
1-215

Introduction The PSD3XX family devices contain several commonly used microcontroller peripheral
functions combined into one package. These include EPROM, SRAM, Chip Selects, and
logic functions. Some of the advantages of the PSD3XX family are: board space is
reduced, power consumption is reduced, cost is competitive – usually less, and board
complexity is reduced. Design risk is also reduced because fewer traces are required
on the PWB and the PSD3XX devices are more flexible than a discrete component
design. Mistakes or design changes pose less of a potential problem. Additionally, the
PSD3XX device includes a security option which, when implemented, protects the internal
configuration data from duplication.

For a particular application, the designer should learn the PSD3XX family architecture,
understand the configuration software, and understand the programming process. While
none of these tasks are complicated, full knowledge of them is not required to understand
the PSD3XX family. This application note introduces the PSD3XX family design process
by example. While going through the examples, you will learn about the entire design
process including hardware, software, and programming. Those who do not have a
strong background in the microcontroller field may also find themselves able to use the
PSD3XX. This application note uses an 80C31 system as a model. Even if you intend to
use a different microcontroller, you will find it useful to read on.

This application note demonstrates two designs using multiple packages which will be
replaced by a design using the PSD312. The first example is a standard 80C31 board,
one that does not make use of all the PSD312’s potential. This will form a basis for
understanding the product. In a second example, new functions are added to the standard
design. By the end of the application note, you should have enough basic knowledge to
understand the PSD312 device’s use in your design.

Programmable Peripheral
Application Note 023
PSD3XX Family
Programmable Microcontroller Peripheral
Design Tutorial
By Mark Elliott

PART I – Using
the PSD312 with
a Standard 8031
System.

Figure 1.1 illustrates a standard 80C31 microcontroller board design. The board contains a
microcontroller, a 512 Kbit EPROM for program storage, a 16 Kbit static SRAM, and an
address latch. In this example, all of the circuits on this board, excluding the microcontroller,
will be replaced. Keep in mind that the PSD312 is not being used to its full advantage here.
In the second example, Part 2 of this application note, you will see that the PSD312 is able
to provide additional functions, replacing additional discrete packages.

The PSD312 was chosen for this task because it has the same SRAM and EPROM space
as that used on the original design. A similar device, the PSD311, would be more suitable
for replacing a smaller EPROM space of 256K bits or less. If a larger EPROM space is
required, a PSD313 with its internal 1M bit UV EPROM could be used.

Return to Main Menu

PSD3XX – Application Note 023

1-216

Figure 1.1:
8031
Microcontroller
Standard System
Block Diagram 512 KBIT PROM 16 KBIT RAM

ADDRESS
LATCH

PSEN

RD WR

A(7:0)

A(15:8)

ALE

AD(7:0)

PSEN RD WR

8031
 MICROCONTROLLER

NOTE: Each Block represents one IC package.

PSD3XX – Application Note 023

1-217

The physical connections for the new board design using the PSD312 are illustrated in
Figure 1.2. The multiplexed address/data pins, 0 through 7, from the 80C31 port 0 connect
to the PSD312 pins AD/A(7:0). The upper address bits, 8 through 15 from port 1 connect to
the pins A(15:8) on the PSD312. The 80C31 write line is connected to "WR.Vpp or R/W",
the read line to RD/E, ALE to "ALE or AS". The connections for PSEN and RESET are
straightforward. The A19/CSI pin is an unused input in this application so it is tied low. Last
of all, the power, grounds and the decoupling capacitor are connected. All other PSD312
pins will remain unconnected. These pins become useful for a more functional design such
as in the second example.

Physical
Connections

RD, WR, P0(7:0) P1(7:0)
ALE, PSEN,

RESET

RESET

UPPER
ADDRESS

BUS

LATCHED
LOWER

ADDRESS
AND DATA

BUS

5

GND

A19/CSI

PC(2:0)

PA(7:0)

PB(7:0)

RD
WR

ALE
PSEN

RESET

NC

NC

NC

GND VCC

PSD312

AD/A(7:0) A(15:8)

VCC

0.1mF

8031
 MICROCONTROLLER

Figure 1.2:
Standard PSD312
Physical
Connections

NOTE: Additional Microcontroller connections are not shown.

