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HISTORY

Software development and debug time have become the aiticd fadors in the anbedded system
development cycle. But the enbedded controll ers of today are far different animals from those
of the past. Previoudy, controllers ran at speeds lessthan 10 MHz, and contained no cades.
These ontrollers were built by orly a few companies, and enjoyed along podwct life. With a
long poduct life, manufadurers could justify the mst of producing a speda “bondout” version
of a chip. Thisbondout chip contained additional signals nat foundin the production chip, and
was attached to emulators and logic analyzersto perform debugandred-timetrace But becaise
of their high pgn-out and cost of manufaduring, it was cost prohibitive to ship them in a
production product, and instead they were only used for initial system development and test.

THE PROBLEM

Today’s environment has changed dramaticaly. Now, in the 32-bit embedded RISC' market,
controllers are running in excessof 100 MHz, and contain large cades -- 16 KB and hgher.
There ae alarge number of supgdiers making many dfferent controllers with short product
lives. Some manufadurers offer system-on-a-chip (also known as Core+ASIC?) embedded
solutions, in which customers can chocse the peripherals and padaging that surround the
embedded RISC processor core. Meanwhile, the size and complexity of the code exeauted by
these antrollers have increased. All of these fadors have dictated that better forms of debug
and emulator-like functions exist on-chip. Creding an emulator to operate & these high speeds
is much more difficult. Furthermore, emulators have no access insde the dip, so it is
impossble to knav the code flow of a @ntroller with an instruction cade just by analyzing the
controller’s external bus. Trying to produce enulator pods to hook upto al the available
padkages for Core+ASIC chips is unredistic. This is espedally true since a particular
Core+ASIC’s development and product life may be shorter than the time it takes to buld a new
emulator. No company is going to design a new emulator of which they will only sell one or
two uritsto a single mmpany over the wntroller’s entire lifetime. Asthe st of developing a
Core+ASIC embedded controller deaeases, there will be more of these austom controll ers with
real-time debugging needs and no emulator support.
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Yet the nead to shorten cycle time, espedaly software development and debug time, is
enormous. A lot of work has been succesdully applied to this areg through the use of
BadkgroundDebugMode (BDM) and enhanced JTAG® ports on existing RISC cortrollers. This
allows developers to do hardware level debug, such as runnng, stoppng, and stepping the
procesor, and interrogating rocessor resources -- reading and writing procesor registers and
memory. In some caes, these ports may also provide awindow into things like the processor’s
cades and trandation lookaside buffers (TLBS), or other spedal latches not normally accessble
through software. This procesor control and resource manipulation is acomplished througha
serial interface that uses a small number of pins, with no debugger code running on the target.
But there is gill the problem of red-time trace The BDM-style debuggers mentioned typicdly
stop procesor exeautionto perform their debug Althoughthis method daes nat alter code flow,
it dramaticdly changes the timing d running code, and may mask problems or make difficult
timing related problems impossble to catch. Encourntering a bug might require running an
exad set of instruction sequences, posshly hundeds of thousands of instructions, withou
atering the normal code path. For these caes, it is imperative to run at full speed in a non
invasive manner.

Solution Requirements

To summarize for the 32-hit RISC high performance enbedded controll er market, there exists a
need for an instruction trace which has the following characteristics:

1. It must run at the full speed of the part

2. It must be non-invasive

3. It must exist on production level parts

4. It must wok with the caches enabled

5. It must have a small I/O count to be cost effective
SOLUTION
Overview

One example of a solution to this problem can be found in the PowerPC 400 family of
embedded controllers from IBM. This paper will discuss the solution that is implemented in
these parts, but the general concepts may be applicable to other 32-bit RISC architectures.
Severa parts in the PowerPC 400 family contain a dedicated trace port used for red-time
ingtruction tradng. Althoughinstruction address lengths are 32-bits on these parts, the pin-out
for this lution consists of only eight pins -- one for a synchronizing clock and the other seven
for data. It isared-timeinstructiontrace meaningthat the port is used to determine the aldress
of the aurrent instruction at every cycle of the processor’s operation. This addressis aso known
asthe ingtruction panter, or IP. Sincethese ae 32-bit RISC parts, ead IP isfour bytes (32 hts)
wide, so an encoding and serialization is used to compress this address information, plus the
current instruction execution status, down onto seven data pins.

