5-\mathrm{mm} \times 5-\mathrm{mm}$, 32 -pin QFN package.

Package and Signal Descriptions

Packaging Information

For the most-current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Pin Assignments

This document describes signals that take on different names depending on how they are configured. In such cases, the different names are placed together and separated by slash (/) characters. For example, "SCL/ $\overline{\mathrm{SS}}$ ". Active low signals are represented by overbars.

Figure 2. QFN (RHB) Package, Bottom View

Table 1. Terminal Functions

TERMINAL	NAME	TYPE	DESCRIPTION			
1	MCLK	I	Master Clock Input			
2	BCLK	IO	Audio serial data bus (primary) bit clock			
3	WCLK	IO	Audio serial data bus (primary) word clock	$	$	MFP1
:---						
4						
5						

Table 1. Terminal Functions (continued)

TERMINAL	NAME	TYPE	DESCRIPTION
13	IN1_L	1	Multifunction Analog Input, or Single-ended configuration: MIC 1 or Line 1 left or Differential configuration: MIC or Line right, negative
14	IN1_R	1	Multifunction Analog Input, or Single-ended configuration: MIC 1 or Line 1 right or Differential configuration: MIC or Line right, positive
15	IN2_L	1	Multifunction Analog Input, or Single-ended configuration: MIC 2 or Line 2 left or Differential configuration: MIC or Line left, positive
16	IN2_R	1	Multifunction Analog Input, or Single-ended configuration: MIC 2 or Line 2 right or Differential configuration: MIC or Line left, negative
17	$\mathrm{AV}_{\text {SS }}$	Ground	Analog ground supply
18	REF	\bigcirc	Reference voltage output for filtering
19	MICBIAS	0	Microphone bias voltage output
20	IN3_L	I	Multifunction Analog Input, or Single-ended configuration: MIC3 or Line 3 left, or Differential configuration: MIC or Line left, positive, or Differential configuration: MIC or Line right, negative
21	IN3_R	1	Multifunction Analog Input, or Single-ended configuration: MIC3 or Line 3 right, or Differential configuration: MIC or Line left, negative, or Differential configuration: MIC or Line right, positive
22	LOL	0	Left line output
23	LOR	0	Right line output
24	$\mathrm{AV}_{\mathrm{DD}}$	Power	Analog voltage supply $1.5 \mathrm{~V}-1.95 \mathrm{~V}$ Input when A-LDO disabled, Filtering output when A-LDO enabled
25	HPL	0	Left high power output driver
26	LDOIN/HPVDD	Power	LDO Input supply and Headphone Power supply 1.9V-3.6V
27	HPR	0	Right high power output driver
28	DV ${ }_{\text {Ss }}$	Ground	Digital Ground and Chip-substrate
29	DV DD	Power	If LDO_SELECT Pin $=0$ (D-LDO disabled) Digital voltage supply $1.26 \mathrm{~V}-1.95 \mathrm{~V}$ If LDO_SELECT Pin = 1 (D-LDO enabled) Digital voltage supply filtering output
30	LDO_SELECT	1	connect to DVss.
31	$\overline{\text { RESET }}$	1	Reset (active low)
32	GPIO MFP5	1	Primary function: General Purpose digital IO Secondary function: CLKOUT Output INT1 Output INT2 Output Audio serial data bus ADC word clock output Audio serial data bus (secondary) bit clock output Audio serial data bus (secondary) word clock output Digital microphone clock output

Electrical Characteristics

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	VALUE	UNIT
$\mathrm{AV}_{\mathrm{DD}}$ to $\mathrm{AV}_{S S}$	-0.3 to 2.2	V
$D V_{D D}$ to $D V_{S S}$	-0.3 to 2.2	V
$\mathrm{IOV}_{\text {DD }}$ to $\mathrm{IOV}_{S S}$	-0.3 to 3.9	V
LDOIN to $\mathrm{AV}_{\text {SS }}$	-0.3 to 3.9	V
Digital Input voltage to ground	-0.3 to $\mathrm{IOV}_{\mathrm{DD}}+0.3$	V
Analog input voltage to ground	-0.3 to $A V_{D D}+0.3$	V
Operating temperature range	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage temperature range	-55 to 125	${ }^{\circ} \mathrm{C}$
Junction temperature (T_{J} Max)	105	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
LDOIN	Power Supply Voltage Range	Referenced to $\mathrm{AV}_{\mathrm{SS}}{ }^{(1)}$	1.9		3.6	V
$\mathrm{AV}_{\text {DD }}$			1.5	1.8	1.95	
$1 O V_{\text {DD }}$		Referenced to $\mathrm{IOV}_{\text {SS }}{ }^{(1)}$	1.1		3.6	
$D \mathrm{~V}_{\mathrm{DD}}{ }^{(2)}$		Referenced to DV ${ }_{\text {SS }}{ }^{(1)}$	1.26	1.8	1.95	
PLL Input Frequency		Clock divider uses fractional divide ($\mathrm{D}>0$), $\mathrm{P}=1, \mathrm{DV} \mathrm{DD}_{\mathrm{D}} \geq 1.65 \mathrm{~V}$ (See table in SLAA408, Maximum TLV320AIC3254 Clock Frequencies)	10		20	MHz
		Clock divider uses integer divide ($\mathrm{D}=0$), $\mathrm{P}=1, \mathrm{DV} \mathrm{D}_{\mathrm{DD}} \geq 1.65 \mathrm{~V}$ (See table in SLAA408, Maximum TLV320AIC3254 Clock Frequencies)	0.512		20	MHz
MCLK	Master Clock Frequency	MCLK; Master Clock Frequency; $\mathrm{DV}_{\text {DD }} \geq 1.65 \mathrm{~V}$			50	MHz
		MCLK; Master Clock Frequency; DV ${ }_{\text {DD }} \geq 1.26 \mathrm{~V}$			25	
SCL	SCL Clock Frequency				400	kHz
$\begin{aligned} & \text { LOL, } \\ & \text { LOR } \end{aligned}$	Stereo line output load resistance		0.6	10		k Ω
HPL, HPR	Stereo headphone output load resistance	Single-ended configuration	14.4	16		Ω
	Headphone output load resistance	Differential configuration	24.4	32		Ω
C Lout	Digital output load capacitance			10		pF
TOPR	Operating Temperature Range		-40		85	${ }^{\circ} \mathrm{C}$

(1) All grounds on board are tied together to prevent voltage differences of more than 0.2 V maximum for any combination of ground signals.
(2) At DV ${ }_{D D}$ values lower than 1.65 V , the PLL does not function. Please see the Maximum TLV320AIC3254 Clock Frequencies table in the TLV320AIC3254 Application Reference Guide (SLAA408) for details on maximum clock frequencies.

THERMAL INFORMATION

	THERMAL METRIC ${ }^{(1)}$	TLV320AIC3254	UNIT
		RHB (32 PINS)	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

Electrical Characteristics, ADC

At $25^{\circ} \mathrm{C}, A V_{D D}, D V_{D D}, I O V_{D D}=1.8 \mathrm{~V}, L D O I N=3.3 \mathrm{~V}, A V_{D D}$ and $D V_{D D} L D O$ disabled, $f_{s}($ Audio $)=48 \mathrm{kHz}, C_{\text {ref }}=10 \mu \mathrm{~F}$ on REF pin, PLL disabled unless otherwise noted.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
AUDIO ADC						
	Input signal level (0dB)	Single-ended, CM $=0.9 \mathrm{~V}$		0.5		$\mathrm{V}_{\text {RMS }}$
	Device Setup	1 kHz sine wave input Single-ended Configuration IN1R to Right ADC and IN1L to Left ADC, $\mathrm{R}_{\text {in }}=20 \mathrm{~K}, \mathrm{f}_{\mathrm{s}}=48 \mathrm{kHz}$, AOSR $=128$, MCLK $=256{ }^{*} f_{s}$, PLL Disabled; AGC = OFF, Channel Gain = OdB, Processing Block = PRB_R1, Power Tune = PTM_R4				
SNR	Signal-to-noise ratio, Aweighted ${ }^{(1)(2)}$	Inputs ac-shorted to ground	80	93		dB
		IN2R, IN3R routed to Right ADC and ac-shorted to ground IN2L, IN3L routed to Left ADC and ac-shorted to ground		93		
DR	Dynamic range A-weighted ${ }^{(1)(2)}$	-60dB full-scale, 1-kHz input signal		92		dB
THD + N	Total Harmonic Distortion plus Noise	-3 dB full-scale, $1-\mathrm{kHz}$ input signal		-85	-70	dB
		IN2R,IN3R routed to Right ADC IN2L, IN3L routed to Left ADC -3 dB full-scale, $1-\mathrm{kHz}$ input signal		-85		
AUDIO ADC						
	Input signal level (0dB)	Single-ended, $\mathrm{CM}=0.75 \mathrm{~V}, \mathrm{AV} \mathrm{VD}=1.5 \mathrm{~V}$		0.375		$\mathrm{V}_{\text {RMS }}$
	Device Setup	1 kHz sine wave input Single-ended Configuration IN1R, IN2R, IN3R routed to Right ADC IN1L, IN2L, IN3L routed to Left ADC $\mathrm{R}_{\mathrm{in}}=20 \mathrm{k} \Omega, \mathrm{f}_{\mathrm{s}}=48 \mathrm{kHz}$, AOSR $=128$, MCLK $=256^{*} f_{\mathrm{s}}$, PLL Disabled, AGC = OFF, Channel Gain = OdB, Processing Block = PRB_R1 Power Tune = PTM_R4				
SNR	Signal-to-noise ratio, A-weighted (1) (2)	Inputs ac-shorted to ground		91		dB
DR	Dynamic range A-weighted ${ }^{(1)(2)}$	-60dB full-scale, 1-kHz input signal		90		dB
THD + N	Total Harmonic Distortion plus Noise	-3 dB full-scale, 1-kHz input signal		-80		dB

(1) Ratio of output level with 1 kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20 Hz to 20 kHz bandwidth using an audio analyzer.
(2) All performance measured with 20 kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-ofband noise, which, although not audible, may affect dynamic specification values.