PSD3XX – Application Note 023

1-218

PSDsoft
Overview

Configuration of the PSD3XX functional blocks is supported by PSDsoft, an integrated
system development software tool from WSI that runs on a PC in the Microsoft Windows
environment. PSDsoft consists of the following major modules:

PSDabel – The design entry tool used to define the PADs and some I/O constructs.

PSD Configuration – Used to specify the Bus Interface type and I/O port assignments.

PSD Compiler – Combines outputs from PSDabel (logic description), PSD Configuration
(bus and port configuration), and MCU Program Code into one .OBJ file to program the
PSD part.

PSD Programmer – Provides the programming interface to the WSI MagicPro programmer.

A typical PSD3XX development sequence is listed below:

1. Create or open a project after entering into PSDsoft.
2. Enter the PSDabel Design Entry menu, and describe your circuit using PSDabel

Hardware Description Language (HDL).
3. Compile the ABEL source file.
4. Enter the PSD Configuration menu, and configure the Bus Interface and I/O Ports.
5. Enter the PSD Compile menu, and “FIT” the design. The function of the Fitter is to fit the

logic functions into the PAD.
6. Select the Address Translate function, also found in the Compile menu. Address

Translate combines your MCU program code files (.HEX) and the output of the Fitter
into one .OBJ file.

7. Enter the PSDsoft Programmer menu, and Program the PSD3XX by downloading the
.OBJ file.

Configuration
Data Entry

Following the design sequence described in the previous section, we will implement our
80C31 design example. Figure 1.3 shows some of the PSDsoft windows that would be
encountered when starting a new design. Selecting “New Project” opens a dialog box where
project management information such as Project Name, Directory Location, Project
Description, Device Family, and Part Name are entered.

After the project has been defined and the specific PSD part selected, the user would
proceed to start the actual logic design by entering the PSDabel portion of PSDsoft.
Figure 1.4 shows the ABEL source file created for this example. A typical ABEL file usually
consists of five sections:

1. Header – A Header consists of a module name and/or title.
2. Declarations – Declarations define signals, constants, and macros.
3. Logic Description – The logic description defines the PLD functions in terms of

equations, truth tables, and state diagrams.
4. Test Vectors – The test vectors are used in logic simulation.
5. End – An ABEL file must end with an “END” statement.

These sections, minus the test vectors, are easily recognizable in our example source file.
Note that Port B and Port C are declared as chip select outputs (CS0 – CS10) even though
they are not being used (i.e. chip select logic equations are not specified). This was done to
avoid having the terminate these pins if they were configured as inputs, thereby saving
board routing space.

PSD3XX – Application Note 023

1-219

Configuration
Data Entry
(cont.)

Figure 1.3 PSDsoft Start-up Windows

PSD3XX – Application Note 023

1-220

Configuration
Data Entry
(cont.)

Figure 1.4 PSDsoft ABEL File

PSD3XX – Application Note 023

1-221

Configuration
Data Entry
(cont.)

Once the ABEL source file is complete, it should be checked for errors and then compiled
using the compile option under the PSDsoft - PSDabel Design Entry window. For additional
details on compiling, optimizing, or simulating an ABEL source file, please refer to the
PSDsoft - PSDcontrol or PSDabel User Manuals.

The next step in our development sequence is the Bus and I/O Port configuration.
Figure 1.5 shows the PSDsoft Configuration Entry windows which are accessed by
selecting PSD Configuration from the main window. In our example, the PSD312 bus
interface is configured for an 80C31 microcontroller – 8-bit multiplexed address/data bus,
reset level is active HIGH, ALE/AS level is active HIGH, WR, RD, PSEN control mode
selected, security bit disabled, EPROM controlled by PSEN only, power down feature (CSI)
not used, and low power CMiser feature disabled.