The traceinformation is colleded by an externa tod while the procesor is exeauting at full-
spead. The data pins are broadcast at every paostive transtion o the core dock pin to
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synchronize the information. Because the information is broadcast from inside the procesor
core, and nd from an external procesor bus, the IP information is corred even when the
ingtruction cades are enabled. After the traceis complete, a debugtod can interpret the trace
data to reconstruct the instruction code flow and then display it in a human readable form.

HOW IT WORKS
Setting up the Trigger Point

To perform an instruction trace the first thing to doisto set atrigger point. Engineeas familiar
with logic enalyzes and emulators are acaistomed to having robust trigger cgpability. With
these todls, users can spedfy a complex trigger point that must occur before atracesnapshat is
taken. Unlike asimple trigger point of a particular instruction address a complex trigger point
may involve couners, logicd operators, bit masking, and event sequencing. For the PowerPC
400 family controllers, there are two ways to generate a trigger point:

1. Use the hardware debug resources contained in the processor core

2. Use an external trigger source to feed into the processor core

Using Hardware Debug Resources

Most 32-bhit RISC procesors have registers and debug fadlities that allow users to set
breakpoints at a particular 1P or multiple I1Ps, the aldressof one or more data aldresses, when a
branch or exceptionistaken, etc. For red-time ingtruction tradng, these internal processor core
resources are used to determine the trace point, instead of a breakpoint.

This method tes the advantage of being a predse trigger mechanism, which means that the
exad point of when the trigger exeautes is known. In this method, all code before the trigger
point is guaranteed to have been exeauted, and al code dter the trigger point has not yet been
executed.

Using orly avail able procesor resources for trigger points may soundlimiting, but in redity it is
not a big problem because procesor cores are incorporating more and more debug resources to
help the enbedded developer. The IBM PowerPC 403GA, 403GB, 403GC, and 4035CX
controllers all contain breakpoint/trigger points for multi ple instruction addressand data aldress
values, as well as courting and sequencing mecdhanisms, and for when branches or exceptions
occur. Future PowerPC 400 family cores will have more trigger fadlities suppating logicd
expressions and ranges.

Using an External Trigger Source

If the internal hardware resources are not sufficient, an external trigger can be fed into the
procesor and is used as the trigger point. This method is an impredse triggering mecdhanism,
becaise the event has already occurred before being fed into the processor core. It is therefore
likely that processor exeaution hes continued past the trigger point (thisis also known as “skid,”
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since the IP skids past the desired trigger point). Fortunately, the anourt of skid is usually
minimal and does not hinder the usefulness of the instruction trace.

Compressing the Trace Data

The trick now is to get the necessary instruction address information orto seven data pins.
Fortunately, the locdity of reference asciated with Von Neumann architedure machines asgsts

in this process The following explanation will refer to the number of finite “states’ that are
needed to determine the code flow, plus some dedicated pins for special address broadcasting.

Linear Code Execution

Consider the normal, linea (sequential), exeaution flow of a scadar 32-hit RISC architedure.
Linea code flow means that after an instruction is exeauted at address|P, the next instruction to
exeaute is locaed at IP + 4 (asuuming a 32-bit instruction width). To determine instruction
addressflow, we neead to broadcast two states during every procesor core dock period -- one
state to say that an instruction exeauted ona given clock cycle, and ancther state to say that no
ingtruction exeauted on the given cycle. To illustrate, let us look at the following example.
Consider the following trace in which State 0 means the instruction dd na finish exeauting on
the given cycle, and State 1 indicates the instruction finished executing on that cycle:

Did instruction execute?

