

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
March 11, 1999

Replace Your Am7968 TAXI™ Transmitter With a CY7B923
HOTLink™

Introduction
The TAXI™ family of data communications parts was one of
the first to provide the benefits of high-speed serial transport
of parallel information. Because of its flexibility and wide
data-rate range, it has found usage in numerous commercial
and military applications.

Time, however, has moved on and the original TAXI has in
many cases been left behind. The Am7968 is a full bipolar
design and consumes over 1W while newer components, like
the Cypress HOTLink™, are capable of operating at twice the
data rate and less than half the power. In addition, the military
version of the Am7968 has been discontinued, leaving nu-
merous designs in jeopardy.

Fortunately, a relatively simple replacement is available for
the Am7968 that (in most cases) requires little or no change
in surrounding system logic, including the Am7969 TAXI re-
ceiver. This simple replacement uses the Cypress CY7B923
HOTLink Transmitter, along with a small PLD, to form a logic
and timing equivalent replacement. The use of such a re-
placement allows the continued use and manufacture of
these legacy systems with minimal impact to the equipment
and system interconnect.

Overview
The Am7968 TAXI transmitter, when operating in 8-bit mode,
uses a 4B/5B encoding scheme to convert input data and
commands into a form suitable for serial transmission and
clock recovery. Communication with an existing Am7969 TAXI
receiver requires the use of this same encoding scheme, pre-
sented in the same form and data-rate as that generated by
the Am7968. By operating the CY7B923 HOTLink Transmitter
in Bypass mode (unencoded 10-bit data path) mated to a
small PLD, it is possible to exactly emulate the 4B/5B encod-
ing used by the Am7968.

Am7968 Functionality
The Am7968 is both very similar to the HOTLink transmitter,
and very different. Both parts communicate serially over a
differential PECL (Positive ECL) link. Both parts employ a PLL
clock multiplier to change a slow byte-rate clock into a fast
bit-rate clock. However, most of the similarity ends here.

Data Encoding

Unlike HOTLink, which normally operates with an 8B/10B
DC-balanced code, the Am7968 encodes its data stream us-
ing a 4B/5B algorithm standardized for use with the FDDI
(Fiber Distributed Data Interface). This encoding converts
four bits of parallel data into five bits of serial data. With such
a small a code set to work with, it is not possible to maintain
a DC-balance in the data stream. To improve this somewhat,
the Am7968 also performs an NRZI (non-return-to-zero, in-
vert on ones) encoding of the serial data.

4B/5B Encoding

The data is encoded to ensure a minimum density of transi-
tions in the serial interface. These transitions are necessary
to allow the receive end of the serial link to locate the bound-
aries of bits on the serial interface. Without this (or a similar)
encoding, transmission of a long string of zeros or ones would
turn into a DC level on the serial interface. Without any tran-
sitions to identify some of the bit boundaries, the receiver
clock would eventually drift slightly in frequency and capture
incorrect information from the serial interface.

The 4B/5B encoding used with the Am7968 allows all sixteen
possible 4-bit data groupings to be represented by 5-bit pat-
terns that all contain transitions. Since the complete 5-bit data
space actually contains a total 32 possible combinations, only
half of the available patterns are used to represent data.
These data combinations are listed in Table 1.

NRZI Encoding

In addition to converting the parallel 4-bit data into serial 5-bit
data, a second level of encoding is added to improve its sig-
naling characteristics. This encoding (called NRZI) removes
the need to know if a transmitted bit was sent as a one or a
zero. This is done by converting 1-bits into inversions in the
serial stream, while 0-bits maintain the same HIGH or LOW
signal level. Because all 1 and 0 information is now deter-
mined only by transitions (not by active level), the serial re-

Table 1. 4B/5B/NRZI Data Encoding

HEX
Data

Binary
Data

4B/5B
Encoded

0-Carry
NRZI

1-Carry
NRZI

0 0000 11110 10100 01011

1 0001 01001 01110 10001

2 0010 10100 11000 00111

3 0011 10101 11001 00110

4 0100 01010 01100 10011

5 0101 01011 01101 10010

6 0110 01110 01011 10100

7 0111 01111 01010 01010

8 1000 10010 11100 00011

9 1001 10011 11101 00010

A 1010 10110 11011 00100

B 1011 10111 11010 00101

C 1100 11010 10011 01100

D 1101 11011 10010 01101

E 1110 11100 10111 01000

F 1111 11101 10110 01001

Replace Your Am7968 TAXI With CY7B923 HOTLink

2

ceiver can now correctly decode the serial data stream even
if the differential inputs are swapped.