Figure 1.5 PSDsoft Bus Configuration

PSD3XX – Application Note 023

1-222

Configuration
Data Entry
(cont.)

Figure 1.6 PSDsoft Port A Configuration

Figure 1.6 shows the options available for configuring Port A. This port will not be used in
this design, however the selections are shown to help the user understand Port A functions.
One configuration option is Address/I/O Mode. In Address mode, the lower address bits
A0 – A7 are brought out on Port A via an internal output latch. In I/O mode mode, Port A
functions like a general purpose bi-directional buffer/output latch. In either mode, each pin is
individually configurable and are controlled on the fly by special control registers internal to
the PSD312 (refer to the PSD Data Book for details on these control registers and other
internal configuration bits for the PSD3XX). In our application, Port A is configured in the
Address mode with CMOS outputs.

Another mode for Port A is the Track Mode. In this mode, the entire port will track the inputs
AD0/A0 – AD7/A7 depending on the specific address ranges defined by the PAD’s CSADIN,
CSADOUT1, and CSADOUT2 signals. This feature lets the user interface the microcon-
troller to shared external resources without requiring external buffers and decoders.

PSD3XX – Application Note 023

1-223

Configuration
Data Entry
(cont.)

Figure 1.7 shows the configuration options for Port B. Port B is configured similarly to Port A
with the exception of the choice between Address/I/O or Track Mode. This port is a general
purpose I/O port that can be used for transferring signals, either chip select outputs from
PAD B, or data from the internal data bus. It is also used as the high order data byte in
16-bit, non-multiplexed applications. Since I/O is the default setting for the PSD312, the only
parameter that needs to be set is CMOS or OD outputs. If all eight I/Os are not needed, the
alternative configuration for the PSD312 Port B pins are chip selects. The CS pins and their
associative logic equations would be specified in the ABEL source file as previously
discussed. Since Port B will not be used in this example, all of the pins should be configured
as outputs for the same reason given for the Port C pins.

Figure 1.7 PSDsoft Port B Configuration

PSD3XX – Application Note 023

1-224

Configuration
Data Entry
(cont.)

The next step in our development sequence is to compile the design using the “FIT”
function, found under the PSDsoft Compile menu. The function of the fitter is to fit the
logic functions into the PAD. It merges the outputs from the compiled ABEL file and the
configuration file.

Also under the PSDsoft Compile menu is the Address Translator. The Address Translator
combines the PAD fusemap file, PSD Configuration, and the EPROM codes file into the
.OBJ file which can be downloaded to an EPROM programmer for PSD312 programming.
Figure 1.8 shows the windows associated with these functions. The EPROM select
equations shown, are automatically entered into this table, taken directly from the ABEL
source file. Instead of having one contiguous EPROM space, the PSD312 EPROM is
broken up into 8 Kbyte blocks. In this application, the selects for each block are ES0
through ES3. The other selects, ES4 through ES8, will not be used in this example. A space
for the individual hexadecimal files to be programmed into the PSD312 EPROM is reserved
under the File Address Start, File Address Stop, and File Name sections. These parameters
are entered manually by the designer.

Figure 1.8 PSDsoft “FIT” and Address Translate Functions

This completes the design entry portion of our design. Before actually programming the
PSD part, the user may want to review and verify the design. A convenient way of doing this
is to review some of the reports generated by the compilers. One such report is the Fitter
Output Report, shown in Appendix A. This report contains a summary of all the design
parameters chosen during the design.

PSD3XX – Application Note 023

1-225

Programming
The PSD3XX

Finally, the last item in our development sequence is to actually program the PSD312 part.
The PSD Programmer software, which is contained within PSDsoft, allows you to use either
WSI’s MagicPro PC compatible programmer or one of many industry standard equivalents
to transfer the contents of a .OBJ file into a PSD device. The combined software and
hardware allow you not only to program devices but also to perform the following useful
functions:

❏ Blank Test
Test a device to see if it is blank.

❏ Upload
Transfer the contents of a device from the programmer to memory.

❏ Edit
Edit the memory locations of the EPROM section of a .OBJ file.