Electrical Characteristics, ADC (continued)

At $25^{\circ} \mathrm{C}, A V_{D D}, D V_{D D}, I O V_{D D}=1.8 \mathrm{~V}, \mathrm{LDOIN}=3.3 \mathrm{~V}, A V_{D D}$ and $D V_{D D} L D O$ disabled, $f_{s}($ Audio $)=48 \mathrm{kHz}, C_{\text {ref }}=10 \mu F$ on REF pin, PLL disabled unless otherwise noted.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
AUDIO ADC						
	Input signal level (0dB)	Differential Input, CM $=0.9 \mathrm{~V}$		10		mV
	Device Setup	1 kHz sine wave input Differential configuration IN1L and IN1R routed to Right ADC IN2L and IN2R routed to Left ADC $\mathrm{R}_{\text {in }}=10 \mathrm{~K}, \mathrm{f}_{\mathrm{s}}=48 \mathrm{kHz}, A O S R=128$ MCLK $=256^{*} \mathrm{f}_{\mathrm{s}}$ PLL Disabled AGC = OFF, Channel Gain $=40 \mathrm{~dB}$ Processing Block $=$ PRB_R1, Power Tune = PTM_R4				
ICN	Idle-Channel Noise, Aweighted ${ }^{(3)(4)}$	Inputs ac-shorted to ground, input referred noise		2		$\mu \mathrm{V}_{\text {RMS }}$
AUDIO ADC						
	Gain Error	1 kHz sine wave input Single-ended configuration $R_{\text {in }}=20 \mathrm{k} \Omega \mathrm{f}_{\mathrm{s}}=48 \mathrm{kHz}, A O S R=128$, MCLK $=256{ }^{*} f_{s}$, PLL Disabled AGC = OFF, Channel Gain = OdB Processing Block = PRB_R1, Power Tune = PTM_R4, CM $=0.9 \mathrm{~V}$		-0.05		dB
	Input Channel Separation	1 kHz sine wave input at -3 dBFS Single-ended configuration IN1L routed to Left ADC IN1R routed to Right ADC, $\mathrm{R}_{\text {in }}=20 \mathrm{k} \Omega$ AGC = OFF, AOSR = 128, Channel Gain $=0 \mathrm{~dB}, \mathrm{CM}=0.9 \mathrm{~V}$		108		dB
	Input Pin Crosstalk	1 kHz sine wave input at -3dBFS on IN2L, IN2L internally not routed. IN1L routed to Left ADC ac-coupled to ground 1 kHz sine wave input at -3 dBFS on IN2R, IN2R internally not routed. IN1R routed to Right ADC ac-coupled to ground Single-ended configuration $R_{\text {in }}=20 k \Omega$, AOSR $=128$ Channel, Gain $=0 \mathrm{~dB}, \mathrm{CM}=0.9 \mathrm{~V}$		115		dB
	PSRR	$217 \mathrm{~Hz}, 100 \mathrm{mV}$ pp signal on $A V_{\mathrm{DD}}$, Single-ended configuration, $\mathrm{R}_{\text {in }}=20 \mathrm{k} \Omega$, Channel Gain $=0 \mathrm{~dB} ; \mathrm{CM}=0.9 \mathrm{~V}$		55		dB
ADC programmable gain amplifier gain		Single-Ended, $\mathrm{R}_{\text {in }}=10 \mathrm{k} \Omega$, PGA gain set to 0dB		0		dB
		Single-Ended, $\mathrm{R}_{\text {in }}=10 \mathrm{k} \Omega$, PGA gain set to 47.5 dB		47.5		dB
		Single-Ended, $\mathrm{R}_{\text {in }}=20 \mathrm{k} \Omega$, PGA gain set to 0 dB		-6		dB
		Single-Ended, $\mathrm{R}_{\text {in }}=20 \mathrm{k} \Omega, \mathrm{PGA}$ gain set to 47.5 dB		41.5		dB
		Single-Ended, $\mathrm{R}_{\text {in }}=40 \mathrm{k} \Omega$, PGA gain set to 0 dB		-12		dB
		Single-Ended, $\mathrm{R}_{\text {in }}=40 \mathrm{k} \Omega, \mathrm{PGA}$ gain set to 47.5 dB		35.5		dB
	ADC programmable gain amplifier step size	$1-\mathrm{kHz}$ tone		0.5		dB

(3) Ratio of output level with 1 kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20 Hz to 20 kHz bandwidth using an audio analyzer.
(4) All performance measured with 20 kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-ofband noise, which, although not audible, may affect dynamic specification values.

Electrical Characteristics, Bypass Outputs

At $25^{\circ} \mathrm{C}, A V_{D D}, D V_{D D}, I O V_{D D}=1.8 \mathrm{~V}, L D O I N=3.3 \mathrm{~V}, A V_{D D}$ and $D V_{D D} L D O$ disabled, $f_{s}($ Audio $)=48 \mathrm{kHz}, C_{\text {ref }}=10 \mu \mathrm{~F}$ on REF pin, PLL disabled unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG BYPASS TO HEADPHONE AMPLIFIER, DIRECT MODE						
	Device Setup	Load $=16 \Omega$ (single-ended), 50 pF ; Input and Output CM $=0.9 \mathrm{~V}$; Headphone Output on LDOIN Supply; IN1L routed to HPL and IN1R routed to HPR; Channel Gain $=0 \mathrm{~dB}$				
	Gain Error			-0.8		dB
	Noise, A-weighted ${ }^{(1)}$	Idle Channel, IN1L and IN1R ac-shorted to ground		3		$\mu \mathrm{V}_{\text {RMS }}$
THD	Total Harmonic Distortion	$446 \mathrm{mVrms}, 1 \mathrm{kHz}$ input signal		-89		dB

ANALOG BYPASS TO LINE-OUT AMPLIFIER, PGA MODE

Device Setup	Load $=10 \mathrm{k} \Omega$ (single-ended), 56 pF ; Input and Output CM $=0.9 \mathrm{~V}$; LINE Output on LDOIN Supply; IN1L routed to ADCPGA_L and IN1R routed to ADCPGA_R; $\mathrm{R}_{\text {in }}=20 \mathrm{k} \Omega$ ADCPGA_L routed to LOL and ADCPGA_R routed to LOR; Channel Gain = 0dB		
Gain Error		0.6	dB
Noise, A-weighted ${ }^{(1)}$	Idle Channel, IN1L and IN1R ac-shorted to ground	7	$\mu \mathrm{V}_{\text {RMS }}$
	Channel Gain $=40 \mathrm{~dB}$, Input Signal $(0 \mathrm{~dB})=5 \mathrm{mV}_{\mathrm{rms}}$ Inputs ac-shorted to ground, Input Referred	3.4	$\mu \mathrm{V}_{\text {RMS }}$

(1) All performance measured with 20 kHz low-pass filter and, where noted, A-weighted filter. Testing without such a filter may result in higher THD $+N$ and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values.

Electrical Characteristics, Microphone Interface

At $25^{\circ} \mathrm{C}, A V_{D D}, D V_{D D}, I O V_{D D}=1.8 \mathrm{~V}, L D O I N=3.3 \mathrm{~V}, A V_{D D}$ and $D V_{D D} L D O$ disabled, $f_{s}($ Audio $)=48 \mathrm{kHz}, C_{\text {ref }}=10 \mu \mathrm{~F}$ on REF pin, PLL disabled unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX UNIT
MICROPHONE BIAS			
Bias voltage	Bias voltage $\mathrm{CM}=0.9 \mathrm{~V}$, $\mathrm{LDOIN}=3.3 \mathrm{~V}$		
	Micbias Mode 0, Connect to $\mathrm{AV}_{\text {DD }}$ or LDOIN	1.25	V
	Micbias Mode 1, Connect to LDOIN	1.7	V
	Micbias Mode 2, Connect to LDOIN	2.5	V
	Micbias Mode 3, Connect to $\mathrm{AV}_{\text {DD }}$	AV ${ }_{\text {D }}$	V
	Micbias Mode 3, Connect to LDOIN	LDOIN	V
	$\mathrm{CM}=0.75 \mathrm{~V}, \mathrm{LDOIN}=3.3 \mathrm{~V}$		
	Micbias Mode 0, Connect to AV ${ }_{\text {DD }}$ or LDOIN	1.04	V
	Micbias Mode 1, Connect to AV ${ }_{\text {DD }}$ or LDOIN	1.425	V
	Micbias Mode 2, Connect to LDOIN	2.075	V
	Micbias Mode 3, Connect to AV ${ }_{\text {DD }}$	AV ${ }_{\text {DD }}$	V
	Micbias Mode 3, Connect to LDOIN	LDOIN	V
Output Noise	$C M=0.9 \mathrm{~V}$, Micbias Mode 2, A-weighted, 20 Hz to 20 kHz bandwidth, Current load $=0 \mathrm{~mA}$.	10	$\mu \mathrm{V}_{\text {RMS }}$
Current Sourcing	Micbias Mode 2, Connect to LDOIN	3	mA
Inline Resistance	Micbias Mode 3, Connect to $\mathrm{AV}_{\text {DD }}$	140	Ω
	Micbias Mode 3, Connect to LDOIN	87	

Electrical Characteristics, Audio DAC Outputs

At $25^{\circ} \mathrm{C}, A V_{D D}, D V_{D D}, I O V_{D D}=1.8 \mathrm{~V}, L D O I N=3.3 \mathrm{~V}, A V_{D D}$ and $D V_{D D} L D O$ disabled, $f_{s}($ Audio $)=48 \mathrm{kHz}, C_{\text {ref }}=10 \mu \mathrm{~F}$ on REF pin, PLL disabled unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
AUDIO DAC - STEREO SINGLE-ENDED LINE OUTPUT				
Device Setup	Load $=10 \mathrm{k} \Omega$ (single-ended), 56 pF Line Output on $\mathrm{AV}_{\mathrm{DD}}$ Supply Input and Output CM $=0.9 \mathrm{~V}$ $\operatorname{DOSR}=128, \mathrm{MCLK}=256{ }^{*} \mathrm{f}_{\mathrm{s}}$ Channel Gain $=0 \mathrm{~dB}$, word length $=16$ bits, Processing Block = PRB_P1, Power Tune = PTM_P3			
Full scale output voltage (0dB)		0.5		$\mathrm{V}_{\text {RMS }}$
SNR Signal-to-noise ratio A-weighted ${ }^{(1)(2)}$	All zeros fed to DAC input	87100		dB
DR Dynamic range, A-weighted ${ }^{(1)(2)}$	-60 dB 1 kHz input full-scale signal, Word length $=20$ bits	100		dB
THD+N Total Harmonic Distortion plus Noise	-3dB full-scale, 1 kHz input signal	-83	-70	dB
DAC Gain Error	$0 \mathrm{~dB}, 1 \mathrm{kHz}$ input full scale signal	0.3		dB
DAC Mute Attenuation	Mute	119		dB
DAC channel separation	$-1 \mathrm{~dB}, 1 \mathrm{kHz}$ signal, between left and right HP out	113		dB
	100mVpp, 1 kHz signal applied to $A V_{\text {DD }}$	73		dB
	$100 \mathrm{mVpp}, 217 \mathrm{~Hz}$ signal applied to $A V_{\text {DD }}$	77		dB