An example of an NRZI-encoded serial stream and encoder
is shown in Figure 1. Two different output streams are shown
in the figure. Which of the two streams is actually generated
is determined by the state of the encoder flip-flop when the
NRZI encoding of the current character is started. The two
possible NRZI encodings of each 4B/5B data character are
also listed in Table 2. Notice that these two columns are the
exact inverse of each other.
.

Am7968 Commands

The 4B/5B code makes use of specific patterns from a
32-symbol space. Of these 32 possible symbols, sixteen are
allocated to represent the hex data values x’0’ through x’F’.
This leaves sixteen additional 5-bit patterns that can be as-
signed meanings other than data.

For the Am7968, eight of the remaining sixteen patterns are
used to define synchronization and in-band command codes
that can be used for various interface control functions. These
eight patterns are identified as other alphabetic letters, similar
to the hexadecimal characters greater than 9. These control
code names and their associated encodings are listed in
Table 2.

Unlike the data characters, which can be combined in any
fashion to transmit bytes of information, the Control Codes
are only defined for use in specific pair combinations. These
control code pairings are generated when specific combina-
tions of bits are present on the four command input lines to
the Am7968. These command input groupings are listed in
Table 3.

Am7968 Control Signals

A block diagram of the Am7968 is shown in Figure 2. This
figure shows the control signals and data/command buses
used to control the part. Unlike the CY7B923 HOTLink trans-
mitter (see Figure 3), the Am7968 has separate input buses
for data and commands. The data input bus is eight bits in
width while the command bus is only four bits wide.

Figure 1. NRZI Encoder

Table 2. 4B/5B/NRZI Control Code Encoding

Control
Code

4B/5B
Encoded

0-Carry
NRZI

1-Carry
NRZI

H 00100 00111 11000

I 11111 10101 01010

J 11000 10000 01111

K 10001 11110 00001

Q 00000 00000 11111

R 00111 00101 11010

S 11001 10001 01110

T 01101 01001 10110

4B5B Encoded
Hex 0

(11110)

4B5B Encoded
Hex 1

(01001)

4B5B Data

Bit Clock

NRZI Data

Source
Data

‘0’ Carry
NRZI Data

‘1’ Carry
NRZI Data

Table 3. Am7968 Command Codes

HEX
Command

Binary
Command

Control Code
Pair

0 0000 Data

No STRB No STRB JK (8-bit Sync)

1 0001 II

2 0010 TT

3 0011 TS

4 0100 IH

5 0101 TR

6 0110 SR

7 0111 SS

8 1000 HH

9 1001 HI

A 1010 HQ

B 1011 RR

C 1100 RS

D 1101 QH

E 1110 QI

F 1111 QQ

Figure 2. Am7968 Logic Diagram

INPUT LATCH

DATA
ENCODER

SHIFTER
MEDIA

INTERFACE

SERIAL
INTERFACE

OSCILLATOR
AND

CLOCK GEN

STROBE &
ACKNOWLEDGE

Data Command

STRB

ACK

SEROUT+

SEROUT–

XI
XO

CLK

DMS

TSERIN

TLS

ENCODER
LATCH

Replace Your Am7968 TAXI With CY7B923 HOTLink

3

Loading of data into the Am7968 is also handled differently.
This is performed using the STRB input to clock the informa-
tion present in the data and command buses into the
Am7968. This STRB signal may be semi-asynchronous to the
normal transmitter reference clock on the X1 input.

To operate the Am7968 at or near its reference clock byte rate
it is necessary to strobe data into the part with much more
care than when operating at slower rates. There is, in effect,
a “stayout” area around the falling edge of the reference clock
where data and commands should not be strobed into the
part.