❏ Verify
Verify the contents of a device after programming.

❏ Checksums
Compute the checksums on the file contents.

Figure 1.9 shows some of the programmer options available under the PSDsoft
Programmer Environment.

WSI’s PSD devices can be made secure by setting the security bit during the Bus
Configuration portion of the design. Make certain that this option is not selected until after
the device configuration is programmed. If the security bit is programmed before the
configuration, the PSD device will fail the blank test and will require UV erasing.

Figure 1.9 PSDsoft Programmer Window

PSD3XX – Application Note 023

1-226

PART II.
Advanced
PSD3XX Family
Design

By now you should have a basic understanding of the PSD3XX device so it is time to
introduce some additional features. This example will solve a slightly more complicated
design problem. By going through this example you should understand how to use the
PSD3XX device to realize functions for your own unique designs.

Assuming the design in Part 1 has been created and saved under a project name
(i.e. appnt23a), you can re-open that project to begin this new design. This will keep you
from having to enter redundant information. For example, the Bus Configuration options will
not require any changes in this design. In this second example, restating the method of
navigating through the menus will be avoided for purposes of brevity.

The diagram in Figure 2.1 illustrates the new microcontroller board design to be replaced by
a design using the PSD312. In addition to functions previously replaced in the standard
board design, this board includes chip select logic, I/O buffers, and a logic chip. The logic
chip does not perform microcontroller functions but is included to show the flexibility of the
PSD312. An additional change is there is now an SRAM chip select which is an input to the
board. Its logic select function is defined elsewhere so it does not need to be recreated in
the PSD312’s chip select logic. This scenario would occur when some other device has a
separate SRAM of its own. This other device will decide whether the microcontroller writes
to the PSD312 SRAM or its own SRAM. The configuration of this design is mostly the same
as in Part 1. We are now using PORT A as an I/O buffer, all PORT C pins are now used as
logic inputs, and we must specify the chip selects in PORT B to conform to our logic and
chip selects.

512 KBIT EPROM

LOGIC INPUTS

LOGIC OUTPUTS

16 KBIT SRAM

ADDRESS
LATCH

PSEN

RD WR

A(7:0)

A(15:8)

ALE

AD(7:0)

PSEN

RD WR

CHIP
SELECT
LOGIC

I/O
BUFFERS

LOGIC

8031
 MICROCONTROLLER

Figure 2.1. Advanced 8031 Microcontroller System Block Diagram

NOTE: Each Block represents one IC package.

PSD3XX – Application Note 023

1-227

Figure 2.2. Advanced Design PSD312/8031 Physical Connections

Figure 2.2 illustrates the physical connections to the PSD312. The SRAM chip select is
input to A19 (A19/CSI), and the logic inputs are input through A(18:16). These are arbitrary
assignments among the address inputs. PORT C could not be used for chip select outputs
because we needed to make room for the inputs.

Advanced
PSD3XX Family
Design
(Cont.)

NOTE: Additional Microcontroller connections are not shown.

CHIP SELECTS
AND LOGIC

CS (3:0)

I/O SIGNALS
RAM_CSN

LOGIC INPUTS

RD, WR, P0(7:0) P1(7:0)
ALE, PSEN,

RESET

RESETUPPER
ADDRESS

BUS

LATCHED
LOWER

ADDRESS
AND DATA

BUS

GND

A19/CSI

PC(2:0)

PA(7:0)

PB(7:0)

RD
WR

ALE
PSEN

RESET

GND VCC

PSD312

AD(7:0) A(15:8)

VCC

0.1mF

8031
 MICROCONTROLLER

PSD3XX – Application Note 023

1-228

Advanced
PSD3XX Family
Design
(Cont.)

Figure 2.3 shows the new ABEL file for this example. Notice that Port C pins 40, 41, and 42
have been declared as inputs A16, A17, and A18 instead of chip select outputs CS8, CS9,
and CS10 as in example one. Although the names of the inputs are addresses, they can be
used as either logic or address inputs.