AUDIO DAC - STEREO SINGLE-ENDED LINE OUTPUT

	Device Setup	```Load \(=10 \mathrm{k} \Omega\) (single-ended), 56pF Line Output on \(\mathrm{AV}_{\mathrm{DD}}\) Supply Input and Output \(\mathrm{CM}=0.75 \mathrm{~V} ; \mathrm{AV}_{\mathrm{DD}}=1.5 \mathrm{~V}\) DOSR \(=128\) MCLK = 256 * fs Channel Gain \(=-2 \mathrm{~dB}\) word length \(=20\) bits Processing Block = PRB_P1 Power Tune = PTM_P4```		
	Full scale output voltage (0dB)		0.375	$\mathrm{V}_{\text {RMS }}$
SNR	Signal-to-noise ratio, A-weighted ${ }^{(1)(2)}$	All zeros fed to DAC input	99	dB
DR	Dynamic range, A-weighted ${ }^{(1)(2)}$	-60dB 1 kHz input full-scale signal	97	dB
THD+N	Total Harmonic Distortion plus Noise	-1 dB full-scale, $1-\mathrm{kHz}$ input signal	-85	dB

AUDIO DAC - STEREO SINGLE-ENDED HEADPHONE OUTPUT

	Device Setup	Load $=16 \Omega$ (single-ended), 50 pF Headphone Output on $A V_{D D}$ Supply, Input and Output CM $=0.9 \mathrm{~V}, \mathrm{DOSR}=128$, MCLK $=256{ }^{*} \mathrm{f}_{\mathrm{s}}$, Channel Gain $=0 \mathrm{~dB}$ word length = 16 bits; Processing Block = PRB_P1 Power Tune = PTM_P3			
	Full scale output voltage (0dB)		0.5		$\mathrm{V}_{\text {RMS }}$
SNR	Signal-to-noise ratio, A-weighted ${ }^{(1)(2)}$	All zeros fed to DAC input	87100		dB
DR	Dynamic range, A-weighted ${ }^{(1)(2)}$	-60dB 1kHz input full-scale signal, Word Length $=20$ bits, Power Tune = PTM_P4	99		dB
THD+N	Total Harmonic Distortion plus Noise	-3 dB full-scale, 1 kHz input signal	-83	-70	dB
	DAC Gain Error	$0 \mathrm{~dB}, 1 \mathrm{kHz}$ input full scale signal	-0.3		dB
	DAC Mute Attenuation	Mute	122		dB

(1) Ratio of output level with 1 kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20 Hz to 20 kHz bandwidth using an audio analyzer.
(2) All performance measured with 20 kHz low-pass filter and, where noted, A-weighted filter. Testing without such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

Electrical Characteristics, Audio DAC Outputs (continued)

At $25^{\circ} \mathrm{C}, A V_{D D}, D V_{D D}, I O V_{D D}=1.8 \mathrm{~V}, L D O I N=3.3 \mathrm{~V}, A V_{D D}$ and $D V_{D D} L D O$ disabled, $f_{s}($ Audio $)=48 \mathrm{kHz}, C_{\text {ref }}=10 \mu F$ on REF pin, PLL disabled unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
DAC channel separation	$-1 \mathrm{~dB}, 1 \mathrm{kHz}$ signal, between left and right HP out	110		dB
DAC PSRR	100mVpp, 1 kHz signal applied to $A V_{\text {DD }}$	73		dB
	$100 \mathrm{mVpp}, 217 \mathrm{~Hz}$ signal applied to $A V_{\text {DD }}$	78		dB
Power Delivered	$R_{L}=16 \Omega$, Output Stage on $A V_{D D}=1.8 \mathrm{~V}$ THDN $<1 \%$, Input CM $=0.9 \mathrm{~V}$, Output CM $=0.9 \mathrm{~V}$	15		mW
	$R_{L}=16 \Omega$ Output Stage on LDOIN $=3.3 \mathrm{~V}$, THDN $<1 \%$ Input CM $=0.9 \mathrm{~V}$, Output CM $=1.65 \mathrm{~V}$	64		
AUDIO DAC - STEREO SINGLE-ENDED HEADPHONE OUTPUT				
Device Setup	Load $=16 \Omega$ (single-ended), 50 pF, Headphone Output on $A V_{D D}$ Supply, Input and Output $\mathrm{CM}=0.75 \mathrm{~V} ; \mathrm{AV}_{\mathrm{DD}}=1.5 \mathrm{~V}$, $\text { DOSR }=128, \text { MCLK }=256 * f_{s}$ Channel Gain $=-2 \mathrm{~dB}$, word length $=20$-bits; Processing Block = PRB_P1, Power Tune = PTM_P4			
Full scale output voltage (0dB)		0.375		$\mathrm{V}_{\text {RMS }}$
SNR Signal-to-noise ratio, A-weighted ${ }^{(3)(4)}$	All zeros fed to DAC input	99		dB
DR Dynamic range, A-weighted ${ }^{(3)(4)}$	-60dB 1 kHz input full-scale signal	98		dB
THD+N Total Harmonic Distortion plus Noise	-1 dB full-scale, 1 kHz input signal	-83		dB

AUDIO DAC - MONO DIFFERENTIAL HEADPHONE OUTPUT

	Device Setup	Load $=32 \Omega$ (differential), 50 pF , Headphone Output on LDOIN Supply Input CM $=0.75 \mathrm{~V}$, Output $\mathrm{CM}=1.5 \mathrm{~V}$, $\mathrm{AV}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{LDOIN}=3.0 \mathrm{~V}, \mathrm{DOSR}=128$ MCLK $=256{ }^{*} \mathrm{f}_{\mathrm{s}}$, Channel (headphone driver) Gain $=5 \mathrm{~dB}$ for full scale output signal, word length $=16$ bits, Processing Block = PRB_P1, Power Tune = PTM_P3		
	Full scale output voltage (0dB)		1778	$\mathrm{m} \mathrm{V}_{\text {RMS }}$
SNR	Signal-to-noise ratio, A-weighted ${ }^{(3)(4)}$	All zeros fed to DAC input	98	dB
DR	Dynamic range, A-weighted ${ }^{(3)(4)}$	-60 dB 1 kHz input full-scale signal	96	dB
THD	Total Harmonic Distortion	-3 dB full-scale, 1 kHz input signal	-82	dB
		$R_{L}=32 \Omega$, Output Stage on LDOIN $=3.3 \mathrm{~V}$, THDN $<1 \%$, Input CM $=0.9 \mathrm{~V}$, Output $\mathrm{CM}=1.65 \mathrm{~V}$	136	mW
	Power Deliv	$R_{L}=32 \Omega$ Output Stage on LDOIN $=3.0 \mathrm{~V}$, THDN < 1\% Input CM $=0.9 \mathrm{~V}$, Output $\mathrm{CM}=1.5 \mathrm{~V}$	114	mW

(3) Ratio of output level with 1 kHz full-scale sine wave input, to the output level with the inputs short circuited, measured A-weighted over a 20 Hz to 20 kHz bandwidth using an audio analyzer.
(4) All performance measured with 20 kHz low-pass filter and, where noted, A-weighted filter. Testing without such a filter may result in higher THD+N and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter removes out-of-band noise, which, although not audible, may affect dynamic specification values

Electrical Characteristics, LDO

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX UNIT
LOW DROPOUT REGULATOR (AVdd)			
Output Voltage	LDOMode $=1$, LDOIN $>1.95 \mathrm{~V}$	1.67	V
	LDOMode $=0$, LDOIN $>2.0 \mathrm{~V}$	1.72	
	LDOMode $=2$, LDOIN $>2.05 \mathrm{~V}$	1.77	
Output Voltage Accuracy		± 2	\%
Load Regulation	Load current range 0 to 50 mA	15	mV
Line Regulation	Input Supply Range 1.9V to 3.6V	5	mV
Decoupling Capacitor		1	$\mu \mathrm{F}$
Bias Current		60	$\mu \mathrm{A}$
LOW DROPOUT REGULATOR (DVdd)			
Output Voltage	LDOMode $=1$, LDOIN $>1.95 \mathrm{~V}$	1.67	V
	LDOMode $=0$, LDOIN $>2.0 \mathrm{~V}$	1.72	
	LDOMode $=2$, LDOIN $>2.05 \mathrm{~V}$	1.77	
Output Voltage Accuracy		± 2	\%
Load Regulation	Load current range 0 to 50 mA	15	mV
Line Regulation	Input Supply Range 1.9V to 3.6V	5	mV
Decoupling Capacitor		1	$\mu \mathrm{F}$
Bias Current		60	$\mu \mathrm{A}$

Electrical Characteristics, Misc.