Cycle 1 0 instruction did not execute
Cycle 2 1 instruction did execute
Cycle 3 0 instruction did not execute
Cycle 4 0 instruction did not execute
Cycle 5 1 instruction did execute
Cycle 6 1 instruction did execute

Figure 1 - Linear Instruction Trace

Possble reasons for an instruction nd exeauting ona o/cle ae: multi-cycle instructions (such as
multi plies and dvides), memory accesses, and gpeline stalls. As one can seefrom the previous
table, only ore data pin is nealed to save the two states. Now assume, for the purposes of an
example, that we drealy know that the beginning IP is at 0x10 when the traceis darted.
Because the aode flow isknown to be linea, the order of the aldresses will always be increasing
where the next IP = current IP + 4. The only remaining cdculation is to determine how long
ead instruction took to exeaute. This is cdculated by adding the number of nonexeauted
cycles plus the gycle the ingtruction dd exeaute. For example, at the beginning address 0x10,
the ingtruction took two cycles to exeaute, sinceit did na exeaute on cycle one but did exeaute
on cycle two. A post-processng tod would determine that the instruction flow was the
following:
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Cyclesper instruction | Total number of cycles

0x10 2 2
0x14 3 5
0x18 1 6

Figure 2 - Linear Instruction Trace Reconstruction

Asauming that instruction memory was not modified while the processor was runnng and the
tracewas gathered, memory or a static code li sting can then be read pastmortem to determine the
ingtructions at addresses 0x10, 0x14, 0x18 (It shoud be noted that self-modifying code is
considered a practice to avoid unless absolutely necessary!)

In this $x cycle example, only one bit of information per cycle neals to be saved, for atota of
six bits. Thisisafar cry from the 32 hts per cycle neaded if we were storing the IP itself on
every cycle.

Anocther observation to nae is that not only are we generating a tracethat will assst in hard to
cach timing related bugs, we ae dso getting the added benefit of a performance analysis todl.
Again, post-processng todls can be used onthe tracedata to determine things like instructions
most frequently used, instructions that took the longest time, etc.

What we have so far is a red-time instruction tracewith 1P information ouput on ore external
data pin, clocked at the processor core dock frequency on one dock pin. From this trace we
can determine how long ead instruction takes to exeaute. Unfortunately, it’s not a redistic
picture of processor execution flow!

Handling Branches

Anyore who has debugged code before knows that normal exeaution flow is far from linea.
Perhaps the biggest advantage of computersisthe aility to analyzeinpu choices and then select
an ouput. To dothiskind d dedsion making, the ade flow must analyze inpu condtions and
then branch to different outputs depending onthe inpus. This results in nortlinea code flow.
Therefore, anather two states must be alded to determine if a branch was exeauted or not, so the
post-mortem tod can corredly caculate the new IP from the airrent IP, since it may no longer
be IP+4.

Here's an updited example with two new states to handle whether or not the instruction was a
branch that was taken:

|||
|

1L
[
a1

.||Il



Cyclenumber ' |E State BT State

" What happened?

Cycle 1 0 0 Inst. did not execute, not a taken branclt
Cycle 2 1 0 Inst. did execute, not a taken branch
Cycle 3 0 0 Inst. did not execute, not a taken branclt
Cycle 4 0 0 Inst. did not execute, not a taken brancl
Cycle 5 1 0 Inst. did execute, not a taken branch
Cycle 6 1 0 Inst. did execute, not a taken branch
Cycle 7 1 1 Inst. did execute, taken branch

Cycle 8 1 0 Inst. did execute, not a taken branch
Cycle 9 1 1 Inst. did execute, taken branch

Cycle 10 1 0 Inst. did execute, not a taken branch

In Figure 3, IE State refers to whether or not an instruction exeauted ona oy/cle, and BT State

refers to whether or not an instruction was a branch that was taken on that cycle. From this

figure, can you determine what the analyzed traceoutput looks like? You can’t, because smply
knowingif abranch was taken dces nat tell you what the new IP is after the result of the branch.

Let us consider the most common case of PowerPC branches, in which the branch target address

can be cdculated from the branch instruction encoding itself. To corredly tracethis type of
branch, it is now required that instruction memory be unmodified . Self-modifying code will

give midealing traceresults. To past-processthe aldressinformation, instruction memory or a

code listing is read to determine the target addressof the branch. Here ajain is the same table,

but this time the branch target addresses (BTAs) are added for all branches that have been take

Figure 3 - Nonlinear Instruction Trace

Cycle |E State | BT State BTA What happened?