HOTLink Emulation of Am7968
To create a drop-in replacement for a part, it is necessary to
present an interface to the host system that contains the
same signals, clocks, and timing as the logic element being
replaced. In the case of the Am7968, the critical signals used
for operation are

• DI[7:0]-eight-bit data bus

• CI[3:0]-four-bit command bus

• STRB-data strobe

• ACK-data strobe acknowledge

• ±SEROUT-differential PECL serial data

• X1-external byte reference clock

While there are other signals present on the Am7968, they
are primarily static signals used for configuration.

Emulator Block Diagram

The emulator is built from two components, as shown in
Figure 4: a CY7C343 EPLD that performs the 4B/5B and
NRZI encoding, and a CY7B923 HOTLink transmitter to se-
quence the bits and drive the serial PECL interface. This
two-chip design assumes that double frequency byte clock is
present in the system to clock both the EPLD and the HOT-
Link transmitter. For those systems that only have the
byte-rate clock present, it is possible to generate the 2x clock
using a single Cypress CY7B991 RoboClock Programmable
Skew Clock Buffer.

The 2x clock is necessary in the system because the
HOTLink transmitter is normally only capable of sequencing
bits with the data rate range of 160 to 330 Mbits/second. This
is significantly faster than the maximum 125-Mbit/second
data rate of the Am7968 transmitter. To allow the HOTLink
transmitter to generate a serial stream that is data-rate com-
patible with an attached Am7969 receiver requires sequenc-
ing out bits in pairs. This effectively cuts the data rate of the
transmitter in half. This timing relationship is shown in
Figure 5.
.

This bit timing is accomplished by having the encoder EPLD
generate only five NRZI bits on each 2x clock cycle. Each of
these five bits is attached to two adjacent bit-inputs on the
HOTLink transmitter. For example, encoder output bit 0 would
be wired to HOTLink transmitter bits 0 and 1.

Emulator PLD Block Diagram

The majority of the emulator signals are on the parallel
TTL-compatible side of the design. These parallel signals (all
except the PECL ±SEROUT signals) all tie into the CY7C343
control EPLD. This EPLD performs all the data capture,
4B/5B encoding, NRZI encoding, and byte timing for the em-
ulator. A block diagram of the internal functions of the EPLD
is shown in Figure 6.

The logic is effectively split into five major sections. These
sections control the data capture, holding register,
4B/5B/NRZI encoding, NRZI carry encoding, and clocking.

Control EPLD Operation

Data Capture Register

Data is loaded into the 12-bit Data Capture register on the
rising edge of any STRB pulse. Once latched, the contents of
the CI[3:0] bits determine what data is fed to the Merged
Data/Command register. If any of the CI[3:0] bits are HIGH
the CI bus is fed to both the upper and lower halves of the
register. If all CI bits are LOW, the DI[7:0] data bus is fed to
the register instead.

Figure 3. CY7B923 Transmitter Logic Diagram

INPUT REGISTER

D0-7
(Db - h)

SC/D (Da)

SVS (Dj)

SHIFTER

OUTA

OUTB

OUTC

FOTO

CKW

CLOCK
GENERATOR

ENAENNRP

TEST
LOGIC

MODE

BISTEN

ENAB

ENCODER

Figure 4. Am7968 Emulator Block Diagram

Figure 5. Am7968 vs. CY7B923 Bit Timing

2xCLK

CI[3:0]

DI[7:0]
SEROUT

8

4

5
5

5

10

CY7B923
HOTLink

CY7C343
EPLD

Byte Clk

Bit Clk

Bit Period

Bit Period

Bit Clk

Byte Clk

A
m

79
68

H
O

T
Li

nk

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Replace Your Am7968 TAXI With CY7B923 HOTLink

4

.

Merged Data/Command Register

The Merged Data/Command register is a 9-bit register that is
loaded every other cycle of the 2xCLK. The upper eight bits
of this register are loaded with the output of the multiplexer
from the data Capture register. The lowest bit identifies if the
data in the register is a command or data.

If a STRB has occurred to load data into the Data Capture
register during the previous cycle, that information is clocked
into the Merged Data/Command register. If a STRB has not
occurred, then a x’00’ command is forced into the Merged
Data/Command register.