Figure 2.3. PSDsoft ABEL File – Example II

PSD3XX – Application Note 023

1-229

Advanced
PSD3XX Family
Design
(Cont.)

The I/O signals connect to the PSD312 through Port A. The only configuration change from
example one therefore would be to select I/O instead of A0 – A7 in the Port A configuration
menu (refer back to Figure 1.6 of example one).

Port B is used for the chip select and logic outputs. The configuration remains the same as
in example one (refer to Figure 1.7), however in this example the chip select equations for
CS0, CS1, CS2, and CS3 are defined in the ABEL file as shown in Figure 2.3. Table 2.1
describes the function of the logic chip that will be implemented by the PSD’s internal PAD
(inputs A, B, C = A18, A17, A16; output = CS0). Chip selects CS1, CS2, and CS3 are used
to enable components on other boards when their address ranges, as shown in Table 2.2,
are encountered.

CHIP SELECT ADDRESS RANGE ADDRESS BITS
15 14 13 12 11

CS1 D000 – DFFF 1 1 0 1 X
CS2 C000 – C7FF 1 1 0 0 0

CS3 C800 – CFFF 1 1 0 0 1

INPUTS OUTPUT CONDITION
A B C (CS0)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

Table 2.1: Logic Truth Table

Table 2.2: Chip Select Address Map

Referring to the address map equations shown in the ABEL source file for this example
(Figure 2.3), notice that the SRAM chip select (RS0) is enabled (active low) by the external
signal A19. This was done simply to allow the PSD’s SRAM to be disabled so that another
SRAM, external to the PSD, could be enabled and addressed by the microcontroller without
conflicting with the PSD’s internal SRAM. Also notice that A19 is not necessary in the logic
equations that select the EPROM (ES0 – ES3) in this design example. This is because
the EPROM and SRAM are controlled by the separate read strobes, PSEN and RD, and
therefore can share the same address space.

The CSIOP signal is the base address for the I/O functions. Since it is also controlled by the
the RD signal, it must have a different address range than the SRAM. In this example, its
address range is from 80000 to 807FF (the actual microcontroller address is 0000 to 07FF
with the upper address bit, A19, being provided externally).

A PSD3XX family device can implement many common microcontroller functions and it is
flexible enough to be used on designs requiring special functions. Its use will reduce
the component count, layout complexity, size, component cost, PCB cost, and power
consumption of a design. Reliability is increased due to the reduced chip count. The risk of
board redesign is minimal given the ease of design and the PSD3XX device’s flexibility. The
user friendly software makes it easy to use in any design.

Conclusion

PSD3XX – Application Note 023

1-230

Appendix A.
PSDsoft Fitter
Output Report

W S I - PSDsoft Version 2.12

Output of PSD Fitter

TITLE : appnt23a
PROJECT : appnt23a DATE :
DEVICE : PSD312 TIME :
FIT OPTION : Keep Current
DESCRIPTION:

==== Pin Layout for PLDCC/CLDCC Package Type ====

Address/Data Bus ADIO_0
Address/Data Bus ADIO_1
Address/Data Bus ADIO_2
Address/Data Bus ADIO_3
Address/Data Bus ADIO_4
Address/Data Bus ADIO_5
Address/Data Bus ADIO_6
Address/Data Bus ADIO_7
Address Bus ADIO_8
Address Bus ADIO_9
Address Bus ADIO_10

Address Bus ADIO_11 (a11)
Address Bus ADIO_12 (a12)
Address Bus ADIO_13 (a13)
Address Bus ADIO_14 (a14)
Address Bus ADIO_15 (a15)
cs8
cs9
cs10
a19

[23
[24
[25
[26
[27
[28
[29
[30
[31
[32
[33
[34
[35
[36
[37
[38
[39
[40
[41
[42
[43
[44

adio0
adio1
adio2
adio3
adio4
adio5
adio6
adio7
adio8
adio9

adio10
GND

adio11
adio12
adio13
adio14
adio15

pc0
pc1
pc2

a19/csi
VCC

psen
wr
reset
pb7
pb6
pb5
pb4
pb3
pb2
pb1
pb0
GND
ale
pa7
pa6
pa5
pa4
pa3
pa2
pa1
pa0
rd

1]
2]

 3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]

psen
wr

reset
CS7
CS6
CS5
CS4
CS3
CS2
CS1
cs0

ale
Address Line A7
Address Line A6
Address Line A5
Address Line A4
Address Line A3
Address Line A2
Address Line A1
Address Line A0

rd

PSD3XX – Application Note 023

1-231

Appendix A.
PSDsoft Fitter
Output Report
(cont.)