Cycle 1 0 0 N/A Inst. did na exeaute, nat a taken
branch

Cycle 2 1 0 N/A Inst. did execute, not a taken branch

Cycle 3 0 0 N/A Inst. did na exeaute, nat a taken
branch

Cycle 4 0 0 N/A Inst. did na exeaute, nat a taken
branch

Cycle 5 1 0 N/A Inst. did execute, not a taken branch

Cycle 6 1 0 N/A Inst. did execute, not a taken branch

Cycle 7 1 1 0x24 | Inst. did execute, taken branch

Cycle 8 1 0 N/A Inst. did execute, not a taken branch

Cycle 9 1 1 0x04 | Inst. did execute, taken branch

Cycle 10 1 0 N/A Inst. did execute, not a taken branch

Figure 4 - Nonlinear Instruction Trace with Branch Target Addresses




Remember, the branch target addresses (0x24 and 0x4in this example) are NOT broadcast over
the tracepins, but determined from the debug tod AFTER the traceis run by either realing
instruction memory or reading a static code listing.

Now the post-processng for this trace ca be shown. Kee in mind that the instructions that
were exeauted at cycles 2, 5, 6, 8, and 10MAY be mndtional branch instructions, but if they
were, the conditions to take the branch were not met.

Cyclesper instruction | Total number of cycles

0x10 2 2
0x14 3 5
0x18 1 6
0x1C 1 7
0x24 1 8
0x28 1 9
0x04 1 10

Figure 5 - Nonlinear Instruction Trace Reconstruction

Notice that the ade flow is no longer linea; the instruction at address 0x20 has not been
exeauted. Also nde that the last instruction is at address0x04, a lower addressthan the start of
the trace To total up the pin court, we ae now using ore pin for clocking, and two ahers to
hande the four finite states (one of which will never occur -- exeauting a branch when an
instruction has not been executed), for a total of three pins.

Branches are one example of nonlinea code exeaution. But so far we have only handed ore
type of branch, one whaose target address can be cdculated simply by knowing the branch
instruction. In the PowerPC architedure, there ae other kinds of branch instructions in which
the branch target addresscan only be determined by a value in a designated register. Thisisa
speda case that will be handled along with ancther speda case of nonlinea code flow --
interrupts.

Interrupts

Interrupts present a unique problem in that when an interrupt is taken, the next instruction
address may jump to any ore of a number of possble locaions depending on the type of
interrupt. These addresslocaions are known as exception vedors. If pin bandwidth is used to
creae a state for every possble interrupt, the st benefit of low pin court will be lost.
Therefore, instead of tradng the type of interrupt, the aldress of the exception vedor is
broadcast. For a 32-bit RISC madine, instruction addresses are 32 htsin length. But the two
least significant bits are not needed since they must always be zeo, as instruction lengths are
four bytes (32 hits). To broadcast the important 30 hits of address only four pins are used -- one
pintoindcaeif an addressis being lroadcast, and threepins to broadcast the addressin a seria
fashion over 10 cycles.
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For an example, let us assume the procesor takes a PowerPC program exception when trying to
exeaute an illega ingtruction. In the PowerPC architedure, when a program exception acaurs,
the IP jumps to an address with an exception vedor offset of 0x070Q To ill ustrate, we will
asaume the IP after the interrupt is 0x12340700 To broadcest this address the two least
significant bits are ignaed, since they are dways zero, and the resultant octal number is
0443200700 Asauming we broadcast the least significant bits first, an addressbroadcast portion
of atracewill | ook like the foll owing (starting at cycle n, with A0 as the most significant bit and
A2 as the least significant bit):

Cycle nnll 0 | NA N/A N/A
Cycle n
Cycle n+1
Cycle n+2
Cycle n+3
Cycle n+4
Cycle n+5
Cycle n+6
Cycle n+7
Cycle n+8
Cycle n+9 1 0 0 0

Figure 6 - Trace of Address Broadcasting Pins
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Although no shown in Figure 6, the IE State and BT state information would continue to be
output in paralel with any addressbroadcast. The objedionto be raised at this point is how ten
cycles can be dedicated to broadcasting the aldressinformation withou ever sowing dowvn the
procesr. In situations that require addressbroadcasting lessthan ten cycles apart, how can the
trace(and the controller) continue to run at full speed? The answer is that there is enough on
chip bufering d addressbroadcast information to be nfident that for any redistic PowerPC
code sequence, processor execution will not be halted.