At $25^{\circ} \mathrm{C}, A V_{D D}, D V_{D D}, I O V_{D D}=1.8 \mathrm{~V}, L D O I N=3.3 \mathrm{~V}, A V_{D D}$ and $D V_{D D} L D O$ disabled, $f_{s}($ Audio $)=48 \mathrm{kHz}, C_{\text {ref }}=10 \mu F$ on REF pin, PLL disabled unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REFERENCE					
Reference Voltage Settings	CMMode $=0$ (0.9V)		0.9		V
	CMMode $=1$ (0.75V)		0.75		
Reference Noise	$\mathrm{CM}=0.9 \mathrm{~V}$, A-weighted, 20 Hz to 20 kHz bandwidth, $\mathrm{C}_{\mathrm{ref}}=10 \mu \mathrm{~F}$		1		$\mu \mathrm{V}_{\text {RfcMS }}$
Decoupling Capacitor		1	10		$\mu \mathrm{F}$
miniDSP ${ }^{(1)}$					
Maximum miniDSP clock frequency - ADC	$D V_{D D}=1.65 \mathrm{~V}$		55.3		MHz
Maximum miniDSP clock frequency - DAC	$D V_{D D}=1.65 \mathrm{~V}$		55.3		MHz

Shutdown Current

Device Setup	Coarse $\mathrm{AV}_{\mathrm{DD}}$ supply turned off, LDO_select held at ground, No external digital input is toggled		
$\mathrm{I}(\mathrm{DV} \mathrm{DD})$		0.9	$\mu \mathrm{A}$
$\mathrm{I}\left(\mathrm{AV}_{\mathrm{DD}}\right)$		<0.9	$\mu \mathrm{A}$
I(LDOIN)		<0.9	$\mu \mathrm{A}$
I(IOVDD)		13	nA

(1) miniDSP clock speed is specified by design and not tested in production.

Electrical Characteristics, Logic Levels

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
LOGIC FAMILY		CMOS		
$\mathrm{V}_{\mathrm{IH}} \quad$ Logic Level	$\mathrm{I}_{\mathrm{IH}}=5 \mu \mathrm{~A}, \mathrm{IOV}_{\text {DD }}>1.6 \mathrm{~V}$	$0.7 \times 10 V_{D D}$		V
	$\mathrm{I}_{\mathrm{IH}}=5 \mu \mathrm{~A}, 1.2 \mathrm{~V} \leq 10 \mathrm{~V}_{\text {DD }}<1.6 \mathrm{~V}$	$0.9 \times 10 V_{D D}$		V
	$\mathrm{I}_{\mathrm{IH}}=5 \mu \mathrm{~A}, \mathrm{IOV} \mathrm{V}_{\text {D }}<1.2 \mathrm{~V}$	$1 O V_{D D}$		V
$\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\mathrm{IL}}=5 \mu \mathrm{~A}, \mathrm{IOV}_{\mathrm{DD}}>1.6 \mathrm{~V}$	-0.3	$0.3 \times 1 O V_{\text {DD }}$	V
	$\mathrm{I}_{\mathrm{IL}}=5 \mu \mathrm{~A}, 1.2 \mathrm{~V} \leq 10 \mathrm{~V}_{\mathrm{DD}}<1.6 \mathrm{~V}$	$0.1 \times 10 V_{\text {DD }}$		V
	$\mathrm{I}_{\mathrm{LL}}=5 \mu \mathrm{~A}, \mathrm{IOV}$ DD $<1.2 \mathrm{~V}$			V
V_{OH}	$\mathrm{l}_{\mathrm{OH}}=2$ TTL loads	$0.8 \times 10 V_{\text {DD }}$		V
V_{OL}	$\mathrm{I}_{\text {OL }}=2$ TTL loads		$0.1 \times 1 O V_{D D}$	V
Capacitive Load			10	pF

Interface Timing

Typical Timing Characteristics - Audio Data Serial Interface Timing ($\mathbf{I}^{2} \mathbf{S}$)
All specifications at $25^{\circ} \mathrm{C}, \mathrm{DVdd}=1.8 \mathrm{~V}$

Figure 3. I^{2} S LJF and RJF Timing in Master Mode

Table 2. ${ }^{2}$ S LJF and RJF Timing in Master Mode (see Figure 3)

PARAMETER		IOVDD=1.8V	IOVDD=3.3V	UNITS
		MIN MAX	MIN MAX	
$\mathrm{t}_{\mathrm{d} \text { (}} \mathrm{WS}$)	WCLK delay	30	20	ns
$\mathrm{t}_{\mathrm{d} \text { (DO-WS) }}$	WCLK to DOUT delay (For LJF Mode only)	20	20	ns
$\mathrm{t}_{\mathrm{d} \text { (DO-BCLK) }}$	BCLK to DOUT delay	22	20	ns
$\mathrm{t}_{\mathrm{s} \text { (} \mathrm{DI} \text {) }}$	DIN setup	8	8	ns
$\mathrm{th}_{\mathrm{h}}(\mathrm{DI})$	DIN hold	8	8	ns
t_{r}	Rise time	24	12	ns
t_{f}	Fall time	24	12	ns

Figure 4. $I^{2} S$ LJF and RJF Timing in Slave Mode

Table 3. I ${ }^{2}$ S LJF and RJF Timing in Slave Mode (see Figure 4)

PARAMETER		IOVDD $=1.8 \mathrm{~V}$	IOVDD $=3.3 \mathrm{~V}$	UNITS
		MIN MAX	MIN MAX	
$\mathrm{t}_{\text {H(BCLK }}$	BCLK high period	35	35	ns
$\mathrm{t}_{\text {L(BCLK) }}$	BCLK low period	35	35	
$\mathrm{t}_{\text {s }}(\mathrm{WS})$	WCLK setup	8	8	
$\mathrm{th}_{\text {(}}$ WS)	WCLK hold	8	8	
$\mathrm{t}_{\text {(}}$ (DO-WS)	WCLK to DOUT delay (For LJF mode only)	20	20	
$\mathrm{t}_{\mathrm{d} \text { (DO-BCLK) }}$	BCLK to DOUT delay	22	22	
$\mathrm{t}_{\mathrm{s}(\mathrm{DI})}$	DIN setup	8	8	
$\mathrm{th}_{\text {(} \mathrm{DI})}$	DIN hold	8	8	
tr_{r}	Rise time	4	4	
t_{f}	Fall time	4	4	

Typical DSP Timing Characteristics

All specifications at $25^{\circ} \mathrm{C}, \mathrm{DVdd}=1.8 \mathrm{~V}$

Figure 5. DSP Timing in Master Mode

Table 4. DSP Timing in Master Mode (see Figure 5)

PARAMETER		IOVDD $=1.8 \mathrm{~V}$		IOVDD $=3.3 \mathrm{~V}$		UNITS
		MIN	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{d} \text { (WS) }}$	WCLK delay		30		20	ns
$\mathrm{t}_{\text {(}}$ (DO-BCLK)	BCLK to DOUT delay		22		20	ns
$\mathrm{t}_{\text {s(}{ }^{\text {d }} \text {) }}$	DIN setup	8		8		ns
$\mathrm{th}_{\text {(} \mathrm{DI} \text {) }}$	DIN hold	8		8		ns
tr_{r}	Rise time		24		12	ns
t_{f}	Fall time		24		12	ns

Figure 6. DSP Timing in Slave Mode

Table 5. DSP Timing in Slave Mode (see Figure 6)

PARAMETER		IOVDD=1.8V	IOVDD=3.3V	UNITS
		MIN MAX	MIN MAX	
$\mathrm{t}_{\mathrm{H} \text { (BCLK) }}$	BCLK high period	35	35	ns
$t_{\text {L }}$ (BCLK $)$	BCLK low period	35	35	ns
$\mathrm{t}_{\text {(}}$ (WS)	WCLK setup	8	8	ns
$\mathrm{th}_{\text {(}} \mathrm{WS}$)	WCLK hold	8	8	ns
$\mathrm{t}_{\mathrm{d} \text { (DO-BCLK) }}$	BCLK to DOUT delay	22	22	ns
$\mathrm{t}_{\mathrm{s} \text { (} \mathrm{DI} \text {) }}$	DIN setup	8	8	ns
$\mathrm{th}_{\mathrm{h} \text { (} \mathrm{DI})}$	DIN hold	8	8	ns
t_{r}	Rise time	4	4	ns
t_{f}	Fall time	4	4	ns

$I^{2} C$ Interface Timing

Figure 7. $I^{2} \mathrm{C}$ Interface Timing
Table 6. $I^{2} \mathrm{C}$ Interface Timing

PARAMETER		TEST CONDITION	Standard-Mode		Fast-Mode		UNITS	
		MIN	TYP MAX	MIN	TYP MAX			
$\mathrm{f}_{\text {SCL }}$	SCL clock frequency			0	100	0	400	kHz
$\mathrm{t}_{\text {HD }}$ STA	Hold time (repeated) START condition. After this period, the first clock pulse is generated.		4.0		0.8		$\mu \mathrm{s}$	
t Low	LOW period of the SCL clock		4.7		1.3		$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{HIGH}}$	HIGH period of the SCL clock		4.0		0.6		$\mu \mathrm{s}$	
$\mathrm{t}_{\text {SU; STA }}$	Setup time for a repeated START condition		4.7		0.8		$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{HD} ; \text { DAT }}$	Data hold time: For I2C bus devices		0	3.45	0	0.9	$\mu \mathrm{s}$	
$t_{\text {SU; }}$ DAT	Data set-up time		250		100		ns	
t_{r}	SDA and SCL Rise Time			1000	$20+0.1 C_{b}$	300	ns	
t_{f}	SDA and SCL Fall Time			300	$20+0.1 C_{b}$	300	ns	
$\mathrm{t}_{\text {SU; STO }}$	Set-up time for STOP condition		4.0		0.8		$\mu \mathrm{s}$	
$\mathrm{t}_{\text {BUF }}$	Bus free time between a STOP and START condition		4.7		1.3		$\mu \mathrm{s}$	
C_{b}	Capacitive load for each bus line			400		400	pF	

SPI Interface Timing

Figure 8. SPI Interface Timing Diagram

Timing Requirements

At $25^{\circ} \mathrm{C}, \mathrm{DVdd}=1.8 \mathrm{~V}$
Table 7. SPI Interface Timing (See Figure 8)

PARAMETER		TEST CONDITION	IOVDD $=1.8 \mathrm{~V}$		IOVDD=3.3V		UNITS	
		MIN	TYP MAX	MIN	TYP MAX			
$\mathrm{t}_{\text {sck }}$	SCLK Period ${ }^{(1)}$			100		50		ns
$\mathrm{t}_{\text {sckh }}$	SCLK Pulse width High		50		25		ns	
$\mathrm{t}_{\text {cckl }}$	SCLK Pulse width Low		50		25		ns	
$\mathrm{t}_{\text {lead }}$	Enable Lead Time		30		20		ns	
$t_{\text {trail }}$	Enable Trail Time		30		20		ns	
$\mathrm{t}_{\text {d;seqxir }}$	Sequential Transfer Delay		40		20		ns	
ta_{a}	Slave DOUT access time			40		20	ns	
$\mathrm{t}_{\text {dis }}$	Slave DOUT disable time			40		20	ns	
$\mathrm{t}_{\text {su }}$	DIN data setup time		15		10		ns	
$\mathrm{t}_{\mathrm{h} \text { (DIN) }}$	DIN data hold time		15		10		ns	
$\mathrm{t}_{\mathrm{v} \text { (DOUT) }}$	DOUT data valid time			25		18	ns	
t_{r}	SCLK Rise Time			4		4	ns	
t_{f}	SCLK Fall Time			4		4	ns	

(1) These parameters are based on characterization and are not tested in production.

