INTRODUCTION

LVDS (Low Voltage Differential Signaling) signals are used to interface between today’s CMOS or BiCMOS ASICs supplied with 3.3V. LVDS signals are differential signals with a swing of 250 to 400 mV and a DC offset of 1.2V. External components are required for board to board data transfer or clock distribution.

In advanced systems often only a single supply voltage (3.3V) is available. Low Voltage ECL devices work off this 3.3V supply voltage in the so called LVPECL mode. Input/Output LVPECL levels are related to $V_{CC} = 3.3V$, a 750 mV output swing with 2V offset. This makes them ideal as peripheral components for ASICs.

LVPECL and LVDS are both differential low voltage signals, but with different swing and different offset. The purpose of this application information is to show the interfacing between these signal levels. In addition it gives interface suggestions to and from 5V supplied PECL devices or negative supplied ECL.

LVDS LEVELS

The LVDS levels have been specified by IEEE (Standard P1596.3, approved in March, 1994). There are two different specifications, the general purpose specification with 250 to 400 mV swing and the super low power specification with reduced swing (150 ...250mV) for driver V_{PP}.

LVDS outputs require a 100Ω load between the differential outputs. This load will in addition terminate the 50Ω controlled impedance lines.

ECL LEVELS

In ECL circuits all signal levels are related to V_{CC} supply rail. Traditional ECL designs are supplied with negative voltages with $V_{CC} = GND$.

Today several applications use ECL devices in the PECL mode. PECL (Positive ECL) is nothing more than supplying any ECL device with a positive power supply (+5V) for V_{CC} and 0V V_{EE}.

With the trend to low voltage systems a new generation of ECL circuitry has been developed. The Low Voltage ECL (LVECL) devices work from a $-3.3V$ power supply either as negative supplied or more popular from standard $V_{CC} = +3.3V$ and $V_{EE} = GND$ as LVPECL.

$100E(L)$ type output DC levels for the different supply levels are shown in Table 2 on page 2.
Table 1. LVDS Levels

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>General Purpose Specification</th>
<th>Super Low Power Specification</th>
<th>Unit</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Transmitter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output HIGH Voltage</td>
<td>1474</td>
<td>1374 mV</td>
<td>(R_L = 100 \Omega)</td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output LOW Voltage</td>
<td>925</td>
<td>1025 mV</td>
<td>(R_L = 100 \Omega)</td>
<td></td>
</tr>
<tr>
<td>(V_{PP})</td>
<td>Output Differential Voltage</td>
<td>250</td>
<td>400 mV</td>
<td>150</td>
<td>250 mV</td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Output Offset Voltage</td>
<td>1125</td>
<td>1275 mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>0</td>
<td>2400</td>
<td>0</td>
<td>2000 mV</td>
<td>(V_{gpd} < 950 \text{mV}) *</td>
</tr>
<tr>
<td>Differential HIGH Input Threshold</td>
<td>+100</td>
<td>+100 mV</td>
<td>(V_{gpd} < 950 \text{mV}) *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential LOW Input Threshold</td>
<td>−100</td>
<td>−100 mV</td>
<td>(V_{gpd} < 950 \text{mV}) *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*\(V_{gpd} \) is the voltage of Ground Potential Delta across or between boards.

Table 2. MC100Exxx/MC100ELxx/LVELxx/EPxx (\(T_A = 0^\circ \text{C} \) to +85°C)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>LVPECL 1</th>
<th>PECL 2</th>
<th>ECL</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td></td>
<td>−3.3</td>
<td>+5.0</td>
<td>GND</td>
<td>V</td>
</tr>
<tr>
<td>(V_{EE})</td>
<td></td>
<td>GND</td>
<td>GND</td>
<td>−5.2, −4.5 or −3.3</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Minimum Output HIGH Level</td>
<td>2.275</td>
<td>3.975</td>
<td>−1.030</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Typical Output HIGH Level</td>
<td>2.345</td>
<td>4.045</td>
<td>−0.955</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Maximum Output HIGH Level</td>
<td>2.420</td>
<td>4.120</td>
<td>−0.880</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Minimum Output LOW Level</td>
<td>1.490</td>
<td>3.190</td>
<td>−1.810</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Typical Output LOW Level</td>
<td>1.595</td>
<td>3.295</td>
<td>−1.705</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Maximum Output LOW Level</td>
<td>1.680</td>
<td>3.380</td>
<td>−1.620</td>
<td>V</td>
</tr>
</tbody>
</table>

1. \(V_{CC} \) assumed 3.3V. All levels vary 1:1 with \(V_{CC} \).
2. \(V_{CC} \) assumed 5V. All levels vary 1:1 with \(V_{CC} \).