This address broadcast medhanism is aso used to hande the spedal branch instructions not
previousy considered. For example, in the PowerPC architedure, the “blr" instruction’s branch
target address is the value contained in the link register.

Tallying upthe pin court, the total is now up to six pins dedicaed to data tradng and ore dock
pin. What about the last data pin?

Other States in the State Machine

For the purposes of this paper, significant detail has been amitted. For example, the 403Gx
procesors have a paralel branch exeaution unt, which alows me @rredly predicted
branches to be folded orto the previous cycle of exeaution. Also, a state is needed to indicae
the traceés garting cycle (i.e., trigger point) from within the freerunning traceoutput. The last
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data pin alows for the alditional states not discussed here. For qualified tod vendars who wish
to suppat the red-time tracefeaure of the PowerPC 400 family controllers, these detail s are
provided along with reconstruction code to aid in tool development.
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TRACE RECONSTRUCTION EXAMPLE

RISCWatch' is an example of a debugger that provides a trace recnstruction tod cdled
RISCTrace for the IBM PowerPC family of embedded controllers. The followingis an example
of a real-time trace reconstruction from RISCWatch:

# RISCTrace : Trace Qutput File

# DATE : Wed Jun 04 12:25:49 1997

# TRACE TRI GGER SETTINGS : | ACL occurring 1 tines

> TRACE TRI GGER EVENT CYCLE: 00000

# Total Cyclel/ (optional )

# Line Cycle Instr Address (+F O fset) Disassenbly

- s

$ FUNCTION: main START_ADDR: 0x0000A078 FILE: denpl.c PROGRAM .\deno
00001 00000 0x0000A090( +0x000018) stw R3, 0x00000038( R1)
00002 00000 # ** STATUS. Trigger event **
00003 00001 00001 0Ox0000A094(+0x00001C) addi R3, 0, 0x006F
00004 00002 00008 0x0000A098(+0x000020) stw R3, 0x0000003C( R1)
00005 00010 00001 0Ox0000AQ9C(+0x000024) addi R3, 0, 0x0002
00006 00011 00001 OxOOOO0AOAO(+0x000028) stw R3, 0x00000040( R1)

(trace information renoved for brevity)

$ FUNCTION: routine5 START_ADDR: Ox0000A1D8 FILE: denp3.c PROGRAM .\denp

00058 00096 00001 0x0000A1D8(+0x000000) stwu R1, OXFFFFFFCO( R1)
00059 00097 00009 0x0000A1DC(+0x000004) stw R3, 0x00000058( R1)
00060 00106 00001 OxOOOOA1EO(+0x000008) I|wz R4, 0x00000008( R2)
00061 00107 00001 OxOOOOA1EA(+0x00000C) addi R3, 0, 0x0005

00062 00108 00001 OxOOOOA1E8(+0x000010) stw R3, 0x00000000( R4)
00063 00109 00001 O0xO0000A1EC(+0x000014) addic R1, R1, 0x0040

00064 00109 00000 0xO0000A1FO(+0x000018) bl r # ** NOTE: Fol ded

I nstruction

$ FUNCTION: main START_ADDR: 0x0000A078 FILE: denpl.c PROGRAM .\deno
00065 00110 00001 OxOOOOAOFO(+0x000078) cror 31,31, 31
Figure 7 - RISCTrace Output Example

We seein this adual tod output the things that were shown in the example traces -- cycles per
ingtruction and total cycle wunts. In addition, the instructions that were exeauted are shown,
and any branches that have been folded are indicaed. When the debugger has ©urce debug
information, function names and offsets are provided to relate back to the C source code.

CONCLUSION
The explosion d 32-hit RISC procesrs in embedded systems has driven the requirement for

smarter, lower cost debugtodls, including red-time instruction trace Customers need to debug
and traceproduction-level parts, not just expensive pinned-out cores that will not be in the final
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syssem design. The IBM PowerPC family of embedded processors have succesdully
implemented a nonrinvasive, full-speed instruction trace using orly eight pins. These pins
output minimal traceinformation which is fed to an external debugtod to reconstruct the mde
flow postmortem. When this instruction tracefeaure is used in conjunction with a JTAG debug
todl, software developers can more eaily find system hardware and software erors. The result
is a shorter cycle needed to bring a product to market.
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