4B/5B/NRZI Encoder

The data in the Merged Data/Command register is se-
quenced through the 4B/5B/NRZI encoder in two four-bit
groups. The first group encodes the upper four bits of the
command or data byte, while the second group encodes the
lower four bits. In addition to the data bits, the encoder also
needs to know if the bits represent a command or data, and
(for commands) if the information is the upper or lower
half-byte.

The NRZI output of the encoder assumes a zero for the start-
ing or carry-in state of the NRZI encode operation. By
pre-encoding the NRZI information, a large number of XOR
gates can be removed from the design.

NRZI Carry Encoder

To generate the correct NRZI sequence it is necessary to
track the state of the previous bit in the output sequence. This
is done by feeding the most significant bit of the output regis-
ter back to the input of the register, and XORing it with the
next five bits of information. This effectively performs a selec-
tive inversion of the pre-encoded NRZI data. This inversion
allows the data output to follow the NRZI encoding listed in
Tables 1 and 2.

Clocking

In the implementation documented here, this design uses two
independent clocks: one for the STRB signal and the 2xCLK
for the remainder of the logic. In addition to these two clocks,

the EPLD monitors the X1 clock to determine which phase of
the 2xCLK to capture and mux the internal data.

Conclusion
This design implements a two-chip drop-in replacement for
the Am7968 TAXI transmitter. The design makes use of pro-
grammable logic to implement an external encoder that mim-
ics the interface and timing of the Am7968.

The control EPLD was implemented using a CY7C343 EPLD.
This PLD was designed and coded with VHDL (VHSIC Hard-
ware Description Language), and compiled and simulated us-
ing the Cypress Warp3® tool. The full source code for the
design is present in Appendix A of this application note, and
is available from the Cypress electronic Bulletin Board Sys-
tem (BBS).

For those Am7968-based systems that are truly synchronous
in nature, this design may be modified to operate with a single
clock, and allow usage of the FLASH370™ family of CPLDs in
addition to the CY7C34x series.

Because of the modularity and reusability of VHDL code, it is
possible to incorporate the code in Appendix A with additional
functionality in larger or more complex CPLDs or FPGAs,
thereby reducing the hardware impact of this emulation to a
reprogrammed logic part and a simple replacement of the
Am7968 with the more capable CY7B923. Such a system
would then be able to support a much faster data rate in the
future with the simple reprogramming of the controlling PLD.

References
1. Cypress Semiconductor, CY7B923/CY7B933 HOTLink

Transmitter/Receiver Data Sheet, Cypress Semiconductor
Data Book, May, 1995.

2. Cypress Semiconductor, HOTLink User’s Guide, 3rd Edi-
tion, April 1999.

3. Advanced Micro Devices, TAXIchip Integrated Circuits
Transparent Asynchronous Transmitter/Receiver Interface
Am7968/Am7969-125 Am7968/Am7969-175 Data Sheet
and Technical Manual, 1992.

Figure 6. 4B/5B/NRZI Encoder PLD Block Diagram

STRB

CI[3:0]

DI[7:0]

ACK
2xCLK

X1(clk)

8

4

4

4

4

4

4

4

4

4 5
5

Parallel NRZI
Data To HOTLink

Data Capture
Register

Merged Data/
Command Register High/Low

Data Mux

4B
5B

/N
R

Z
I

E
nc

od
er

NRZI Carry
Encoder

Replace Your Am7968 TAXI With CY7B923 HOTLink

5

Appendix A. 4B/5B Encoder PLD

-- TAXI8SM.VHD

-- This design describes the operation of a PLD used to convert a
-- standard HOTLink transmitter (CY7B923) into a part set equivalent
-- to the older AMD TAXI-125. This PLD only emulates the TAXI
-- in 8-bit mode (dual 4B/5B encoders).