Typical Characteristics

Device Power Consumption

Device power consumption largely depends on PowerTune configuration. For information on device power consumption, see the TLV320AIC3254 Application Reference Guide, literature number SLAA408.

Typical Performance

Figure 9.
TOTAL HARMONIC DISTORTION HEADPHONE OUSTPUT POWER

Figure 11.

Figure 10.
HEADPHONE SNR AND OUTPUT POWER OUTPUT COMMON MODE SETTING

Figure 12.

Figure 13.

LDO LOAD RESPONSE

Figure 14.

MICBIAS MODE 2, CM $=0.9 \mathrm{~V}$, LDOIN OP STAGE MICBIAS LOASD CURRENT

Figure 15.

FFT

Figure 16.
DAC PLAYBACK TO LINE-OUT FFT at -1dBFS vs FREQUENCY

Figure 18.

DAC PLAYBACK TO HEADPHONE FFT at -1dBFS vs FREQUENCY

Figure 17.
LINE INPUT TO HEADPHONE FFT at 446 mVrms vs FREQUENCY

Figure 19.

Figure 20.

TYPICAL CIRCUIT CONFIGURATION

Figure 21. Typical Circuit Configuration

Application Overview

The TLV320AIC3254 offers a wide range of configuration options. Figure 1 shows the basic functional blocks of the device.

Device Connections

Digital Pins

Only a small number of digital pins are dedicated to a single function; whenever possible, the digital pins have a default function, and also can be reprogrammed to cover alternative functions for various applications.
The fixed-function pins are $\overline{\text { Reset, }}$ LDO_Select and the SPI_Select pin, which are HW control pins. Depending on the state of SPI_Select, the two control-bus pins SCL/SS and SDA/MOSI are configured for either $\mathrm{I}^{2} \mathrm{C}$ or SPI protocol.
Other digital IO pins can be configured for various functions via register control. An overview of available functionality is given in Multifunction Pins.

Multifunction Pins

Table 8 shows the possible allocation of pins for specific functions. The PLL input, for example, can be programmed to be any of 4 pins (MCLK, BCLK, DIN, GPIO).

Table 8. Multifunction Pin Assignments

		1	2	3	4	5	6	7	8
	Pin Function	MCLK	BCLK	WCLK	$\begin{gathered} \text { DIN } \\ \text { MFP1 } \end{gathered}$	DOUT MFP2	DMDIN/ MFP3/ SCLK	DMCLK MFP4/ MISO	GPIO MFP5
A	PLL Input	$S^{(1)}$	$S^{(2)}$		E				$S^{(3)}$
B	Codec Clock Input	$\mathrm{S}^{(1)}, \mathrm{D}^{(4)}$	$S^{(2)}$						$S^{(3)}$
C	1^{2} S BCLK input		S,D						
D	I^{2} S BCLK output		$E^{(5)}$						
E	$I^{2} \mathrm{~S}$ WCLK input			E, D					
F	1^{2} S WCLK output			E					
G	1^{2} S ADC word clock input						E		E
H	I^{2} ² ADC WCLK out							E	E
I	$I^{2} \mathrm{~S}$ DIN				E, D				
J	$\mathrm{I}^{2} \mathrm{~S}$ DOUT					E, D			
K	General Purpose Output I					E			
K	General Purpose Output II							E	
K	General Purpose Output III								E
L	General Purpose Input I				E				
L	General Purpose Input II						E		
L	General Purpose Input III								E
M	INT1 output					E		E	E
N	INT2 output					E		E	E
0	Digital Microphone Data Input				E		E		E
P	Digital Microphone Clock Output							E	E
Q	Secondary I ${ }^{2}$ S BCLK input						E		E
R	Secondary $I^{2} S$ WCLK in						E		E
S	Secondary I ${ }^{2} \mathrm{~S}$ DIN						E		E
T	Secondary I ${ }^{2}$ S DOUT							E	
U	Secondary I² BCLK OUT					E		E	E
V	Secondary ${ }^{2}$ S WCLK OUT					E		E	E
W	Headphone Detect Input						E		
X	Aux Clock Output					E		E	E

(1) $S^{(1)}$: The MCLK pin can drive the PLL and Codec Clock inputs simultaneously.
(2) $S^{(2)}$: The BCLK pin can drive the PLL and Codec Clock and audio interface bit clock inputs simultaneously.
(3) $\mathrm{S}^{(3)}$: The GPIO/MFP5 pin can drive the PLL and Codec Clock inputs simultaneously.
(4) D: Default Function
(5) E: The pin is exclusively used for this function, no other function can be implemented with the same pin. (If GPIO/MFP5 has been allocated for General Purpose Output, it cannot be used as the INT1 output at the same time.)

Analog Pins

Analog functions can also be configured to a large degree. For minimum power consumption, analog blocks are powered down by default. The blocks can be powered up with fine granularity according to the application needs.

Analog Audio IO

The analog IO path of the TLV320AIC3254 features a large set of options for signal conditioning as well as signal routing:

- 6 analog inputs which can be mixed and-or multiplexed in single-ended and-or differential configuration
- 2 programmable gain amplifiers (PGA) with a range of 0 to +47.5 dB
- 2 mixer amplifiers for analog bypass
- 2 low power analog bypass channels
- Mute function
- Automatic gain control (AGC)
- Built in microphone bias
- Stereo digital microphone interface
- Channel-to-channel phase adjustment
- Fast charge of ac-coupling capacitors
- Anti thump

Analog Low Power Bypass

The TLV320AIC3254 offers two analog-bypass modes. In either of the modes, an analog input signal can be routed from an analog input pin to an amplifier driving an analog output pin. Neither the ADC nor the DAC resources are required for such operation; this configuration supports low-power operation during analog-bypass mode.
In analog low-power bypass mode, line-level signals can be routed directly from the analog inputs $\operatorname{IN1}$ _L to the left headphone amplifier (HPL) and IN1_R to HPR.

ADC Bypass Using Mixer Amplifiers

In addition to the analog low-power bypass mode, another bypass mode uses the programmable gain amplifiers of the input stage in conjunction with a mixer amplifier. With this mode, microphone-level signals can be amplified and routed to the line or headphone outputs, fully bypassing the ADC and DAC.
To enable this mode, the mixer amplifiers are powered on via software command.

Headphone Outputs

The stereo headphone drivers on pins HPL and HPR can drive loads with impedances down to 16Ω in singleended AC-coupled headphone configurations, or loads down to 32Ω in differential mode, where a speaker is connected between HPL and HPR. In single-ended drive configuration these drivers can drive up to 15 mW power into each headphone channel while operating from 1.8 V analog supplies. While running from the $A V_{D D}$ supply, the output common-mode of the headphone driver is set by the common-mode setting of analog inputs in Page 1, Register 10, Bit D6, to allow maximum utilization of the analog supply range while simultaneously providing a higher output-voltage swing. In cases when higher output-voltage swing is required, the headphone amplifiers can run directly from the higher supply voltage on LDOIN input (up to 3.6 V). To use the higher supply voltage for higher output signal swing, the output common-mode can be adjusted to either $1.25 \mathrm{~V}, 1.5 \mathrm{~V}$ or 1.65 V by configuring Page 1, Register 10, Bits D5-D4. When the common-mode voltage is configured at 1.65 V and LDOIN supply is 3.3 V , the headphones can each deliver up to 40 mW power into a 16Ω load.
The headphone drivers are capable of driving a mixed combination of DAC signal, left and right ADC PGA signal and line-bypass from analog input IN1L and IN1R by configuring Page 1, Register 12 and Page 1, Register 13 respectively. The ADC PGA signals can be attenuated up to 30dB before routing to headphone drivers by configuring Page 1, Register 24 and Page 1, Register 25. The analog line-input signals can be attenuated up to 72 dB before routing by configuring Page 1, Register 22 and 23 . The level of the DAC signal can be controlled using the digital volume control of the DAC in Page 0, Reg 65 and 66 . To control the output-voltage swing of headphone drivers, the digital volume control provides a range of -6.0 dB to $+29.0 \mathrm{~dB}{ }^{(6)}$ in steps of 1 dB . These can be configured by programming Page 1, Register 16 and 17. These level controls are not meant to be used as dynamic volume control, but to set output levels during initial device configuration. Refer to for recommendations for using headphone volume control for achieving OdB gain through the DAC channel with various configurations.

Line Outputs

The stereo line level drivers on LOL and LOR pins can drive a wide range of line level resistive impedances in the range of 600Ω to $10 \mathrm{k} \Omega$. The output common modes of line level drivers can be configured to equal either the analog input common-mode setting or to 1.65 V . With output common-mode setting of 1.65 V and DRVdd_HP supply at 3.3 V the line-level drivers can drive up to 1 Vrms output signal. The line-level drivers can drive out a mixed combination of DAC signal and attenuated ADC PGA signal. Signal mixing is register-programmable.