ECL outputs are open emitter outputs, requiring a DC path to a more negative supply than \(V_{OL} \). This pull down resistor termination can be used to terminate transmission lines (see AN1406).

ECL standard DC input levels are relative to \(V_{CC} \). Several devices are available with so called common mode range inputs. These inputs allow processing signals with small swings (down to 200 mV, 150 mV or even 50 mV signal levels) within an offset range.

INTERFACING

Common mode range inputs are capable of processing differential signals with 150 to 400 mV swing. The ECL input processes signals up to 950 mV swing. The DC voltage levels should be within the input voltage range.

To interface between these 2 voltage levels capacitive coupling can be used. Only clock or coded signals should be capacitive coupled.

A capacitive coupling of NRZ signals will cause problems. Then passive or active interfacing is necessary.

CAPACITIVE COUPLING LVDS TO ECL

Capacitive Coupling LVDS to ECL using \(V_{BB} \)

http://onsemi.com
Several ECLinPS/ECLinPS Lite devices supply a V_{BB} ($V_{BB} = V_{CC} - 1.3V$) reference voltage. It can be used for differential capacitive coupling. V_{BB} needs to be decoupled to GND via a 10 nF capacitance.

The 100kΩ gives stable determined output states during null signal conditions.

Capacitive Coupling LVDS to ECL with external biasing

If V_{BB} reference voltage is not available, a similar DC voltage can be generated with a resistor divider. The resistor values depend on V_{CC}/V_{EE} voltages. Stability is enhanced during null signal conditions if a 50 mV differential is maintained between the divider networks.

![Figure 4. Capacitive Coupling LVDS to ECL with External Biasing](image)

Examples:

- $V_{CC} = GND, V_{EE} = -5V$: $R1 = 1.2k\Omega, R2 = 3.4k\Omega$
- $V_{CC} = GND, V_{EE} = -3.3V$: $R1 = 680\Omega, R2 = 1k\Omega$

In the layout for both interfaces the resistors and the capacitors should be located as close as possible to the ECL input.

Capacitive Coupling ECL to LVDS

The ECL output requires a DC path to V_{EE}. The pulldown resistors are connected to V_{EE}.

The thevenin resistor pair represent the termination of the transmission line $Z = R1 \parallel R2$ and generates a DC level of 1.2V.

![Figure 5. Capacitive Coupling ECL to LVDS](image)

Capacitive Coupling ECL to LVDS using V_{OS} reference voltage

Some devices with LVDS interfaces supply V_{OS} reference voltage. This can be used for capacitive coupling. When the transmission line length is very short, a parallel termination should be used and placed as close as possible to the coupling capacitors.

![Figure 6. Capacitive Coupling ECL to LVDS Using V_{OS} Reference Voltage](image)
INTERFACING FROM LVPECL TO LVDS

The DC output level of LVPECL is more positive than the input range of LVDS. All ECL devices need pulldown resistors. The pulldown resistors in a thevenin parallel termination or pulldown resistors to GND can be split up into a resistor divider to generate LVDS DC levels.

Dependent on the application one of the following interfaces should be used:

Interfacing LVPECL to LVDS in thevenin equation

\[
R1 \parallel (R2 + R3) = Z \quad \text{(Eq. 1)}
\]

The thevenin parallel resistors terminate the transmission line \(Z \) near the receiver. Instead of a resistor to \(V_{EE} \), a resistive path to \(V_{CC} \) and to \(V_{EE} \) (GND) build the termination of the transmission line. In transmission line theory these resistors are in parallel for high frequency signals. They match the line characteristic impedance.

The DC condition for point A is \(V_{CC} - 2V \). The DC levels at the LVDS input (B) are located within the LVDS input common mode range.

\[
A: \quad R1/(R1 + R2 + R3) = 2 \frac{V}{V_{CC}} \quad \text{(Eq. 2)}
\]

\[
B: \quad R3/(R1 + R2 + R3) = V_{IL}/V_{CC} \quad \text{(Eq. 3)}
\]

The swing at the LVDS input is decreased dependent on \(R2 \) and \(R3 \)

\[
V_{ipp} = R3/(R2 + R3) \times V_{opp}
\]

\[
V_{IH} < 2.0 \text{ V (2.4 V)}
\]

\[
V_{IL} > 0 \text{ V}
\]

Calculations give non–standard resistor values. When choosing resistors off the shelf, avoiding a cutoff condition under worst case supply voltage should be considered.