==== Global Configuration ====

Data Bus : 8-bit Multiplexed
Reset Polarity : HIGH

ALE/AS Signal : ACTIVE HIGH
Security Protection : OFF

Power-down capability (/CSI) : Not Used
EPROM low power mode (CMISER) : DISABLE

Track Mode : OFF

==== Other Configuration ===

Port A :

Pin IO/Address CMOS/OD Output

PA0 Address CMOS
PA1 Address CMOS
PA2 Address CMOS
PA3 Address CMOS
PA4 Address CMOS
PA5 Address CMOS
PA6 Address CMOS
PA7 Address CMOS

Port B :

Pin IO/Chip Select Output CMOS/OD Output

PB0 Chip Select Output CMOS
PB1 Chip Select Output CMOS
PB2 Chip Select Output CMOS
PB3 Chip Select Output CMOS
PB4 Chip Select Output CMOS
PB5 Chip Select Output CMOS
PB6 Chip Select Output CMOS
PB7 Chip Select Output CMOS

Port C :

Pin Input/Output Address/Logic

PC0 Output
PC1 Output
PC2 Output

==== Address & Data Bus Assignment ====

Stimulus Bus Name Signal Description

`adiol = adio[7:0] = Address/Data Bus ADIO_7 - ADIO_0
`adioh = adio[15:8] = Address Bus ADIO_15 - ADIO_8

adio = adio[15:0] = Address/Data Bus ADIO_15 - ADIO_0

PSD3XX – Application Note 023

1-232

Appendix A.
PSDsoft Fitter
Output Report
(cont.)

===== Resource Usage Summary =====

Device Resources used / total Percentage

Port A: (pin 14 - pin 21)
I/O Pins 8 / 8 100 %
MCU I/O 0 / 8 0 %
Address Out 8 / 8 100 %
Data Port (Non-Mux Bus) 0 / 8 0 %
Track Mode 0 / 8 0 %

Port B: (pin 4 - pin 11)
I/O Pins 8 / 8 100 %
MCU I/O 0 / 8 0 %
PLD Output 8 / 8 100 %
Data Port (16 bit Non-Mux Bus) 0 / 8 0 %

Port C: (pin 40 - pin 42)
I/O Pins 3 / 3 100 %
PLD Input 0 / 3 0 %
PLD Output 3 / 3 100 %

========= Equations =========

DPLD EQUATIONS :
==
es0 = !a19 & !a15 & !a14 & !a13;
es1 = !a19 & !a15 & !a14 & a13;
es2 = !a19 & !a15 & a14 & !a13;
es3 = !a19 & !a15 & a14 & a13;
rs0 = !a19 & !a15 & !a14 & !a13 & !a12 & !a11;
csiop = a19 & !a15 & !a14 & !a13 & !a12 & !a11;

PORT B EQUATIONS :
===================

!cs0 = 1;

!cs1 = 1;

!cs2 = 1;

!cs3 = 1;

!cs4 = 1;

!cs5 = 1;

!cs6 = 1;

!cs7 = 1;

PORT C EQUATIONS :
===================

!cs8 = 1;

!cs9 = 1;

!cs10 = 1;

Return to Main Menu

	Introduction
	Using the PSD312 with a Standard 8031 System
	Physical Connections
	PSDsoft Overview
	Configuration Data Entry
	Programming the PSD3XX
	Advanced PSD3XX Family Design
	Appendix A. PSDsoft Fitter Output Report