-- This design only operates in the standard synchronous mode
-- of the TAXI, as it does not contain any FIFO stages. It does
-- correctly generate all 16 TAXI command codes present. It does
-- not support cascade mode.
ENTITY taxi8top IS PORT (

-- TAXI Parallel-side pins
clk: IN BIT; -- PLD Clock, 2X multiple of

-- standard TAXI clock
sys_clk: IN BIT; -- standard TAXI clock, sampled

-- by the PLD for phase alignment
strobe: IN BIT; -- TAXI data load clock, used

-- to control loading of the
-- input register. Needs to
-- be interruptible to force
-- generation of SYNC codes

D_In: IN BIT_VECTOR(0 TO 7); -- data input bus
CL: IN BIT_VECTOR(0 TO 3); -- command input bus
-- HOTLink parallel-side pins
D_Out: OUT BIT_VECTOR(0 TO 4) -- HOTLink data inputs, two/pin
);

ATTRIBUTE part_name OF taxi8top:ENTITY IS “C343";
END taxi8top;

USE work.cypress.all;
USE work.table_bv.all;
USE work.rtlpkg.all;
USE work.memorypkg.all;

ARCHITECTURE struct OF taxi8top IS
-- add internal signals
SIGNAL outreg : BIT_VECTOR(0 TO 4); -- output data register
SIGNAL encode : BIT_VECTOR(0 TO 4); -- 4B/5B/NRZI encoder output
SIGNAL xreg : BIT_VECTOR(0 TO 4); -- output XOR register
SIGNAL in_reg : BIT_VECTOR(0 TO 11); -- 12-bit input register
SIGNAL hld_reg: BIT_VECTOR(0 TO 8); -- data input hold register
SIGNAL in_data: BIT_VECTOR(0 TO 5); -- encoder input
SIGNAL strb_in: BIT; -- strobe received flag
SIGNAL strb_n: BIT; -- inverted strobe
SIGNAL phase1: BIT; -- hold enable for STROBE in

Replace Your Am7968 TAXI With CY7B923 HOTLink

6

-- 4B/5B encoder data constants
-- data half-bytes
CONSTANT DI_0: x01_VECTOR(0 TO 4) := “00000";
CONSTANT DI_1: x01_VECTOR(0 TO 4) := “00001";
CONSTANT DI_2: x01_VECTOR(0 TO 4) := “00010";
CONSTANT DI_3: x01_VECTOR(0 TO 4) := “00011";
CONSTANT DI_4: x01_VECTOR(0 TO 4) := “00100";
CONSTANT DI_5: x01_VECTOR(0 TO 4) := “00101";
CONSTANT DI_6: x01_VECTOR(0 TO 4) := “00110";
CONSTANT DI_7: x01_VECTOR(0 TO 4) := “00111";
CONSTANT DI_8: x01_VECTOR(0 TO 4) := “01000";
CONSTANT DI_9: x01_VECTOR(0 TO 4) := “01001";
CONSTANT DI_A: x01_VECTOR(0 TO 4) := “01010";
CONSTANT DI_B: x01_VECTOR(0 TO 4) := “01011";
CONSTANT DI_C: x01_VECTOR(0 TO 4) := “01100";
CONSTANT DI_D: x01_VECTOR(0 TO 4) := “01101";
CONSTANT DI_E: x01_VECTOR(0 TO 4) := “01110";
CONSTANT DI_F: x01_VECTOR(0 TO 4) := “01111";

-- command constants
CONSTANT CI_0: x01_VECTOR(0 TO 4) := “10000";
CONSTANT CI_1: x01_VECTOR(0 TO 4) := “10001";
CONSTANT CI_2: x01_VECTOR(0 TO 4) := “10010";
CONSTANT CI_3: x01_VECTOR(0 TO 4) := “10011";
CONSTANT CI_4: x01_VECTOR(0 TO 4) := “10100";
CONSTANT CI_5: x01_VECTOR(0 TO 4) := “10101";
CONSTANT CI_6: x01_VECTOR(0 TO 4) := “10110";
CONSTANT CI_7: x01_VECTOR(0 TO 4) := “10111";
CONSTANT CI_8: x01_VECTOR(0 TO 4) := “11000";
CONSTANT CI_9: x01_VECTOR(0 TO 4) := “11001";
CONSTANT CI_A: x01_VECTOR(0 TO 4) := “11010";
CONSTANT CI_B: x01_VECTOR(0 TO 4) := “11011";
CONSTANT CI_C: x01_VECTOR(0 TO 4) := “11100";
CONSTANT CI_D: x01_VECTOR(0 TO 4) := “11101";
CONSTANT CI_E: x01_VECTOR(0 TO 4) := “11110";
CONSTANT CI_F: x01_VECTOR(0 TO 4) := “11111";