[^1]
ADC

The TLV320AIC3254 includes a stereo audio ADC, which uses a delta-sigma modulator with a programmable oversampling ratio, followed by a digital decimation filter. The ADC supports sampling rates from 8 kHz to 192 kHz . In order to provide optimal system power management, the stereo recording path can be powered up one channel at a time, to support the case where only mono record capability is required.
The ADC path of the TLV320AIC3254 features a large set of options for signal conditioning as well as signal routing:

- Two ADCs
- Six analog inputs which can be mixed and-or multiplexed in single-ended and-or differential configuration
- Two programmable gain amplifiers (PGA) with a range of 0 to +47.5 dB
- Two mixer amplifiers for analog bypass
- Two low power analog bypass channels
- Fine gain adjustment of digital channels with 0.1 dB step size
- Digital volume control with a range of -12 to +20 dB
- Mute function
- Automatic gain control (AGC)

In addition to the standard set of ADC features the TLV320AIC3254 also offers the following special functions:

- Built in microphone bias
- Stereo digital microphone interface
- Channel-to-channel phase adjustment
- Fast charge of ac-coupling capacitors
- Anti thump
- Adaptive filter mode

ADC Processing

The TLV320AIC3254 ADC channel includes a built-in digital decimation filter to process the oversampled data from the sigma-delta modulator to generate digital data at Nyquist sampling rate with high dynamic range. The decimation filter can be chosen from three different types, depending on the required frequency response, group delay and sampling rate.

ADC Processing Blocks

The TLV320AIC3254 offers a range of processing blocks which implement various signal processing capabilities along with decimation filtering. These processing blocks give users the choice of how much and what type of signal processing they may use and which decimation filter is applied.
The choice between these processing blocks is part of the PowerTune strategy to balance power conservation and signal-processing flexibility. Less signal-processing capability reduces the power consumed by the device. Table 9 gives an overview of the available processing blocks and their properties. The Resource Class Column (RC) gives an approximate indication of power consumption.
The signal processing blocks available are:

- First-order IIR
- Scalable number of biquad filters
- Variable-tap FIR filter
- AGC

The processing blocks are tuned for common cases and can achieve high anti-alias filtering or low group delay in combination with various signal processing effects such as audio effects and frequency shaping. The available first order IIR, BiQuad and FIR filters have fully user-programmable coefficients. The Resource Class Column (RC) gives an approximate indication of power consumption.

Table 9. ADC Processing Blocks

Processing Blocks	Channel	Decimation Filter	1st Order IIR Available	Number BiQuads	FIR	Required AOSR Value	Resource Class
PRB_R1 ${ }^{(1)}$	Stereo	A	Yes	0	No	128,64	6
PRB_R2	Stereo	A	Yes	5	No	128,64	8
PRB_R3	Stereo	A	Yes	0	$25-$-Tap	128,64	8
PRB_R4	Right	A	Yes	0	No	128,64	3
PRB_R5	Right	A	Yes	5	No	128,64	4
PRB_R6	Right	A	Yes	0	$25-T a p$	128,64	4
PRB_R7	Stereo	B	Yes	0	No	64	3
PRB_R8	Stereo	B	Yes	3	No	64	4
PRB_R9	Stereo	B	Yes	0	$20-T a p$	64	4
PRB_R10	Right	B	Yes	0	No	64	2
PRB_R11	Right	B	Yes	3	No	64	2
PRB_R12	Right	B	Yes	0	$20-T a p$	64	2
PRB_R13	Stereo	C	Yes	0	No	32	3
PRB_R14	Stereo	C	Yes	5	No	32	4
PRB_R15	Stereo	C	Yes	0	$25-T a p$	32	4
PRB_R16	Right	C	Yes	0	No	32	2
PRB_R17	Right	C	Yes	5	No	32	2
PRB_R18	Right	C	Yes	0	$25-T a p$	32	2

(1) Default

For more detailed information see the TLV320AIC3254 Application Reference Guide, SLAA408.

DAC

The TLV320AIC3254 includes a stereo audio DAC supporting data rates from 8 kHz to 192 kHz . Each channel of the stereo audio DAC consists of a signal-processing engine with fixed processing blocks, a programmable miniDSP, a digital interpolation filter, multi-bit digital delta-sigma modulator, and an analog reconstruction filter. The DAC is designed to provide enhanced performance at low sampling rates through increased oversampling and image filtering, thereby keeping quantization noise generated within the delta-sigma modulator and signal images strongly suppressed within the audio band to beyond 20 kHz . To handle multiple input rates and optimize power dissipation and performance, the TLV320AIC3254 allows the system designer to program the oversampling rates over a wide range from 1 to 1024. The system designer can choose higher oversampling ratios for lower input data rates and lower oversampling ratios for higher input data rates.
The TLV320AIC3254 DAC channel includes a built-in digital interpolation filter to generate oversampled data for the sigma-delta modulator. The interpolation filter can be chosen from three different types depending on required frequency response, group delay and sampling rate.
The DAC path of the TLV320AIC3254 features many options for signal conditioning and signal routing:

- 2 headphone amplifiers
- Usable in single-ended or differential mode
- Analog volume setting with a range of -6 to +29 dB
- Class-D mode
- 2 line-out amplifiers
- Usable in single-ended or differential mode
- Analog volume setting with a range of -6 to +29 dB
- Digital volume control with a range of -63.5 to +24 dB
- Mute function
- Dynamic range compression (DRC)

In addition to the standard set of DAC features the TLV320AIC3254 also offers the following special features:

- Built in sine wave generation (beep generator)
- Digital auto mute
- Adaptive filter mode

DAC Processing Blocks - Overview

The TLV320AIC3254 implements signal processing capabilities and interpolation filtering via processing blocks. These fixed processing blocks give users the choice of how much and what type of signal processing they may use and which interpolation filter is applied.
The choice between these processing blocks is part of the PowerTune strategy balancing power conservation and signal processing flexibility. Less signal processing capability will result in less power consumed by the device. Table 10 gives an overview over all available processing blocks of the DAC channel and their properties. The Resource Class Column (RC) gives an approximate indication of power consumption.
The signal processing blocks available are:

- First-order IIR
- Scalable number of biquad filters
- 3D - Effect
- Beep Generator

The processing blocks are tuned for typical cases and can achieve high image rejection or low group delay in combination with various signal processing effects such as audio effects and frequency shaping. The available first-order IIR and biquad filters have fully user-programmable coefficients. The Resource Class Column (RC) gives an approximate indication of power consumption.

Table 10. Overview - DAC Predefined Processing Blocks

Processing Block No.	Interpolation Filter	Channel	1st Order IIR Available	Num. of Biquads	DRC	3D	Beep Generator	Resource Class
PRB_P1 ${ }^{(1)}$	A	Stereo	No	3	No	No	No	8
PRB_P2	A	Stereo	Yes	6	Yes	No	No	12
PRB_P3	A	Stereo	Yes	6	No	No	No	10
PRB_P4	A	Left	No	3	No	No	No	4
PRB_P5	A	Left	Yes	6	Yes	No	No	6
PRB_P6	A	Left	Yes	6	No	No	No	6
PRB_P7	B	Stereo	Yes	0	No	No	No	6
PRB_P8	B	Stereo	No	4	Yes	No	No	8
PRB_P9	B	Stereo	No	4	No	No	No	8
PRB_P10	B	Stereo	Yes	6	Yes	No	No	10
PRB_P11	B	Stereo	Yes	6	No	No	No	8
PRB_P12	B	Left	Yes	0	No	No	No	3
PRB_P13	B	Left	No	4	Yes	No	No	4
PRB_P14	B	Left	No	4	No	No	No	4
PRB_P15	B	Left	Yes	6	Yes	No	No	6
PRB_P16	B	Left	Yes	6	No	No	No	4
PRB_P17	C	Stereo	Yes	0	No	No	No	3
PRB_P18	C	Stereo	Yes	4	Yes	No	No	6
PRB_P19	C	Stereo	Yes	4	No	No	No	4
PRB_P20	C	Left	Yes	0	No	No	No	2
PRB_P21	C	Left	Yes	4	Yes	No	No	3
PRB_P22	C	Left	Yes	4	No	No	No	2
PRB_P23	A	Stereo	No	2	No	Yes	No	8
PRB_P24	A	Stereo	Yes	5	Yes	Yes	No	12
PRB_P25	A	Stereo	Yes	5	Yes	Yes	Yes	12

(1) Default

For more detailed information see the TLV320AIC3254 Application Reference Guide, SLAA408.

Powertune

The TLV320AIC3254 features PowerTune, a mechanism to balance power-versus-performance trade-offs at the time of device configuration. The device can be tuned to minimize power dissipation, to maximize performance, or to an operating point between the two extremes to best fit the application. The TLV320AIC3254 PowerTune modes are called PTM_R1 to PTM_R4 for the recording (ADC) path and PTM_P1 to PTM_P4 for the playback (DAC) path.

For more detailed information see the TLV320AIC3254 Application Reference Guide, SLAA408.

Digital Audio IO Interface

Audio data flows between the host processor and the TLV320AIC3254 on the digital audio data serial interface, or audio bus. This very flexible bus includes left or right-justified data options, support for I^{2} S or PCM protocols, programmable data length options, a TDM mode for multichannel operation, very flexible master-slave configurability for each bus clock line, and the ability to communicate with multiple devices within a system directly.

The audio bus of the TLV320AIC3254 can be configured for left or right-justified, I^{2} S, DSP, or TDM modes of operation, where communication with standard telephony PCM interfaces is supported within the TDM mode. These modes are all MSB-first, with data width programmable as 16,20 , 24 , or 32 bits by configuring Page 0 , Register 27, $\mathrm{D}(5: 4)$. In addition, the word clock and bit clock can be independently configured in either Master or Slave mode, for flexible connectivity to a wide variety of processors. The word clock is used to define the beginning of a frame, and may be programmed as either a pulse or a square-wave signal. The frequency of this clock corresponds to the maximum of the selected ADC and DAC sampling frequencies.
The bit clock is used to clock in and clock out the digital audio data across the serial bus. When in Master mode, this signal can be programmed to generate variable clock pulses by controlling the bit-clock divider in Page 0 , Register 30. The number of bit-clock pulses in a frame may need adjustment to accommodate various word lengths, and to support the case when multiple TLV320AIC3254s may share the same audio bus.
The TLV320AIC3254 also includes a feature to offset the position of start of data transfer with respect to the word-clock. Control the offset in terms of number of bit-clocks by programming Page 0, Register 28.
The TLV320AIC3254 also has the feature to invert the polarity of the bit-clock used to transfer the audio data as compared to the default clock polarity used. This feature can be used independently of the mode of audio interface chosen. Page 0, Register 29, D(3) configures bit clock polarity.
The TLV320AIC3254 further includes programmability (Page 0, Register 27, D(0)) to place the DOUT line into a hi-Z (3-state) condition during all bit clocks when valid data is not being sent. By combining this capability with the ability to program at what bit clock in a frame the audio data begins, time-division multiplexing (TDM) can be accomplished, enabling the use of multiple codecs on a single audio serial data bus. When the audio serial data bus is powered down while configured in master mode, the pins associated with the interface are put into a hi-Z output condition.
By default when the word-clocks and bit-clocks are generated by the TLV320AIC3254, these clocks are active only when the codec (ADC, DAC or both) are powered up within the device. This intermittent clock operation reduces power consumption. However, it also supports a feature when both the word clocks and bit-clocks can be active even when the codec in the device is powered down. This continuous clock feature is useful when using the TDM mode with multiple codecs on the same bus, or when word-clock or bit-clocks are used in the system as general-purpose clocks.