Examples:

(200mV input swing)
For 50Ω controlled impedance lines \(R1 = 120\Omega, R2 = 58\Omega \) and \(R3 = 20\Omega \).
For 100Ω controlled impedance lines \(R1 = 253\Omega, R2 = 42\Omega \) and \(R3 = 124\Omega \).
For any other controlled impedance line the calculation of the resistive divider is done according to Eq. 1, Eq. 2 and Eq. 3.

Interfacing LVPECL to LVDS with unterminated transmission line

Unterminated lines can be used for very short interconnects. For details about recommended maximum unterminated line length, see ON Semiconductor’s High Performance ECL Data Book (DL140/D), chapter 4 “System Interconnects”.

\[
R1 = 91\Omega, \quad R2 = 46\Omega
\]

Parallel termination to GND is possible with a impedance matching resistor pair \((R1 + R2 = Z) \) using the Figure 8. Unfortunately this low impedance path causes a high output current. This will increase the device’s power consumption. The increased die temperature has a negative impact on the statistic life time of the device.

Please Note: The maximum ratings of the output current must not be violated.

INTERFACING FROM LVDS TO LVPECL

The common mode range inputs of the low voltage ECL line receivers are specified wide enough to process LVDS signals.
This direct interface is possible for all LVELxx and EPxx devices with differential common mode range inputs, e.g., MC100LVEL17, MC100LVEL13, MC100LVEL14, MC100LVEL29, MC100LVEL39.

INTERFACING FROM PECL TO LVDS

Interfacing from PECL to LVDS using thevenin parallel termination

As described for LVPECL, to interface from PECL to LVDS a thevenin equation termination is used.

Near the receiver a +5V power supply connection is required.

\[R_1/(R_1 + R_2 + R_3) = 2 \, V/V_{CC} \]
(Eq. 5)

\[R_3/(R_1 + R_2 + R_3) = V_{IL}/V_{CC} \]
(Eq. 6)

The swing at the LVDS input (\(V_{ipp}\)) is decreased from \(V_{opp}\) dependent on \(R_2\) and \(R_3\) values:

\[V_{ipp} = R_3/(R_2 + R_3) \times V_{opp} \]

\(V_{IH} < 2.0 \, V\) (2.4 \(V\))
\(V_{IL} > 0 \, V\)

Calculations give non-standard resistor values. When choosing resistors off the shelf, it should be considered to avoid a cutoff condition also under worst case condition.

If a 50\(\Omega\) controlled impedance line is used the following resistor values are useful:

Examples:

\[\begin{align*}
Z &= 50\, \Omega \\
R_1 &= 82\, \Omega \\
R_2 &= 100\, \Omega \\
R_3 &= 33\, \Omega \\
\text{or} \\
Z &= 50\, \Omega \\
R_1 &= 82\, \Omega \\
R_2 &= 82\, \Omega \\
R_3 &= 47\, \Omega
\end{align*} \]

For any other controlled impedance line the calculation of the resistive divider is done according to Eq. 4, Eq. 5 and Eq. 6.

Interfacing from PECL to LVDS with unterminated lines

As described in LVPECL interfacing unterminated lines can be used for very short interconnections.

E.g., the resistors can be \(R_1 = 330\, \Omega\), \(R_2 = 150\, \Omega\).

![Figure 9. Interfacing LVDS to LVPECL](image1)

![Figure 10. Interfacing from PECL to LVDS Using Thevenin Equivalent Parallel Termination](image2)

![Figure 11. Interfacing from PECL to LVDS with Unterminated Lines](image3)
INTERFACING FROM LVDS TO PECL

To translate LVDS signals to PECL a differential LVE Lite device with extended common mode range inputs (e.g., MC100EL17) can be used to process and translate LVDS signals when supplied with 5V ± 5% supply voltage.

![Figure 12. Interfacing from LVDS to PECL](image)

![Figure 13. Interfacing from Negative Supplied ECL to LVDS](image)

![Figure 14. Interfacing from LVDS to Negative Supplied ECL](image)

INTERFACING BETWEEN NEGATIVE SUPPLIED ECL AND LVDS

ON Semiconductor has developed level translators to interface between the different ECL levels. The MC100LVEL90 translates from negative supplied ECL to LVPECL. The interface from LVPECL to LVDS inputs is done as described above. For –4.5V/–5.2V power supplies, the MC100LVEL90 is used. For –3.3V supplies, the MC100LVEL90 is used (Figure 13).

To interface from LVDS to negative supplied ECL the common mode range of the MC100LVEL91 for –3.3V supply and the MC100EL91 for –4.5V/–5.2V supply is wide enough to process LVDS signals.

If a +5V supply and a VEE = –5.2V ± 5% supply is available the MC10E1651 can be used.