-- data output constants
-- zero carry-in, NRZI encoded
CONSTANT DO_0: x01_VECTOR(0 TO 4) := “10100"; -- 11110 4B/5B
CONSTANT DO_1: x01_VECTOR(0 TO 4) := “01110"; -- 01001 4B/5B
CONSTANT DO_2: x01_VECTOR(0 TO 4) := “11000"; -- 10100 4B/5B
CONSTANT DO_3: x01_VECTOR(0 TO 4) := “11001"; -- 10101 4B/5B
CONSTANT DO_4: x01_VECTOR(0 TO 4) := “01100"; -- 01010 4B/5B
CONSTANT DO_5: x01_VECTOR(0 TO 4) := “01101"; -- 01011 4B/5B
CONSTANT DO_6: x01_VECTOR(0 TO 4) := “01011"; -- 01110 4B/5B
CONSTANT DO_7: x01_VECTOR(0 TO 4) := “01010"; -- 01111 4B/5B

Appendix A. 4B/5B Encoder PLD (continued)

Replace Your Am7968 TAXI With CY7B923 HOTLink

7

CONSTANT DO_8: x01_VECTOR(0 TO 4) := “11100"; -- 10010 4B/5B
CONSTANT DO_9: x01_VECTOR(0 TO 4) := “11101"; -- 10011 4B/5B
CONSTANT DO_A: x01_VECTOR(0 TO 4) := “11011"; -- 10110 4B/5B
CONSTANT DO_B: x01_VECTOR(0 TO 4) := “11010"; -- 10111 4B/5B
CONSTANT DO_C: x01_VECTOR(0 TO 4) := “10011"; -- 11010 4B/5B
CONSTANT DO_D: x01_VECTOR(0 TO 4) := “10010"; -- 11011 4B/5B
CONSTANT DO_E: x01_VECTOR(0 TO 4) := “10111"; -- 11100 4B/5B
CONSTANT DO_F: x01_VECTOR(0 TO 4) := “10110"; -- 11101 4B/5B
CONSTANT DO_H: x01_VECTOR(0 TO 4) := “00111"; -- 00100 4B/5B
CONSTANT DO_I: x01_VECTOR(0 TO 4) := “10101"; -- 11111 4B/5B
CONSTANT DO_J: x01_VECTOR(0 TO 4) := “10000"; -- 11000 4B/5B
CONSTANT DO_K: x01_VECTOR(0 TO 4) := “11110"; -- 10001 4B/5B
CONSTANT DO_Q: x01_VECTOR(0 TO 4) := “00000"; -- 00000 4B/5B
CONSTANT DO_R: x01_VECTOR(0 TO 4) := “00101"; -- 00111 4B/5B
CONSTANT DO_S: x01_VECTOR(0 TO 4) := “10001"; -- 11001 4B/5B
CONSTANT DO_T: x01_VECTOR(0 TO 4) := “01001"; -- 01101 4B/5B

-- generate decoder table
CONSTANT table: x01_TABLE(0 TO 41, 0 TO 10) := (
-- data mappings
--
--Input HI_LO Output
------- ----- ------

DI_0 & ’x’ & DO_0,
DI_1 & ’x’ & DO_1,
DI_2 & ’x’ & DO_2,
DI_3 & ’x’ & DO_3,
DI_4 & ’x’ & DO_4,
DI_5 & ’x’ & DO_5,
DI_6 & ’x’ & DO_6,
DI_7 & ’x’ & DO_7,
DI_8 & ’x’ & DO_8,
DI_9 & ’x’ & DO_9,
DI_A & ’x’ & DO_A,
DI_B & ’x’ & DO_B,
DI_C & ’x’ & DO_C,
DI_D & ’x’ & DO_D,
DI_E & ’x’ & DO_E,
DI_F & ’x’ & DO_F,

CI_0 & ’1’ & DO_J,
CI_0 & ’0’ & DO_K,
CI_1 & ’x’ & DO_I,
CI_2 & ’x’ & DO_T,
CI_3 & ’1’ & DO_T,
CI_3 & ’0’ & DO_S,
CI_4 & ’1’ & DO_I,

Appendix A. 4B/5B Encoder PLD (continued)