Clock Generation and PLL

The TLV320AIC3254 supports a wide range of options for generating clocks for the ADC and DAC sections as well as interface and other control blocks. The clocks for ADC and DAC require a source reference clock. This clock can be provided on variety of device pins such as MCLK, BCLK or GPI pins. The CODEC_CLKIN can then be routed through highly-flexible clock dividers to generate the various clocks required for ADC, DAC and the miniDSP sections. In the event that the desired audio or miniDSP clocks cannot be generated from the reference clocks on MCLK BCLK or GPIO, the TLV320AIC3254 also provides the option of using the on-chip PLL which supports a wide range of fractional multiplication values to generate the required clocks. Starting from CODEC_CLKIN the TLV320AIC3254 provides several programmable clock dividers to help achieve a variety of sampling rates for ADC, DAC and clocks for the miniDSP.
To minimize power consumption, the system ideally provides a master clock that is a suitable integer multiple of the desired sampling frequencies. In such cases, internal dividers can be programmed to set up the required internal clock signals at very low power consumption. For cases where such master clocks are not available, the built-in PLL can be used to generate a clock signal that serves as an internal master clock. In fact, this master clock can also be routed to an output pin and may be used elsewhere in the system. The clock system is flexible enough that it even allows the internal clocks to be derived directly from an external clock source, while the PLL is used to generate some other clock that is only used outside the TLV320AIC3254.
For more detailed information see the TLV320AIC3254 Application Reference Guide, SLAA408.

Control Interfaces

The TLV320AIC3254 control interface supports SPI or $\mathrm{I}^{2} \mathrm{C}$ communication protocols, with the protocol selectable using the SPI_SELECT pin. For SPI, SPI_SELECT should be tied high; for $I^{2} C$, SPI_SELECT should be tied low. Changing the state of SPI_SELECT during device operation is not recommended.

$1^{2} \mathrm{C}$ Control

The TLV320AIC3254 supports the $I^{2} \mathrm{C}$ control protocol, and will respond to the $I^{2} \mathrm{C}$ address of 0011000 . ${ }^{2} \mathrm{C}$ is a two-wire, open-drain interface supporting multiple devices and masters on a single bus. Devices on the $I^{2} \mathrm{C}$ bus only drive the bus lines LOW by connecting them to ground; they never drive the bus lines HIGH. Instead, the bus wires are pulled HIGH by pullup resistors, so the bus wires are HIGH when no device is driving them LOW. This circuit prevents two devices from conflicting; if two devices drive the bus simultaneously, there is no driver contention.

SPI Control

In the SPI control mode, the TLV320AIC3254 uses the pins SCL/ $\overline{\mathrm{SS}}$ as $\overline{\mathrm{SS}}$, SCLK as SCLK, MISO as MISO, SDA/MOSI as MOSI; a standard SPI port with clock polarity setting of 0 (typical microprocessor SPI control bit $\mathrm{CPOL}=0$). The SPI port allows full-duplex, synchronous, serial communication between a host processor (the master) and peripheral devices (slaves). The SPI master (in this case, the host processor) generates the synchronizing clock (driven onto SCLK) and initiates transmissions. The SPI slave devices (such as the TLV320AIC3254) depend on a master to start and synchronize transmissions. A transmission begins when initiated by an SPI master. The byte from the SPI master begins shifting in on the slave MOSI pin under the control of the master serial clock (driven onto SCLK). As the byte shifts in on the MOSI pin, a byte shifts out on the MISO pin to the master shift register.
For more detailed information see the TLV320AIC3254 Application Reference Guide, SLAA408.

Power Supply

To power up the device, a 3.3 V system rail (1.9 V to 3.6 V) can be used. The $\mathrm{O}_{\text {vdd }}$ voltage can be in the range of 1.1V-3.6V. Internal LDOs can generate the appropriate digital and analog core voltages when configured to do so. For maximum flexibility, the respective voltages can also be supplied externally, bypassing the built-in LDOs. To support high-output drive capabilities, the output stages of the output amplifiers can be driven from the analog core voltage or the 1.9...3.6V rail used for the LDO inputs (LDO_in).
For more detailed information see the TLV320AIC3254 Application Reference Guide, SLAA408.

Device Special Functions

The following special functions are available to support advanced system requirements:

- Headset detection
- Interrupt generation
- Flexible pin multiplexing

For more detailed information see the TLV320AIC3254 Application Reference Guide, SLAA408.
The TLV320AIC3254 features two miniDSP cores. The first miniDSP core is tightly coupled to the ADC, the second miniDSP core is tightly coupled to the DAC. The fully programmable algorithms for the miniDSP must be loaded into the device after power up. The miniDSPs have direct access to the digital stereo audio stream on the ADC and on the DAC side, offering the possibility for advanced, very-low group delay DSP algorithms. Each miniDSP can run up to 1152 instructions on every audio sample at a 48 kHz sample rate. The two cores can run fully synchronized and can exchange data.

Software

Software development for the TLV320AIC3254 is supported through Tl's comprehensive PurePath Studio Development Environment; a powerful, easy-to-use tool designed specifically to simplify software development on the TLV320AIC3254 miniDSP audio platform. The Graphical Development Environment consists of a library of common audio functions that can be dragged-and-dropped into an audio signal flow and graphically connected together. The DSP code can then be assembled from the graphical signal flow with the click of a mouse.
Please visit the TLV320AIC3254 product folder on www.ti.com to learn more about PurePath Studio and the latest status on available, ready-to-use DSP algorithms.

Register Map Summary

Table 11. Summary of Register Map

Decimal		Hex		DESCRIPTION
PAGE NO.	REG. NO.	PAGE NO.	REG. NO.	
0	0	0x00	0x00	Page Select Register
0	1	0x00	0x01	Software Reset Register
0	2	0x00	0x02	Reserved Register
0	3	0x00	0x03	Reserved Register
0	4	0x00	0x04	Clock Setting Register 1, Multiplexers
0	5	0x00	0x05	Clock Setting Register 2, PLL P and R Values
0	6	0x00	0x06	Clock Setting Register 3, PLL J Values
0	7	0x00	0x07	Clock Setting Register 4, PLL D Values (MSB)
0	8	0x00	0x08	Clock Setting Register 5, PLL D Values (LSB)
0	9-10	0x00	0x09-0x0A	Reserved Register
0	11	0x00	0x0B	Clock Setting Register 6, NDAC Values
0	12	0x00	0x0C	Clock Setting Register 7, MDAC Values
0	13	0x00	0x0D	DAC OSR Setting Register 1, MSB Value
0	14	0x00	0x0E	DAC OSR Setting Register 2, LSB Value
0	15	0x00	0x0F	miniDSP_D Instruction Control Register 1
0	16	0x00	0x10	miniDSP_D Instruction Control Register 2
0	17	0x00	0×11	miniDSP_D Interpolation Factor Setting Register
0	18	0x00	0x12	Clock Setting Register 8, NADC Values
0	19	0x00	0×13	Clock Setting Register 9, MADC Values
0	20	0x00	0x14	ADC Oversampling (AOSR) Register
0	21	0x00	0x15	miniDSP_A Instruction Control Register 1
0	22	0x00	0x16	miniDSP_A Instruction Control Register 2
0	23	0x00	0x17	miniDSP_A Decimation Factor Setting Register
0	24	0x00	0x18	Reserved Register
0	25	0x00	0x19	Clock Setting Register 10, Multiplexers
0	26	0x00	0x1A	Clock Setting Register 11, CLKOUT M divider value
0	27	0x00	0x1B	Audio Interface Setting Register 1
0	28	0x00	0x1C	Audio Interface Setting Register 2, Data offset setting
0	29	0x00	0x1D	Audio Interface Setting Register 3
0	30	0x00	0x1E	Clock Setting Register 12, BCLK N Divider
0	31	0x00	0x1F	Audio Interface Setting Register 4, Secondary Audio Interface
0	32	0x00	0x20	Audio Interface Setting Register 5
0	33	0x00	0x21	Audio Interface Setting Register 6
0	34	0x00	0x22	Digital Interface Misc. Setting Register
0	35	0x00	0x23	Reserved Register
0	36	0x00	0x24	ADC Flag Register
0	37	0x00	0x25	DAC Flag Register 1
0	38	0x00	0x26	DAC Flag Register 2
0	39-41	0x00	0x27-0x29	Reserved Register
0	42	0x00	0x2A	Sticky Flag Register 1
0	43	0x00	0x2B	Interrupt Flag Register 1
0	44	0x00	0x2C	Sticky Flag Register 2
0	45	0x00	0x2D	Sticky Flag Register 3
0	46	0x00	0x2E	Interrupt Flag Register 2
0	47	0x00	0x2F	Interrupt Flag Register 3

Table 11. Summary of Register Map (continued)