Replace Your Am7968 TAXI With CY7B923 HOTLink

8

CI_4 & ’0’ & DO_H,
CI_5 & ’1’ & DO_T,
CI_5 & ’0’ & DO_R,
CI_6 & ’1’ & DO_S,
CI_6 & ’0’ & DO_R,
CI_7 & ’x’ & DO_S,
CI_8 & ’x’ & DO_H,
CI_9 & ’1’ & DO_H,
CI_9 & ’0’ & DO_I,
CI_A & ’1’ & DO_H,
CI_A & ’0’ & DO_Q,
CI_B & ’x’ & DO_R,
CI_C & ’1’ & DO_R,
CI_C & ’0’ & DO_S,
CI_D & ’1’ & DO_Q,
CI_D & ’0’ & DO_H,
CI_E & ’1’ & DO_Q,
CI_E & ’0’ & DO_I,
CI_F & ’x’ & DO_Q);

BEGIN
-- declare input register. Data is clocked by the external STROBE
-- signal. This same strobe signal is used to synchronize the internal
-- two-state machine.

p1: PROCESS BEGIN
WAIT UNTIL (strobe=’1’);

in_reg(0 TO 7) <= D_In(0 TO 7);
in_reg(8 TO 11) <= CL(0 TO 3);

END PROCESS p1;-- capture strobe event

-- async set when strobe is present
-- use synchronous clear from clk when part is set and sys_clk present
phase1 <= strb_in AND sys_clk;
st1: DSRFF PORT MAP (phase1, strobe, zero, clk, strb_in);

-- setup input data hold register
p2: PROCESS BEGIN

WAIT UNTIL (clk=’1’);
IF sys_clk = ’0’ THEN -- hold data

hld_reg <= hld_reg;
ELSIF strb_in=’0’ THEN -- no data, load a SYNC command

hld_reg <= “000000001";
ELSIF (in_reg(8 TO 11) /= “0000") THEN -- check for a command

hld_reg(0 TO 3) <= in_reg(8 TO 11);
hld_reg(4 TO 7) <= in_reg(8 TO 11);
hld_reg(8) <= ’1’; -- set as a command

ELSE

Appendix A. 4B/5B Encoder PLD (continued)

Replace Your Am7968 TAXI With CY7B923 HOTLink

© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

AMD, TAXI, and TAXIchip are trademarks of Advanced Micro Devices.
FLASH370 and HOTLink are trademarks and Warp3 is a registered trademark of Cypress Semiconductor.

hld_reg(0 TO 7) <= in_reg(0 TO 7);
hld_reg(8) <= ’0’; -- set as data

END IF;
END PROCESS p2;

-- declare data mux select for input to the 4B/5B encoder
p3: PROCESS (hld_reg, sys_clk)

BEGIN
in_data(5) <= NOT sys_clk; -- hi/low nibble select
in_data(0) <= hld_reg(8);
IF sys_clk = ’0’ THEN -- enable high nibble first

in_data(1 TO 4) <= hld_reg(4 TO 7);
ELSE

in_data(1 TO 4) <= hld_reg(0 TO 3);
END IF;

END PROCESS p3;

-- declare 4B/5B encoder
p4: PROCESS (in_data)
BEGIN

encode <= ttf(table,(in_data));
END PROCESS p4;

-- declare output register

dr0: DFF PORT MAP (encode(0), clk, outreg(0));
dr1: DFF PORT MAP (encode(1), clk, outreg(1));
dr2: DFF PORT MAP (encode(2), clk, outreg(2));
dr3: DFF PORT MAP (encode(3), clk, outreg(3));
dr4: DFF PORT MAP (encode(4), clk, outreg(4));

dx0: XDFF PORT MAP (outreg(0), xreg(4), clk, xreg(0));
dx1: XDFF PORT MAP (outreg(1), xreg(4), clk, xreg(1));
dx2: XDFF PORT MAP (outreg(2), xreg(4), clk, xreg(2));
dx3: XDFF PORT MAP (outreg(3), xreg(4), clk, xreg(3));
dx4: XDFF PORT MAP (outreg(4), xreg(4), clk, xreg(4));

-- assign output register to outputs
D_Out <= xreg;
END struct; -- end of top level design

Appendix A. 4B/5B Encoder PLD (continued)