Decimal		Hex		DESCRIPTION
PAGE NO.	REG. NO.	PAGE NO.	REG. NO.	
0	48	0x00	0x30	INT1 Interrupt Control Register
0	49	0x00	0x31	INT2 Interrupt Control Register
0	50-51	0x00	0x32-0x33	Reserved Register
0	52	0x00	0x34	GPIO/MFP5 Control Register
0	53	0x00	0x35	DOUT/MFP2 Function Control Register
0	54	0x00	0x36	DIN/MFP1 Function Control Register
0	55	0x00	0x37	MISO/MFP4 Function Control Register
0	56	0x00	0x38	SCLK/MFP3 Function Control Register
0	57-59	0x00	0x39-0x3B	Reserved Registers
0	60	0x00	0x3C	DAC Signal Processing Block Control Register
0	61	0x00	0x3D	ADC Signal Processing Block Control Register
0	62	0x00	0x3E	miniDSP_A and miniDSP_D Configuration Register
0	63	0x00	0x3F	DAC Channel Setup Register 1
0	64	0x00	0x40	DAC Channel Setup Register 2
0	65	0x00	0x41	Left DAC Channel Digital Volume Control Register
0	66	0x00	0x42	Right DAC Channel Digital Volume Control Register
0	67	0x00	0x43	Headset Detection Configuration Register
0	68	0x00	0x44	DRC Control Register 1
0	69	0x00	0x45	DRC Control Register 2
0	70	0x00	0x46	DRC Control Register 3
0	71	0x00	0x47	Beep Generator Register 1
0	72	0x00	0x48	Beep Generator Register 2
0	73	0x00	0x49	Beep Generator Register 3
0	74	0x00	0x4A	Beep Generator Register 4
0	75	0x00	0x4B	Beep Generator Register 5
0	76	0x00	0x4C	Beep Generator Register 6
0	77	0x00	0x4D	Beep Generator Register 7
0	78	0x00	0x4E	Beep Generator Register 8
0	79	0x00	0x4F	Beep Generator Register 9
0	80	0x00	0x50	Reserved Register
0	81	0x00	0x51	ADC Channel Setup Register
0	82	0x00	0x52	ADC Fine Gain Adjust Register
0	83	0x00	0x53	Left ADC Channel Volume Control Register
0	84	0x00	0x54	Right ADC Channel Volume Control Register
0	85	0x00	0x55	ADC Phase Adjust Register
0	86	0x00	0x56	Left Channel AGC Control Register 1
0	87	0x00	0x57	Left Channel AGC Control Register 2
0	88	0x00	0x58	Left Channel AGC Control Register 3
0	89	0x00	0x59	Left Channel AGC Control Register 4
0	90	0x00	0x5A	Left Channel AGC Control Register 5
0	91	0x00	0x5B	Left Channel AGC Control Register 6
0	92	0x00	0x5C	Left Channel AGC Control Register 7
0	93	0x00	0x5D	Left Channel AGC Control Register 8
0	94	0x00	0x5E	Right Channel AGC Control Register 1
0	95	0x00	0x5F	Right Channel AGC Control Register 2
0	96	0x00	0x60	Right Channel AGC Control Register 3

Table 11. Summary of Register Map (continued)

Decimal		Hex		DESCRIPTION
PAGE NO.	REG. NO.	PAGE NO.	REG. NO.	
0	97	0x00	0x61	Right Channel AGC Control Register 4
0	98	0x00	0x62	Right Channel AGC Control Register 5
0	99	0x00	0x63	Right Channel AGC Control Register 6
0	100	0x00	0x64	Right Channel AGC Control Register 7
0	101	0x00	0x65	Right Channel AGC Control Register 8
0	102	0x00	0x66	DC Measurement Register 1
0	103	0x00	0x67	DC Measurement Register 2
0	104	0x00	0x68	Left Channel DC Measurement Output Register 1
0	105	0x00	0x69	Left Channel DC Measurement Output Register 2
0	106	0x00	0x6A	Left Channel DC Measurement Output Register 3
0	107	0x00	0x6B	Right Channel DC Measurement Output Register 1
0	108	0x00	0x6C	Right Channel DC Measurement Output Register 2
0	109	0x00	0x6D	Right Channel DC Measurement Output Register 3
0	110-127	0x00	0x6E-0x7F	Reserved Register
1	0	0x01	0x00	Page Select Register
1	1	0x01	0x01	Power Configuration Register
1	2	0x01	0x02	LDO Control Register
1	3	0x01	0x03	Playback Configuration Register 1
1	4	0x01	0x04	Playback Configuration Register 2
1	5-8	0x01	0x05-0x08	Reserved Register
1	9	0x01	0x09	Output Driver Power Control Register
1	10	0x01	0x0A	Common Mode Control Register
1	11	0x01	0x0B	Over Current Protection Configuration Register
1	12	0x01	$0 \times 0 \mathrm{C}$	HPL Routing Selection Register
1	13	0x01	0x0D	HPR Routing Selection Register
1	14	0x01	0x0E	LOL Routing Selection Register
1	15	0x01	0x0F	LOR Routing Selection Register
1	16	0x01	0x10	HPL Driver Gain Setting Register
1	17	0x01	0x11	HPR Driver Gain Setting Register
1	18	0x01	0x12	LOL Driver Gain Setting Register
1	19	0x01	0x13	LOR Driver Gain Setting Register
1	20	0x01	0x14	Headphone Driver Startup Control Register
1	21	0x01	0x15	Reserved Register
1	22	0x01	0x16	IN1L to HPL Volume Control Register
1	23	0x01	0x17	IN1R to HPR Volume Control Register
1	24	0x01	0x18	Mixer Amplifier Left Volume Control Register
1	25	0x01	0x19	Mixer Amplifier Right Volume Control Register
1	26-50	0x01	0x1A-0x32	Reserved Register
1	51	0x01	0x33	MICBIAS Configuration Register
1	52	0x01	0x34	Left MICPGA Positive Terminal Input Routing Configuration Register
1	53	0x01	0x35	Reserved Register
1	54	0x01	0x36	Left MICPGA Negative Terminal Input Routing Configuration Register
1	55	0x01	0x37	Right MICPGA Positive Terminal Input Routing Configuration Register
1	56	0x01	0x38	Reserved Register
1	57	0x01	0x39	Right MICPGA Negative Terminal Input Routing Configuration Register
1	58	0x01	0x3A	Floating Input Configuration Register

Table 11. Summary of Register Map (continued)

Decimal		Hex		DESCRIPTION
PAGE NO.	REG. NO.	PAGE NO.	REG. NO.	
1	59	0x01	0x3B	Left MICPGA Volume Control Register
1	60	0x01	0x3C	Right MICPGA Volume Control Register
1	61	0x01	0x3D	ADC Power Tune Configuration Register
1	62	0x01	0x3E	ADC Analog Volume Control Flag Register
1	63	0x01	0x3F	DAC Analog Gain Control Flag Register
1	64-70	0x01	0x40-0x46	Reserved Register
1	71	0x01	0x47	Analog Input Quick Charging Configuration Register
1	72-122	0x01	0x48-0x7A	Reserved Register
1	123	0x01	0x7B	Reference Power-up Configuration Register
1	124-127	0x01	0x7C-0x7F	Reserved Register
8	0	0x08	0x00	Page Select Register
8	1	0x08	0x01	ADC Adaptive Filter Configuration Register
8	2-7	0x08	0x02-0x07	Reserved
8	8-127	0x08	0x08-0x7F	ADC Coefficients Buffer-A C(0:29)
9-16	0	0x09-0x10	0x00	Page Select Register
9-16	1-7	0x09-0x10	0x01-0x07	Reserved
9-16	8-127	0x09-0x10	0x08-0x7F	ADC Coefficients Buffer-A C(30:255)
26-34	0	0x1A-0x22	0x00	Page Select Register
26-34	1-7	0x1A-0x22	0x01-0x07	Reserved.
26-34	8-127	0x1A-0x22	0x08-0x7F	ADC Coefficients Buffer-B C(0:255)
44	0	0x2C	0x00	Page Select Register
44	1	0x2C	0x01	DAC Adaptive Filter Configuration Register
44	2-7	0x2C	0x02-0x07	Reserved
44	8-127	0x2C	0x08-0x7F	DAC Coefficients Buffer-A C(0:29)
45-52	0	0x2D-0x34	0x00	Page Select Register
45-52	1-7	0x2D-0x34	0x01-0x07	Reserved.
45-52	8-127	0x2D-0x34	0x08-0x7F	DAC Coefficients Buffer-A C(30:255)
62-70	0	0x3E-0x46	0x00	Page Select Register
62-70	1-7	0x3E-0x46	0x01-0x07	Reserved.
62-70	8-127	0x3E-0x46	0x08-0x7F	DAC Coefficients Buffer-B C(0:255)
80-114	0	0x50-0x72	0x00	Page Select Register
80-114	1-7	0x50-0x72	0x01-0x07	Reserved.
80-114	8-127	0x50-0x72	0x08-0x7F	miniDSP_A Instructions
152-186	0	0x98-0xBA	0x00	Page Select Register
152-186	1-7	0x98-0xBA	0x01-0x07	Reserved.
152-186	8-127	0x98-0xBA	0x08-0x7F	miniDSP_D Instructions

REVISION HISTORY

Changes from Revision B (August 2012) to Revision C

- Deleted "Acoustic Echo Cancellation (AEC)" and "Active Noise Cancellation (ANC)" from applications list 1
- Deleted redundant ordering information table from Packaging Information .. 3
- Added "DVDD" to LDOs disabled in operating conditions statement ... 6

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TLV320A3254IRHBRG4	ACTIVE	VQFN	RHB	32	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \hline \text { AIC } \\ & 3254 \\ & \hline \end{aligned}$	Samples
TLV320AIC3254IRHBR	ACTIVE	VQFN	RHB	32	3000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \hline \text { AIC } \\ & 3254 \\ & \hline \end{aligned}$	Samples
TLV320AIC3254IRHBT	ACTIVE	VQFN	RHB	32	250	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	$\begin{aligned} & \text { AIC } \\ & 3254 \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLV320AIC3254 :

- Automotive: TLV320AIC3254-Q1

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width W1 $(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
TLV320AIC3254IRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
TLV320AIC3254IRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2
TLV320AIC3254IRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.5	8.0	12.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV320AIC3254IRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0
TLV320AIC3254IRHBT	VQFN	RHB	32	250	210.0	185.0	35.0
TLV320AIC3254IRHBT	VQFN	RHB	32	250	210.0	185.0	35.0

Bottom View

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) Package configuration.
D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
F. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^1]: (6) If the device must be placed into 'mute' from the -6.0 dB setting, set the device at a gain of -5.0 dB first, then place the device into mute.

